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%e analyze the imphcations of a model for high-energy hadron-hadron scattering in which the Smatrix is given by
an eikonal formula and is therefore explicitly unitary. The eikonal y is a Hermitian operator which represents the
lowest-order amplitudes for all reactions, elastic and inelastic. {Consequently, the matrix elements ofS = e ~ are not
simply related to those ofy.) %"ederive a physical picture of high-energy scattering as a stochastic process in which

quanta associated with harmonic oscillators at each point in a subspace of three-dimensional space are created or
annihilated randomly. As the energy increases, the length of this subspace in the longitudinal direction expands and

more harmonic oscillators become excited. The expectation values ofy',y',y', ... become very large, but the Smatrix
remains unitary. %'e derive a partial differential equation for a generating functional for the Smatrix, through which

we show that the target particle becomes completely absorptive as the energy of the projectile goes to infinity.

I. INTRODUCTION

The eikonal formula, originally known in optics,
has been applied to many problems, whether rel-
ativistic or nonrelativistie, quantum mechanical
or field theoretic, in the theory of scattering of
high-energy particles. Over thirty years ago,
Moliere' first extended the eikonal formula from
optics to high-energy potential scattering in quan-
tum mechanics. This formula can also be derived
from the Dirac and Klein-Gordon equations; it
has become one of the cornerstones of various
optical models" for high-energy scattering of
strongly interacting particles, and it describes
multimeson exchange in quantum electrodynamics
(QED) and other field theories. '

Consider the case of a fermion or a boson scat-
tered by a potential V(x). The eikonal formula is
valid in the limit in which the. energy is large and
the scattering angle is small. In this limit the
three-dimensional momentum transfer 4 reduces
to a two-dimensionaL vector perpendicular to the
direction of the incident momentum, which we
take to be along the z axis. 'Then the eikonal for-
mula for the 8 matrix is

S(Z) = d'be"~ bS(b)

with

(1.1) in momentum-transfer space, or by (1.2) in
impact-distance space, is explicitly unitary. The
eikonal X(b) in (1.3) is simply the lowest order
(Born) term of the scattering amplitude.

For the purpose of illustration, we will derive
the eikonal formula for the potential scattering of
a particle whose wave function satisfies the Klein-
Gordon equation. The time-independent Klein-
Gordon equation is

[E —V(x)]'P(x)+ (V' —m')g(x) = 0. (1 4)

The boundary condition is specified by the incident
wave

p„,(x)= ets'. (1.5)

I.et us set

(1.6)

where, for reasons that will become obvious, we
have explicitly separated the components of x into
z and b, where

In (1.4) and (1.5), E is the energy, V(x) the poten-
tial, m the mass, and

p —(E2 ~s)ti 2

We shall study the solution of (1.4) in the limit

S(b) &txtb)

where

1
X(b)= —— dz V(b+ne, ),g

(1.2)

(1.3)

b=xe„+ye„.

Substituting (1.6) into (1.4), we find that the result-
ing equation consists of terms of the order of
E'@, E@, and P. The E'Q terms cancel and ne-
glecting terms of the order of Q, we obtain

and where g is the particle's velocity. The mag-
nitude of the two-dimensional vector b is the im-
pact distance. Note that, the 8 matrix, as given by

- -sV(b, z)Q(b, z),
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where V(b, z) is just another notation for V(x).
From (1.8), we easily obtain

(1 9)

P(b, e)-e'"exp -i f V(b', e') de' P(b). ((.)O)
~e a ~)4

To determine E(b), we note that, as z - -~,
(j)(b, z) should be equal to the incident wave. e'(".
Thus,

Z(b) =1

PP

P(b, e)- exp -i f V(b, e')de' V(b),
~ 40 ei

where E depends on b only. Substituting (1.9) into
(1.6), we get

(2.1)

where particle creation and annihilation play a
vital role, is therefore at best phenomenological.

It is generally believed that hadron-hadron
scattering is described by gauge field theories,
in particular quantum chromodynamics (QCD).
We have therefore investigated high-energy col-
lisions in QED (Ref. 5) and a SU(2) Yang-Mills
theory' and have found a generalization of the ei-
konal formula. In our studies, the S-matrix op-
erator at high energies was found to be"

$(b 1") eix(beT)

In (2.1), b again is a vector in the transverse
plane, and T is the rapidity defined by

and we have
1T=—lns» 1,2r (2 2).

g(b, z)- e'~'exp -i
Jl V(b, z')dz'
-a

Equation (1.11) states that, as the incident waves
passes through the potential, the wave function
$(b, z ) derives an accumulated phase shift equal to

i) g

V(b, z')dz'.

When the wave arrives at z =~, the total phase
shift accumulated is therefore equal to

X(b) = -J) V(b, z')«'.
~ DO

(1.12)

This is consistent with (1.3) since the particle's
velocity is essentially e, which in our units equals
one. 'The S matrix in impact-distance space is
equal to

S (b) —ei x (b ) (1.13)

Once the potential V(x) is given, all physical quan-
tities such as the differential or total cross sec-
tions are easily determined.

II. HIGH-ENERGY SCATTERING IN FIELD THEORIES

The above considerations apply only to potential
scattering or to the generalization of potential
scattering to field theory, where an arbitrary num-
ber of mesons are exchanged between the two
scattered particles. 'These processes do not des-
cribe the very important phenomenon of particle
creation and annihilation. 'The value of the eikonal
formulas (1.1)-(1.3) for'hadron-hadron scattering,

l

where s is the square of the energy in the center-
of-mass system, and where X is the eikonal repre-
senting the lowest-order amplitudes in all elastic
and inelastic reactions, with the propagators in
the Yang-Mills case Reggeized.

Unlike the eikonal formula in potential scatter-
ing, to which it bears a formal resemblance, (2.1)
is not yet in a form from which physical conse-
quences can be readily extracted. Since it des-
cribes the creation and annihilation of particles
occurring in hadron scattering, the eikonal X is
an operator. Thus (2.1) is an operator in the Fock
space. As a result, the matrix elements of e'"
are not simply related to those of X, and the phys-
ical implications of the eikonal formula (2.1) re-
main to be deduced. In this paper, we turn our
attention to this problem.

The expressions for the eikonal X in QED and
the Yang-Mills theory are fairly complicated. In
the @ED case, the complication is mostly due to
the fact that a created electron must be accom-
panied by a created positron, while in the Yang-
Mills case, the complication is due to the com-
plexity of the vertex factors and the Reggeization
of the propagators. As a first attempt to under-
stand the consequences of eikonal formula we shall
consider a simplified model in which a particle can
be created singly with the vertex factor equal to
the coupling constant g, and the propagator in the
momentum space is simply (q, '+ &') ', where qb
and ~ are, respectively, the transverse momentum
and the mass of the virtual particle. For this
model, we have

X(b, 1) d'ii(b)ed'fd'b, 'f=dpid(/b-b, /)x(b„p, )id(/b, /)
0

r ~1
+g d b1d b2 d~1 d~ b b1 & b1$~1 + b1 b2 b2jT2 + b2 + ' ' ~

0 0
(2.3)
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In (2.3),

K(b) = Ko(&b)/2v

is the Fourier transform of (q, '+ A.') ', and

x(b, T) = [a~(b, T)+ a(b, T)],
2

(2.4)
(a)

b, T

(a') (a )

where at(b, T) and a(b, T) are, respectively, the
creation and annihilation operators for a particle
at transverse coordinate b with rapidity 2mT in
the laboratory system. They satisfy the commu-
tation relation (b)

b, T

(b')

b,T

bj,T

(c) (c')

[a(b, T ) a (b' T')]= 5(T —T')5'(b -b') . (2.5)

Diagrammatically, the first term in (2.3) is rep-
resented by the diagrams l(a), l(a'), 1(a"),. . . ,
etc. , where the scattering is elastic an no particle
is created or destroyed, while the second term in

(2.5) is represented by the diagrams 1(b},1(c),
1(b'), 1(c'), ... , etc. , where one particle is created
or destroyed. Similarly, the nth term in (2.3) is
represented by diagrams in which a total of n par-
ticles are either created or destroyed. Among
these n particles, no two of them have the same
rapidity. Indeed, the rapiditie's of the particles
are ordered successively according to their ver-
tical positions, with the particle at the top having
the largest rapidity. This restriction on the ra-
pidities is exhibited more precisely by formula
(3.3) in Sec. III. We also note that these diagrams
are of the lowest perturbative orders for the cor-
responding processes.

We shall, in this paper, restrict ourselves to
the study of the elastic scattering amplitude.
'Thus we shall concentrate on the matrix element

b, T

bj, Tj

(d) (e)

FIG. 1. The matrix elements of the eikonal operator.
The impact distance and rapidity of each particle are
indicated.

[a&(n), a&,(n')] = 5».5„„,. (3.1)

Since we have the correspondence betw'een Dirac
5 functions and Kronecker 5 functions,

to denote the b-space coordinate of a lattice point,
and the indices n„n„.. . to denote-its T-space co-
ordinate. We shall also replace the creation and
annihilation operators in (2.4) by a~~(n) and a~(n)
which satisfy the commutation rule

S(b T) (P~
axe(b, T)~ P) (2 6)

where
~

0) denotes a state containing only the two

colliding particles, i.e. , there are no created par-
ticles. Mathematically,

~

0) is defined by

a(b, T)~0)=0, all b and all T. (2.7)

We shall study the behavior of the matrix element
(2.6) with y given by (2.3).

(.)-5 (bq —bq, ) —,5», ,

thus (2.5) and (3.1) give

1
a(b„T„)—, ,),q, a, (n),

~cd

1 ta'(b„T„)—,,),),— a', (n) .
(cd

(3.2)

III. INTEGRAL REPRESENTATION FOR THE S
MATRIX

As an artifice to facilitate the calculation of
S(b, T}, we shall divide the b and T spaces into
small regions and approximate the integrals in
(2.3}by sums. Thus we replace the b space by a
two-dimensional lattice with the lattice constant
(distance between two neighboring lattice points)
d, and replace the T space by a one-dimensional
lattice with the lattice constant e. We shall use
the indices j,k, 1, . . . (two.components implied) Nz=T, (3.4)

Eventually, we shall let E-0 and d-0 and recover
the problem we started out with.

With such replacements the eikonal of (2.3) be-
comes

y, (N)=g'K~+g'(d'c)'~' Q Q K, ,x,(n, )K,
N&nl&0

+g'd'& Z Z Ki &~a(n }Ka -i&i(n2}Kr+ . ,
k l N&nl&n2&o

(3.3)
where
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Z, ,=Z(~b,. -b, ~), (3.5)

(3.6)

(x(n))~, =x,(n)5„. (3.9)

We also define y, (0}as the vector which has a
component g'K& associated with each b-lattice
point:

Also, the S matrix in (2.6) becomes

S (N) —{0
~

e]xg']E)
~

0) (3.7)

(X(0))g=s'&g-

Then (3.3) can be written as

(3.10)

It is possible to cast (3.3) into a more compact
form. This is done by abbreviating the summation
over j,k, l, ... with the use of matrix notation. To
do this, we define A and x(n) as matrices in the
b lattice with the elements

(3.8)

X,(N)= X(o)+2~& g Ax(s, )X(0)
ar&nq&0

+ 4].'Q Ax(n, )Ax(n, }X(0)+~ ~ ~ . (3.11)
N&nl&n2&0

Let us denote by X(N) the vector whose jth com-
ponent is X&(N). Then we recognise from (3.11)
that X(N) can be expressed by a product of ma-
trices times }]'(0):

(3.13)

X(N)= [I+ 2vc Ax(N —l)][I+ 2M@Ax(N —2)] ~ ~ ~ [I+ 2v c Ax(1)]X(0), (3.12)

where I denotes the identity matrix. If we expand the right-hand side of (3.12) in a power series in Me,
we recover Eq. (3.11)precisely.

The operators x&(n) commute with each other. Thus an eigenstate of Xz(N) is a product of the eigen-
states of the operators x~(n) involved in (3.12}. In other words, each eigenstate of X~(N) is specified by a
designation of the quantum numbers of x~(n) for all j and for all positive n less than N.

Let us calculate S&(N} in (3.7) by expanding the ground state
~

0} into a superposition of the eigenstates
of g&(N). The ground-state wave function of a harmonic oscillator is w ' 'exp(=2x'). Thus we have from
(3.7) and (3.12) that

sg(}}} I, ;]:; - „=; g exp[ xr (m}]I

x exp(i[[I+ 2v e Ax(N —1)][I+2v~cAx(N -2)] - ~ ~ [I+ 2 v c Ax(l)]x(0)]~) .

We may think of x(n} in (3.13) as a diagonal ma-
trix whose matric elements x&(n) are random var-
iables with Gaussian distributions. Thus S&(N) is
equal to the average value of the exponential of the
jth component of a random vector iX(N), by (3.12),
is equal to a product of random matrices operating
on X(0}. We shall study S&(N} in the limit d 0,
~-0, with T=~N»1.

IV. SCATTERING AS A STOCHASTIC PROCESS

The physical meaning of the eikonal forms
(3.13) is very suggestive. Let us imagine a three-
dimensional lattice with its lattice points specified
by the index (j,n). We may think of j as the index
specifying the transverse position on the lattice
and n the index specifying the longitudinal position
on the lattice. While the transverse dimension
of the lattice is infinite, the longitudinal dimen-
sion of the lattice, restricted by (3.4), is equal
to T. As s=e2'~ increases, the longitudinal di-
mension of the lattice also increases.

There is associated with each lattice point (j,n)

a harmonic oscillator with the creation operator
at(n) and the annihilation operator a,.(n). When
two high-energy particles collide, they can excite
any of these harmonic oscillators associated with
the three-dimensional lattice in any arbitrary
manner. The scattering is therefore a stochastic
process in which quanta of the harmonic oscil-
lators are created and annihilated in a random
way. It is interesting to observe that the relevant
physical entity which directly enters is not the
creation operator or the annihilated operator
separately, but the combination x=(1/~2(a+at).
The eigenvalue of x plays the role of a random
variable which can take any value between -~
and , with the probability distribution equal to
the Gaussian m

' 'e . It is also important to
observe that the random variables x, (n) enter
in the form of a power series for the eikonal y,
not for the 8 matrix. As s becomes larger and
larger, the three-dimensional lattice expands
in the longitudinal direction and more and more
harmonic oscillations are involved. Thus y
receives contributions from an increasing number
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p
oo

S(N) ~, dXP, (X)e (4.1)

If P»(l() is non-negligible only if X is very large,
we expect that the rapid oscillation of the integral
makes the integral in (4.1) vanish.

V. DIFFERENTIAL EQUATION FOR THE S MATRIX

Carrying out the infinitely multiple integral
for S»(N) as given by (3.13) is a very difficult
task. Instead, it is possible to derive and study
a partial differential equation for a generating
functional S($, T) for the S matrix. In the dis-
crete T-space formulation in which we have been
processing (T =N&), we define

of random variables as s increases. Consequently,
the expectation value of (0~ X»'(N)

~
0), for example,

is very large as s-~. Indeed, in the QED case,
this expectation value corresponds to the sum of
tower diagrams' and violates the Froissart bound.
It is important that the S matrix S,(N), being equal
to (O~e'x»'"' ~0), always satisfies unitarity no
matter how large y»(N) becomes. Indeed, let
P»(X) be the probability that the eigenvalue of

X,(N) is equal to y, then we have

S($,NE}

exp[-x, '(n)] exp[fX(N) t].

Furthermore, if any one of the components $» is
very large, the rapid oscillation of the integral
in (5.1) makes the integral very small. Thus we
have

S(g, Ne) - 0 if any (5.3}

To derive a partial differential equation for
S($, T) in the limit e-0, N& = T fixed, we write
(5.1) as

(5.i)

Here, $ is a vector which has a component as-
sociated with each lattice point of the b lattice.
Hence. if we set $»=1 for a fixed component j, and
all other components of $ to zero, S(g, Nc) is
precisely S»(N). Thus, a knowledge of S($, T) con-
tains more than the complete information for the
S matrix over the b lattice.

Since ~exp[i'(N) ~] ~
=1, we have from (5.1) that

~S(),NE)~ -1, for all $ and Nt. (5.2)

dx, (N)
" - dx, (n)

S($, (N+1)e}= J, '- exp[-x»'(N)]
(

' exp[-y»'(n)] exp[i'(N+ I) $] . (5.4)

X(N+1} obeys a recursion formula which follows
from (3.12),

X(N+1) =[1+2&ahx(N)]X(N), (5.5)

so that (5.4) ean be expanded into a Taylor series
of W&, after substituting in Eq. (5.5). We get,
after carrying out the integrations over all x»(N),

+terms of higher order in vY. (5.6)

In the desired limit &-0, this equation becomes

(5.7)

S(], (N+1)~}=S(),Nc)+~ g ($» A»,)', S((,N~)

interest to study the probability function P(y, Ne)
defined by

P~X»~)= J~ ... . .... ' -e "» ("'&(X-X(N}}.
~ =- dx, (n)

(5.9)

The function P(y, Na) is the distribution function
for the eigenvalues of y(N) as given by (3.12),
when the random variables x»(n} are of Gaussian
distributions. This function is, by (5.9) and (5.4),
the Fourier transform of S(P, Nc):

P(X, N&) = Jt, , 2
' exp(-iy ~ $)S(&,Ne). (5.10)

Thus,
with the initial condition

S(( 0) eif x(o'( (5.S)
S((,X~)= J

'
[ax, ~m((x "()J'(K&~(.

'y
(5.ii)

together with the boundary condition (5.3). The
above equation is the partial differential equation
we want. We shall solve (5.7) to obtain the as-
ymptotic form of S($, T) in the limit T» 1.

Before we attempt to solve this equation, let
us first dispose of a related topic. It is of some

In the theory of probability, S($,Ne) is known as
the characteristic function of P.

Making a Fourier transform of (5.7) we obtain
the partial differential equation for P:

8 2

X„'P(X,7') (5.»)
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with the initial condition

P (X, 0) = 6 {X—X(0)).
We also observe from (5.9) that

(5.is)

and the contributions of these singularities are
picked up as we move the contour to the left. For
example, a simple pole in the ~ plane gives a
term proportional to

P(x, T)& 0, (5.14) ~c(}pT ~cop/2g (6.8)

„dxP(x, 7') =1. (5.15)

(6.i)

(6.2)

VI. THE COMPLEX m PLANE

The standard way to deal with the partial dif-
ferential equations above is to perform with
respect to T. Let us define

where ~p is the location of the pole, and similarly
for double poles, branch points, etc.

The behavior of (6.8) is reminiscent of the Regge
behavior. The singularities in the complex co

plane determine the asymptotic behaviors of
S($, T) and P(X, T) in the same way that Regge
singularities control the asymptotic form of the
scattering amplitude. It is therefore of interest
to determine the location of singularities in the
&o plane. The differential equations satisfied by
S($, (()) and P(X, (d) are easily obtained by making
Laplace transforms of (5.7} and (5.12) with respect
to T. We get

(If (g)S(( (d) ei('X(0) (6.9)

We note that, since ~S($, T)
~

is never greater
than unity, S($, (d) exists if

and

(H' —(d)P(x (o) =-5(x-x(0)}- (6.10)
Heco & 0 . (6.s) Thus ~

Furthermore, the asymptotic form (5.4) for
S(g, T) leads to

S($, (()}-0, if any ~$~~-, Re~&0.

Similarly, from (5.14) and (5.15),

P(x, &o) exists for Rem&0

and

(6.4)

P(X, &u)-0, if any ~x, ~

-, Re&@&0.

The functions S($, T) and P(X, T) can be obtained
from their Laplace transform by an inverse
Laplace transform:

(6.5)

(6.6)

(6.7)

where I is any positive number.
The behaviors of S(g, T) and P(X, T) in the limit

T-~ are very conveniently deduced from (6.6)
and (6.V). This is because, in this limit, e"*is
exponentially small if Re~ is negative. Indeed,
the more negative Be~ is, the more quickly e"~

vanishes. Thus, if T»1, the integrands in (6.6)
and (6.7) become smaller and smaller as we move
the contour of integration further and further to
the left. The functions of S($, (d) and P(y, (d) may
have singularities in the l eft-hand plane He{d ~ 0,

and

H—:p( g (.A. ,l( (6.11)

(6.12)

P(X) (d) = -(II' —(()) 6{X—X(0)). (6.14)

VII. SOME SIMPLE EXAMPLES

In order to gain some familiarity with the prob-
lem, we shall give in this section results of two
simplified examples. Derivations of some of
these results are given in the Appendix.

A. Case of one lattice point

Consider first the case in which the lattice in
the b space has only one lattice point. ' In this
case, g and X have only one component and we
shall denote them as t and x, respectively. The
solutions of (5.V} and (5.12) have been obtained
in closed forms'.

S(g 7') =] +s + r~4 ~~ ~
(X ge (~~2) ~

2g

-ip e "~'r r (=,' + ip) (V.i)

The solutions of (6.9) and (6.10) are, respectively,

S(( ~) (If ~)-( e(f x(0). (6.is)
and
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and

1 1 [In(x/X, ) + A' T]'
(Xt )

(4 A2T)1/2 P . 4A2T

(7,2)

In (7.1) and (7.2), A is the (only) matrix element
of the A matrix and y, is the (only) component of
x(o).

From (V.l), we see that as T- ~, S($, T) ap-

proaches unity. More precisely the function
[S(1,T) —1], measuring the amount of scattering,
vanishes roughly like a negative power of s as
S

As for P(y, T), we find from (V.2) that the mean
values of in(y/X, ) is equal to -A' T. Thus as
T- ~, P(x, T) is nonzero only if y is roughly equal
to y,e, a very small number. This means
that the large number of random terms in the
eikonal cancel one another as T- ~.

B. Case of two 1attice points

We consider the next simplest case in which the lattice in the b space has two lattice points. In this
example, the A matrix is a 2 & 2 matrix in the form of

Ao A~

A, Ao

and $ has two components g, and $,.
In the limit 7.'- , we get

(7.3)

S($, T) 1, if A &A, '

0, jf A (A
(7.4)

i(a+ 5)(],+ ],) - I (a+ b) ((,+ ],) l- exp
2

f AD=+A (7.8)

where a and b are constants which appear in the
initial condition

S(g, 0) = exp(ia t, + ib $,) . (V.V)

VIII. CASE OF. THREE SPATIAL DIMENSIONS

In this section, we shall determine the behavior
of the S matrix for the case we set out to solve:
Eq. (5.V) in the limit the lattice constant d goes to

From (V.4) we find that complete cancellation
happens when the condition Ao &A, . Physically,
a target particle becomes transparent (no scat-
tering) in the high-energy limit if A, '&A, '. A
special case of A, ' & A,' is the case of ~&, = 0. In
this special case, A is proportional to the iden-
tity matrix. Thus the two lattice points are de-
coupled and the problem is reduced to that of one
lattice point treated in subsection A. The result
there can therefore be considered as a special
case of (7.4).

From (V.5), we find that the cancellation does
not happen if Ao &A, . Physically, it means that,
if Ao'&A, ', the target particle becomes black
(completely absorptive) in the high-energy limit
as a result of particle creation and annihilation.

From (7.6), we find that the cancellation is par-
tial if A, '=AD'. Physically, it means that a target
particle becomes gray (partially absorptive) in
the high-energy limit.

I

zero. This is the case in which we have a contin-
uous, two-dimensional 5 space.

The key observation here is that, since A» is
proportional to d [see (3.8)], we may neglect, in
the limit d-0, the diagonal matrix element Af f.
This is because we can drop one infinitesimal). y
small term from a sum which is an approximation
of an integral. '

If we neglect A&& (or equivalently, set A&&=0),
then the operator

is self-adjoint, as p(&A&, commutes with s/st».
Furthermore, the eigenvalues of H are nonposi-
tive, as we have, after an integration by parts,

~

&K P(K)Jfy(() = &$P-(g 4,A, , )
~I a ( g j

(8.1)

The right side of (8.1) is equal to zero if g() is
equal to a constant.

We shall show that this eigenfunction of zero
eigenvalue does not contribute to the asymptotic
form of S(f,T); hence, S(f, T) vanishes in the
limit T -~ with g fixed. We observe that the
operator H is equidimensional. Hence it is useful
to introduce the spherical coordinates
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(a.2)

(8.5) into the line

M0= +&P ~

The operator 0 operating on r " times a function
of $,. is always equal to r "times another function
of $, . We may therefore define the operator X(q),

Ifr &F-(j, ) = r-&X(q)F(j, ), (8.3)

where X(q) involves only the angular variables

The expression (6.13) for the Laplace transform
S (j, iu) is therefore best handled if we express
8'~' ""'by its Mellin transform integral:

pr, +f
&i I ' }}io}

~

q [r( .
X (0)] -}}e s}}}}/2I(}I)

27ri

(8.4)

where L is any positive constant. ' Then (6.13) be-
comes

S(F, iu)

~
~

~

I, +k~d
}}

iaaf}}

/2 F( ) [ g ~(0)] }}
2ni X(q) —iu I

(8.5)

As a consequence of (8.5) the fact that H is
self-adjoint, S (f, iu) is an entire function of iu.
To see this, let us for the moment imagine that
the lattice in the 5 space has M lattice points.
(Eventually, we will take the limit M-~. ) Then,
since & is self-adjoint, we have

~(} }i}~i}i}d"i r}*}i}H}}i}=d"«B.s}

for any g and it} satisfying proper boundary condi-
tions. Let us choose

(8.7)

then we have

(5 )= — —( "')"'" ( /+ )
dp
2g

S(P, T)= —.e 'S(f, iu)
2xz

~0 as Q~oo (8.11)

We therefore conclude that a target particle be-
comes completely absorptive as 7-.
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APPFNDIX

X(M/2„P) iu 0 X(o)1 "

(8.10)

From (8.10), we find that f($, iu) has singulari-
ties at the points of iu equal to the (real-valued)
eigenvalues of X(M/2+ ip).

As M-~, all of these eigenvalues become neg-
atively infinite. This is because they are also the
eigenvalues of H corresponding to the eigenfunc-
tions of the form r " ' '~ times a function of g&.
The radial derivatives of these eigenfunctions are
equal to infinity as M ~. Thus from (8.1), the
corresponding eigenvalues go to —~ as M- .

Since S(p, iu) is entire, we have

y(g) = r "'" ' *&,(j )

Substituting (8.7) into (8.6), and carrying out the
integration over r, we get, after factoring out a
common factor 6(}I-}I'),

E2* q E~ aQ=

X(}I)=X'(M -}I) . (8.9)

where dQ denotes the integration over all angular
variables. From (8.8), we conclude that

(Al)

In this Appendix, we derive the closed forms of
S((,T) and P(X, T) for the case in which the lattice
in the 5 space has only one lattice point.

In the case of only one lattice point, the eikonal
as given by (3.13) is equal to a product of random
numbers, not random matrices. Thus the logar-
ithm of the eikonal is equal to a sum of random
numbers. This problem can therefore be easily
treated by standard techniques in probability theo-
ry, e.g. , by applying the central limit theorem.
Let us, however, utilize the formalism we have
set up. We have

A'(', S((, iu) —}uS($, &u) =-e'"
In particular, X(M/2+ ip) is Hermitian if p is
real.

If we now move the contour of integration in

and
82. x' p(x, ~) -~s'(x, ~) = —6(x -c), (A2)
~x
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where A and C are constants. The boundary condi-
tions are

"'" dq (Cps-'"')- r(q)S(g, ~)=-
2

.
( 1}A, . (A7)

S((, (d) —0, ~f. ) -~, Rear&0,

P(X, a))-0, iXi -, Re(u&0.

(As)

(A4)

By moving the contour of integration in (A7) to
the line Req = ——„and picking up the contribution
of the pole at q = 0, we get

We first solve for S($, (d). Since the operator

(A5)

(fp (G ge «/(()21/2- P«P( ( + «p)S(, (o}=—+ 2(«A'(-,'+P')+ (a)

(A8}

is equidimensional, JIx" is equal to a constant
times x". Thus (A1) is easily solved by expressing
e'~~ by its MeQin transform integral

dge««c — (Ggs-«&/2) 'll'P(q )
oo 27Kg

where I, is any positive constant. Then (Al) and
(A6) give

S (g, co) has a simple pole at u = 0. By making an
inverse Laplace transform of (A8), we get S(),T)
as given by (7.1).

It is also interesting to study the Green's func-
tion G(g, g', &u) which satisfies

82
~

A'$', —&a ~G(g, g', v) = 5(g —8') .
sg

The solution is, for g'&0,

],/ g
)«(«+«td//( j

A (I+ 4~/A )
(A10}

1 f $ ) «+ («+«Ql/A )

A'(1+4~/A')'/' g' ~~g') (A11)

=0, 4&0. (A12)

A similar expression holds for g'&0. It is seen that the only singularity for G(g, g', (d) is a branch point
at &o = -A'/4. The function S(g, ar), equal to the integral

dg' G(g, g', (0)e (Als)

has additional singularities due to the divergence of integration at g' = 0. From (A10) and (A1S), we find
that these singularities occur at

1 —(1+4(a)/A'}' '
2 (A14)

The first root of (A14) (with the right side of the equation set to zero) is

which is the singularity responsible for the vanishing of scattering. All other roots of (A14) are located
in the second Riemann sheet of ~.

Finally, we turn our attention to P(X, &v). By comparing (A2) and (A9), we find that

(A15) .

Thus, if C &0, we have from (A10)-(A12) and (A15) that
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~ C y1+ (1+44)/A )2 x/2

A'(1+4+/A')' '
y

x~&

(gy-(i+4~/a'&' '
A'(1+4 /A )

=0, X&0. (A16)

Again, the only singularity for P(y, &o) is a branch point at e = -A /4. By making an inverse Laplace
transform of (A16) we obtain lo(y, T) as given by (7.2).
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To make the integral in (7.1) convergent, we shall give
$ a positive phase angle, i.e., we put $ =

) ( (
e~e. The

case of positive g is obtained by taking the limit 0-0
and the case of negative ( is obtained by taking the
limit 0 m.

Another way to justify this is to observe that all high-
energy amplitudes from diagrammatic calculations are
in the form of a power of lns times convergent inte-
grals over transverse distances. Thus these ampli-
tudes are unchanged if we put in a cutoff for small
transverse distances and then let the cutoff go to zero.
Now if we expand exp(i y ~ () in (5.11) into a power ser-
ies of g ~ (, the (y ()+ term is proportional to the V~
terms from diagrammatic calculations (Refs. 5 and 6}.
It is also the nth moment of P. Thus the moments of
P remain the same if we put in an infinitesimal cutoff.
The S matrix is the characteristic function of P, and
is hence unchanged with an infinitesimal cutoff.


