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We study semiclassical methods for evaluating the canonical probability distribution function

p{tt) = (ted{exp{ —pH){tt) in field theory for systems in thermodynamic equilibrium. Field configurations which

dominate the semiclassical distribution function are interpretable as "finite-temperature mast-probable escape
paths" (FTMPEP'sj in field space and are related to the recently discovered caloron solutions, which are known to
partiaHy dominate the semiclassical partition function Z = IDt{ipe{i). We present a semiclassical path-integral

approximation for the distribution function and also discuss a Hartree self-consistent field approximation.

I. INTRODUCTION

Recently, new interest has developed in finite-
temperature non-Abelian gauge theory (e.g. , the
Yang-Mills theory"). This is due in part to a
better understanding of the zero-temperature
semiclassical vacuum structure of such theories.
The classical solutions of the Euclidean field
equations, the so-called "instantons, "' ' are now

generally considered to be interpolating field
configurations for tunnelings between topologically
distinct classical vacuums. ' " These Euclidean
solutions have been shown to be the "most-prob-
able escape paths" (MPEP's) in field space for
tunnelings between vacuums, "'"that is, they are
the paths with the largest WEB tunneling ampli-
tude. Consequently, the instantons dominate the
Euclidean vacuum-to- vacuum transition ampli-
tude IP'~ (Ref. 2) in the nonzero-. winding-number
sectors and are distinctly nonperturbative in
nature. The most general instanton solutions
have been found, "and the first quantum, or "one-
loop", correction to instanton effects in WE has
been computed. ' " The one-loop correction is
interpretable as arising from tunneling paths in
field space near the MPEP."

The vacuum-to-vacuum transition amplitude
is the zero-temperature limit of the partition

function Z. Noting the similarity between Euclidean
field theory and the "imaginary-time" formulation
of equilibrium thermodynamics, "Harrington and
Shepard" argued for the existence of Euclidean
solutions which would dominate the semiclassical
Yang-Mills partition function. They later con-
str'ucted such solutions, dubbed "calorons", "by
taking the zero-temperature multi-instanton so-
lutions, ' and aligning the instantons so that they
are periodic in Euclidean time 7 with period hP,
that is,

which is the usual periodicity condition for finite-

temperature Bose fields. " The caloron reduces
to an instanton in the zero-temperature limit.
The thermodynamics of the pure Yang-Mille gas
has been discussed by Harrington and Shepard, "
while Bilic and Miller" have considered the
thermodynamics of quantum-chromodynamic
(QCD) systems. In both cases the so-called
"dilute-gas approximation"" was employed.
Batakis and Lazarides" have studied the mathe-
matical structure of the gauge-theory vacuum at
finite temperatures. Gross, Pisarski, and Yaffe"
have presented a very thorough review of finite-
temperature QCD and instanton effects. A sum-
mary article by Shepard' on the high-temperature
Yang-Mills gas has also appeared.

Recently, Chang and the present author ob-
served that such periodic Euclidean solutions
are physically interpretable as "finite-tempera-
ture most-probable escape paths" (FTMPEP's). ss

The purpose of this paper is to explain this con-
nection and use it to develop a semiclassical ap-
proximation for the canonical probability distri-
bution function p(i{i)=(iti

~

exp(-PH)
~

gati) in field theory
for systems in thermodynamic equilibrium. We
are interested in the distribution function because
all expectation values as well as the partition
function, Z = J DQ p(P), can be calculated from
it.

The plan of this paper is as follows. In Sec.
II, after briefly reviewing the tunneling concept
of MPEP's, "we consider finite-temperature
tunneling paths in a multidimensional quantum-
mechanical system and show that finite-tempera-
ture MPEP's are periodic Euclidean paths which
maximize the semiclassical probability distri-
bution function. This distinguishes FTMPEP's
from calorons. The latter only partially dominate
the partition function in general. We argue that
FTMPEP's are necessary to fully understand
the semiclassical statistical mechanics of a sys-
tem. We close Sec. II by obtaining the one-loop
correction to the FTMPEP distribution function.
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This is done by considering tunneling paths near
the FTMPEP generated by combined quantum and
thermal fluctuations.

To implement the FTMPEP formalism of Sec.
II efficiently, we present a Euclidean, or imag-
inary-time, path-integral approximation for the
distribution function in Sec. GI, demonstrating that
it reproduces the FTMPEP distribution function
of Sec. G. In Appendix A we show that this semi-
classical approximation yields the exact distri-
bution function for the simple harmonic oscillator.

In Sec. IV we generalize the path-integral meth-
od of Sec. III to field theory and obtain the semi-
classical probability distribution function for a
scalar field theory and for a pure Yang-Mills
gauge theory. In Appendices B and C, we show
that the semiclassical approximation yields the
exact distribution functions and partition functions
for a free scalar field theory and a pure Abelien
gauge theory, respectively.

In Sec. IV we discuss an alternate method to the
Euclidean loop expansion for obtaining higher-
order corrections to the semiclassical distribution
function. The method is a Hartree self-consistent
field approximation and is essentially an improved
way of obtaining the FTMPEP with corrections
from neighboring paths included. We derive a
Hartree equation of motion for the improved
FTMPEP and a Hartree fluctuation equation. We
also suggest an iterative scheme for solving
these equations self-consistently.

We conclude the paper in Sec. VI with a dis-
cussion of our results and suggestions for further
study and possible applications.

II. FINITE-TEMPERATURE MOST-PROBABLE
ESCAPE PATHS

The idea of most-probable escape paths (MPEP
(MPEP s}was first introduced into the multi-
dimensional WKB method by Banks, Bender, and

Wu. ' In one dimension, the %KB method is a
relatively simple approximation for obtaining
tunneling amplitudes. In principle, the multi-
dimensional tunneling problem can be solved in
the WEB approximation by the obvious extension
of the one-dimensional WKB equations to higher
dimensions. In general, however, the resulting
differential equations are intractable unless one
can reduce them to an approximate one-dimen-
sional problem.

In classical mechanics, the principle of least
action determines the classical paths of a Ham-
iltonian system. " Banks, Bender, and Wu" noted
that if a path in a tunneling region could be found
such that the first variations of the Euclidean
action vanished in all directions orthogonal to the
path, then semiclassically the tunneling problem

would become approximately one dimensional.
If along such a path the Euclidean action is a
minimum, then the amplitude of the tunneling
wave function is a maximum, hence the name
most-probable escape path. Tunneling occurs
predominantly through small tubes around such
MPEP's in multidimensional systems.

The MPEP method was later generalized by
Bitar and Chang to study vacuum tunneling in

gauge theory. ""They showed that the instan-
tons' ' are MPEP's in function space for tun-
nelings between topologically distinct classical
vacuums, and that tunneling paths near the MPEP
were responsible for the first quantum correc-
tion, calculated earlier by 't Hooft, ' to the tun-
neling amplitude. Bitar and Chang also obtained
explicit ground-state wave functionals in the
neighborhood of an MPEP. Along an MPEP in
field space, the amplitude of the tunneling wave
functional is a maximum.

The MPEP concept can be further generalized
to finite-temperature systems in order to cal-
culate the semiclassical probability distribution
function, Let us consider an N-dimensional quan-
tum-mechanical system [x-=(x„x„.. . , x„)]in
thermodynamic equilibrium with Lagrangian

I.= .'m(dx/df)'- —V(x). (2.1)

All of the equilibrium thermodynamic information
about the system is contained in the statistical
density matrix p(x, x')." The diagonal elements
p(x} provide the probability distribution function
which gives the probability of finding a particle
at position x. The exact form of p(x) is

p(x)=(x~e-"(x&=g e- ..~y„(x)), (2.2)

where g„(x)and E„arethe energy eigenfunctions
and eigenvalues, respectively, for the system.
We can use the WEB approximation to find the
wave functions g (x) in the classically allowed
regions E & V and the tunneling regions E& V and
then match the solutions at the turning points.
For a system with more than one degree of
freedom, this will quickly develop into a compli-
cated task. If the relevant actions in the system
are large compared to I, we may replace the
discrete energy levels E„byan energy continuum.
(Strictly speaking we are considering the limit Pk- 0.) This semiclassical approximation greatly
simplifies the evaluation of p(x). We will return
to discuss the validity of this approximation shortly.

For the regime E& V, the distribution function
p(x) will be proportional to the Boltzmann fac-
tor e ~, while for E & V it will be proportional
to e ~~ multiplied by the WEB barrier penetration
factor along the MPEP at energy E. For the
MPEP connecting the turning point x~ and a point
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x in the tunneling region, the distribution function
is (modulo normalization factors and quantum
corrections)

(2.3)
where the integral is along the MPEP x«(}].) [CL
means classical in the context of Eq. (2.8) beiowt.
The symbol X is a path parameter and m(X)

=—m(dx/dA)'. In this parametrization, the La-
grangian is or

& h')[

I! dl [2m{k)[V(k) —Z]}"')=0
"xh@)

(2.5)

The Boltzmann factor decreases with energy while
the tunneling factor increases. The energy E in
Eq. (2.3) can be varied to find the "most-probable
energy, " that is, the energy that maximizes the
right-hand side of Eq. (2.3}.
. The MPEP xc„(]{)with fixed end points x and

xE is determined by maximizing the WKB tunneling
amplitude. The relevant variational equation is

L = , m(—X)(dX/df)' —V(}(). (2 4)

2(V-E) ~~ dx,. "~' ' ~' ( d 2(V —E) '~2 dx,. 2m(X) '~2 1 BVdki- m ' + —--— 6x. =0.

(2.8)

(2.7)

The surface term vanishes since Bx, (X(x})= 0 and V(X(x~)) —E = 0. Making a change of parametrization
from ~ to 7 defined by

d}[ 2[V(])-]Ej
I

/

dr m(X)

we obtain from Eq. (2.6) the classical Euclidean equations of motion for the MPEP, xc„(r),
d'x, BV(x)

m 2' =+, v=1, 2, . . . , 1V.
T x f

(2.8)

The variation of Eq. (2.3) with respect to E determines the energy and the associated turning point which
maximize p(x). The appropriate variational equation is

or

+ X(x)

0E E+— dA 2m X VX -E „'/2 =0
"x(x@)

"'() 2m ~ , , 2 BXx , , BX
IP — d](. +2[2m(X)(V —E)]' '2 —2 [2'((}()(V—Z)t ~ ~ = O.

(2.9)

(2.1o)

Since the end point x has no dependence on the
energy, BX(x)/BE =0. At the turning point xs,
V —E =0. Equation (2.10) then becomes

I

becomes a classically allowed path with

V -E =E~- Vz= —,
' m(dx/dr)'= —,

' mv', (2.12)

(2.11)

Equations (2.8) and (2.11) together determine the
MPEP and turning point for a given P and x. We
call an MPEP satisfying these two equations for
finite P a FTMPEP. Substituting the FTMPEP
into Eq. (2.3) yields the semiclassical distri-
bution function p(x) for the system.

Equation (2.11) allows us to relate the above'

finite-temperature MPEP formalism to the imag-
inary-time formulation of equilibrium thermo-
dynamics. """ In the latter, one considers the
particle of mass m to be moving in the "inverted
potential" V~= -V(x) (Fig 1). The M. PEP xcL(r)

xcL
VX

xcL
v

(2.13)

Thus the total "time" needed for the particle to
travel from x to xz and back to x is ]]tP, and the
Euclidean solution xc„(v')is periodic in v' with
period hP. The FTMPEP concept has led us
naturally to periodic Euclidean solutions and
provides a simple physical realization of them.

where e is the velocity in the inverted potential
system. This classically allowed path clearly
obeys the same Euclidean equations of motion as
in Eq. (2.8) so that we have
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XE

I =X

XE

V)(X) l XE XE
'-=X

FjG. 1. Top: The dumbbells represent two possible
FTMPEP's at energy E connecting the turning points
xz~ and x&~ to arbitrary points x in the tunneling regions.
Bottom: The hairpins represent the two classically al-
lowed Euclidean paths at energy EI=-E in the inverted
potential Pl =-V(x) corresponding to the FTMPKP's in
the top drawing.

Rather than giving the dominant contribution to
the partition function & alone as the calorons". "
do, FTMPEP's dominate the distribution function
p(x), from which all expectation values and Z
itself can be calculated. In this sense, the
FTMPEP is a more general concept than the
calo ron.

From the above discussion, it would seem that
p(X) can be calculated semiclassically for all x
by considering tunneling paths alone, without any
mention of classically allowed Minkowski paths.
This is indeed true semiclassically, as Fig. 1
illustrates schematically in one dimension. For
any given time NP and position x, there always
exists a Euclidean path of some energy &I= -E
such that the particle travels from x to x'~ and
back in time hP.

This last point &rings us back to the energy
continuum approximation we made at the beginning
of this discussion. If the energy spectrum is
discrete, then for a given SP and x, the FTMPEP
with energy E will generally lie between allowed
levels. Tunnelings will then occur most often
via the energy levels just above and just below
the FTMPEP. Using the FTMPEP effectively
averages the tunneling contributions from these
nearby energy levels and gives us a reasonable
approximation to p(x). Consequently, our semi-
classical method is expected to be useful even
in those cases where the relevant actions are
comparable to I.

V,(x)

+XE

FIG. 2. The two solid hairpins represent FTMPEP's.
The dashed closed loop represents a caloron and corre-
sponds to a particle oscillating between the turning points
+x& in the inverted-potential system.

Regarding the relationship between calorons and
FTMPEP's, it is important to realize that, in
generaj. , calorons alone are not sufficient to pro-
duce a semiclassical partition function which
reduces to the complete classical partition function
in the limit of vanishing hP. This is because the
calorons obey the free periodic boundary condition
xcL(v ) = xcL(r+ hP) rather than the constrained
periodic boundary conditions xcL(0) =xc„(hP)=x
for an FTMPEP. As Dolan and Kiskis" noted,
the former boundary condition implies, semi-
classically, that dxc„(~)/d~ =dxoL(&+5p)/«,
i.e., the caloron is a closed periodic orbit in
Euclidean phase space. For example, in the sym-
metric double-well potential in Fig. 2, such
periodic orbits correspond to a particle oscillating
between the turning points +x~. As recognized
earlier by Harrington, s' the caloron solution be-
comes static in this model above a certain criti-
cal temperature. At this temperature, the caloron
oscillation amplitude vanishes, corresponding to
the particle undergoing simple harmonic motion
in the bottom of the inverted potential well in Fig.
2. Qn the other hand, FTMPEP solutions clearly
remain dynamic for all temperatures. Thus cal-
orons only partially dominate the partition function
in general. The FTMPEP solutions are necessary
for a comp1ete understanding of the semiclassical
statistical mechanics of a system.

Having found the leading semiclassical contri-
bution to the distribution function by using the
FTMPEP picture, it is natural to try to calculate
the one-loop correction to p(x) by similar physical
arguments. The one-loop correction is due to
paths near the FTMPEP which are generated by
combined quantum and thermal fluctuations. For
notational convenience, we denote for any ar-
bitrary path x(A) connecting xs and x the quan-
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tity'

X(x)
R (x} ) (f&(2w (X)[V(~) —Z]]'' "

. X {x.@)
(2.14)

R(x) =R„(x)
))8 (2 d2 s2y(x )+-,' d7 q,.(~) -5,, m;+ c"

q, (r),
d7 Bx.Bx.

which appears in Eqs. (2.3) and (2.5). For an
arbitrary variation g(&) =- x(&) —xc„(&)away from
the FTMPEP xc~()).), R(x) takes the form, to
o(n'),

(2.16)

where the 7' parametrization in Eq. (2.7) has been
used.

To obtain the contribution to p(x} from all such neighboring paths we sum over all fluctuations, g(r),
around xc~(r) with )7(0) =g(kp) =0. The distribution function in Eq. (2.3) with the inclusion of the one-loop
correction becomes

) X(x} &0
1 ))8 d2 82'( )p(x)=e

(
xep—x— -dx(xm(x)(v(x) —z]j "' &i &&e(e)exp — dee, .(e) —il, , m, e e&(&)I

"X(xg) 0 2A 0 dT ~X ~X~

d2 S2y(x ) ) -1/2 2 e )&(x)
= &(e& -e, m —,e "

I exp ()x —— -&)x{em(x)[x(x)-x))e '"),
6~7 X .~Xy ) . 8 ~)t (x~)

(2.16)

where the path integral is over all paths )7(7) = x(7)
-xc~(r) with )7(0) =q(hp}=0.

The one-loop correction due to Gaussian flucmm

tuations in Eq. (2.16) has the familiar form of a
functional determinant. Within the FTMPEP
framework, both the leading semiclassical con-
tribution and the one-loop correction to the dis-
tribution function are easily understood physically,
without recourse to the imaginary-time formula-
tion of thermodynamics. The imaginary-time
formulation, however, is a very convenient way
of implementing the FTMPEP method. In Sec.
III we present such an imaginary-time formula-
tion via path integrals and show that it reproduces
the FTMPEP result in Eq. (2.16) for p(x}.

HI. PATH-INTEGRAL FORMULATION
OF THE DISTRIBUTION FUNCTION

In Sec. II we saw that FTMPEP's are tunneling
paths which make the dominant contribution to the
semiclassical probability distribution function.
Combined quantum and thermal Gaussian flucmm

tuations around such paths produce the one-loop
correction to the distribution function. In this
section we show that the semiclassical path-
integral expression for the distribution function
is equivalent to the FTMPEP form.

Consider a system with N degrees of freedom
described by a Lagrangian L(x, k) [x
=-fx„x„.. . , x ]]. The diagonal matrix elements
of the statistical density operator, p=exp(-P&),
in the coordinate representation give the prob-

ability distribution function p(x). The Feynman
path- integral form for the distribution function
is 28, 32

p(x) =N(P) Dx(~)
x (O)=x (hl(})=x

J~ d7L, ff(x(r), 'x(7)}

(3.1)

L.„(X,x) =- [,' mx, x, +V(x}], -. .(3.2)

where & =dx/dv.
If the characteristic actions in the system are

large with respect to h, we can evaluate. p(x) in
Eq. (3.1) semiclassically by doing the path integral
within the stationary phase approximation. (As in
Sec. II, we expect this to be a reasonable approxi-
mation even when this caveat is not strictly sat-
isfied. ) The path which makes the exponential
argument stationary is determined by the vari-
ational equation

"hg
6

' dr L„,(x(7),x(7}} =0. . (3.3)
0

where N(P) is a P-dependent measure normalization
factor independent of the potential and is easily
determined later by using the known distribution
function for a free particle. Of course, N(P) also
occurs in the partition function, Z= f p(x)dx, and
hence divides out in all expectation values. The
effective finite-temperature Lagrangian (obtained
by replacing d/dt with id/dv in the conventional
Lagrangian) is
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We are then left with the Euclidean equations of
motion

Using this in Eq. (3.2) and integrating over r,
gives to 0(rP)

d2x, (r) 8V{x(r))
2 +

( ) t 2 t (3.4)
hg «L„,{x(r),x(7 ))

40

x(r) =x „(r)+7)(r), q(0) = q(iIP) = 0. (3.5)

with periodic boundary conditions x(0) =x(hP) =x.
The solution of Eq. (3.4) is clearly the FTMPEP
x«(v) obtained in Sec. II using physical argu-
ments.

To include the contribution to p(x) from com-
bined quantum and thermal fluctuations around
xcL(v) we write a nearby path as

«L„,{xcL(r),xcL(7))
0

~ 22 d2 B2V(x )—2 q, -B,qm 2 + qqd7'. (3.6)
dT ex, ex,

Substituting this expression into Eq. (3.1), we ob-
tain for p(x) in the semiclassical approximation

l

2 -
1

.22 ( d2 BV(X«)
p(x)=N(p) It a@exp «q,

~

-&„m,+ tiq exp I «L.ft("CL( }t «( ))

B2V(x„)~ -"'
=N(p) det

~

-6,.
&
—,+ I exp

@
«L, gg(xcL xcr. )« m Bx)Bxg 0

(3.8)

=N(P), ,
~ ~

exp —
'~ d L„(„,' „)(" ] (~22

(8.9)

The eigenvalues ao are determined from the
equations

tf2 1 B'V n"'()= '~-"'()'' «m Bx&Bx&

(3.10)

with g'"'(0) = q'"'()2p} = 0.
We can now determine the factor N(P). The

density matrix for a free particle in N dimen-
sions ls

m I&/2t.-&" "'t&=(„t*J

I

where the prefactor is chosen such that

p(x, x;0}=6"(x-x ), (3.12)

which is the classical distribution function. For
a free particle, Eq. (3.8} reduces to

p(x) = N(P) [det(-B„d'/«') I-' '. (8.18)

%e may thus identify

N(p) = (tt2/2 v 5' p )"'[det (-6 d /dr )]' '
(3.14}

In summary, we have for the semiclassical distri-
bution function

d B

" hg

exp + tfv L~(x«, xc~)
0

(8.15)

We have intentionally not put a prime on the de-
terminant in the denominator of Eqs. (3.8) and

(3.15). This is to remind us that there may be
additional zero modes due to the symmetries of
the full Lagrangian L„s= ——2'222 x' —V(x). Such
modes give overall factors which are implicit
in the unprimed determinant and product II„(l/&o„).
Vfe remark that if there is more than one path,
x«(v'}, satisfying Eq. (8.4), then p(x) in Eq. (3.15)

becomes a sum of terms, one from each path.
Using the 7 parametrization in Eq. (2.V), one

sees that the exponents in Eqs. (2.16) and (8.15}
are identical. Equation (3.15}thus agrees with
the result found for p{x}in Sec. II using the
FTMPEP picture. The imaginary-time path-
integral formulation is a useful tool for .calcu-
lating p(x) semiclassically for systems with many
degrees of freedom. One can, of course, consider
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higher-order corrections to p(x) by continuing
the perturbation expansion beyond second order.
In Appendix A we show that Eq. (3.15) gives the
exact distribution function for the one-dimensional
simple harmonic oscillator. This is not surpris-
ing since the Lagrangian is quadratic in x and x
so there are no corrections to t»(x} beyond Gaus-

siann

fluctuations.

= g &@le-'"lz,.&&a,. [y& (4.1b)

IV. SEMICLASSICAL EVALUATION
OF THE DISTRIBUTION FUNCTION IN FIELD

THEORY

In Sec. III we obtained a semiclassical path-
integral approximation to the probability distri-
bution function for a system with N degrees of
freedom in thermodynamic equi1ibrium. Because
of its generality, we can straightforwardly ex-
tend the formulation to finite-temperature field
theory.

In field theory each field configuration P re-
presents a point in the infinite-dimensional func-
tion space of fields. The state vector lP& de-
scribes a physical state of the system with eigen-
value (Quantum field configuration) Q. The pro-
bability distribution function p(P) is a functional
of Q and tells us the probability of finding the
system in the field configuration f in thermo-
dynamic equilibrium. This is completely analo-
gous to the probability interpretation of t»(x) for
the finite-dimensional system discussed in Sec.
II. The field configurations $ in field space are
analogous to the particles with positions x in
coordinate space.

In terms of wave functionals, the distribution
function may be written as

(4.1a)

(4.1c)

where the Hamiltonian II is obtained by integrat-
ing the Hamiltonian density K(«, P) over space.
The wave functionals g,.(Q) are very complicated
objects, making p(Q) all the more so. Semiclass-
ically, one could determine the wave functionals
in the WEB approximation, but even this is a
considerable undertaking. If the relevant actions
in the system are large compared toh, we can
replace the discrete energy sum in Eq. (4.1) by
an energy continuum, just as we did in Sec. II
for the finite-dimensional case. Applying the
formulation of Secs. II and III, we can then search
for FTMPEP's in the field space which dominate
the semiclassical distribution function p(P) for
a given field configuration P. To illustrate the
formalism, we briefly consider the distribution
functions for a real scalar field theory without
derivative interactions and a pure Yang-Mills
gauge theory.

A. Scalar field theory

The Minkowski-space Lagrangian density for a
scalar field theory is

g(y(x, t), s, y(x, t), v, y(x, f)}=,'s„ys—~y-V(y)

(ij, = 0, 1, 2, 3; metric + ———) . (4.2)

The effective finite-temperature Lagrangian (ob-
tained from the Minkowski-space Lagrangian
by replacing s/st with ia/sr) is"

Z,«(P(x, &), P(x, r), V„y(x,7))
0

= —[-.' y'+ —,
' (v. y)'+ V(y)], (4.3)

0

where $ = s Q/sr. Generalizing the finite-dimen-
sional Eg. (3.1), the path integr-al expression for
the scalar theory distribution function is

(4.4)
&h8

p(~) =~(p), D@(x,r) exp —
Jl d~ J d'xg «(p),

"$(x,o)= 4(x, a8)= @(x) 0 J

where the path integral is over all paths in field space that begin and end at Q(x).
The Path Pc&(x, q ) in field sPace giving the dominant contribution to the semiclassical Probability distri-

bution function obeys the Euclidean equation of motion

s'y(x, ~), s V(y(x, ~))
s~' * ~ ' sy(x, ~)

(4.5)

with the periodic boundary conditions @(x,0) = $(x, h P) = P(x) . With the contribution from combined quan-
tum and thermal fluctuations, »I(x, ~), around p~(x, r), we obtain for p(p) in the semiclassical approxi-
mation

f 0

p(y) =N{P) &» Dq exp 2~ d~ d'xq, -v„'+,"'
q exp —'~ dr d'xg, «(y~) (4.6)
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=N(p) det, -v,'+, pI exp + d& d »Z,s(p~)) (4.V)

=N(p)' —exp
@

~ dr d'x Z„,(y~) .
p

(4.8)

The eigenvalues w„-are determined from the equa-
tion

Sb SCV rh--~-v'+
(4.9)

with q~"~(x, 0) =@~"l(»,KP) = 0.
We can now determine the normalization factor

N(P) by viewing the scalar field theory as an
infinite-dimensional oscillator system. We di-
vide space into unit cubes of side e labeled by
the coordinates x = x,. The canonical coordinates
are q, (~) =—P(»„7'). The integrated Lagrangian
density

Lcs=-& ~ 2 s I
+

2 b I%+a-Alav)

+ v(q, }
Generalizing the finite-dimensional discussion of
Sec. IH, the "free particle" L,«corresponds to
"switching off" the last two "interaction" terms
in Eq. (4.11). The distribution function becomes

(4.11}

N(p) = [deti(-s'/s~')]' (2sn'p)-' . (4.18)

p (y) =N(p)[det (-s'/s~')]-'~'. (4.12)~Cff~%C

By requiring that this reduce to II„(2wO'P) '+,
where the infinite product is over all spatial cubes
[cf. Eq. (3.11)], we may identify

i.,„=—„d'x[-', (j)'+ —,'(v, y)'+ V(y)]

may now be replaced by the discrete sum

(4.10)
For our scalar field theory then, we have the
semiclassical result

(~
det I

(4.14)exp — A d'x il,ff (Q~)
&p

' ' (2 w II'P) '
X

p(y) =
,
(-8*, a*v(C )j"t~ s" '* ' sy'

In Appendix B we illustrate that Eq. (4.14) gives the exact distribution function for a free scalar fieM
theory.

B. Yang-Mills gauge theory

The Minkowski-space Lagrangian density for
a pure Yang-Mills gauge theory is2

S,g(Aq(x, &), Ap(x, r), V,A'(x, 7')) = ——,
' F'„„F'"",

(4.18)

~(A„'(x,&), s, A'„(x,f}, v, A'„(»,i)) = —. —,
' p„„y~.

(4.15)
Aq = s Aq/s&, (4.19)

s„=-(is/s~, s/sx, s/sy, s/sz)=-(is, ', v.), (4.20)

where

(4.16)I"' = s A.' - s A'+ gf' A Apv p v v p Jl v&

g is the coupling constant, and f' are the struc-
ture constants of the gauge group. The group
generators L' obey the commutation relations

cpa = ~~ V~ ~ (4.21)

A„=(A„',A'„,..., A„"). (4.22)

It will be convenient to use the group-'space vec-
tor notation~

[LC I b] ifCbCL C (4.17)
In this notation, Eq. (4.18) becomes

Scs(A~}= -c Fp„~E"", (4.28)
(a = 1,... , n, where s is the number of generators,
which equals the number of gauge bosons}. The
effective finite-temperature Lagrangian (obtained
from the Minkowski-space Lagrangian by re-
placing s/si by is/sv) is'b

where

p& „=s&Ac - s +& + gA& xA„. (4.24)

Dots and crosses will refer to group-space vector
operations, and aQ space-time indices will be
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shown explicitly.
The path-integral expression for the Yang-

Mills probability distribution function is a straight-

forward generalization of Eq. (4.4) for the scalar
field theory, along with the necessary addition of
the Faddeev-Popov gauge-fixing ansatz:

h6 "
p

ahab

n

p(A&) = N(p) Jt DA&(x, v') exp — d7' „'d'x Z,«(A&} det, 6(G'),
A&(x, O)=A&(x, ag) =A&(x)

where

(4.25)

(4.26)
3

DA„(x,~}= '
DA'„(x,~),

a'=' i t."='b

and the path integral is over all paths in field space that begin and end at A„(x). The term det(&tG /
s&u')II, 5(G') in Eq. (4.25) is the Faddeev-Popov gauge-fixing ansatz. "'"Bernard" has previously dis-
cussed the application of this ansatz in calculating the gauge-invariant partition function

1 ths Gb
'

tt

Z = N(P) J~ DA&(x, &) exp —
Jl d7 d'xg, «('A~) det, 6(G~) .

Ap(x, r) =Ap(x, ~+ 58) 0
(4.2V)

The Faddeev-Popov determinant may be written as
a Gaussian integral over "ghost fields" (fictitious
scalar fields obeying Fermi statistics) Q and
~g 32~35

t' sG'l
det~ . ~

= &~Dy+(x, ~)Dy(x, ~)
I Bcio j

& hg
x exp — " d7' d'xZ&, N($, Q*)

4 0
(4.28)

grates out the 6 functional in Eq. (4.30}, leaving a
finite gauge-invariant result. This definition of
the gauge-fixing 5 functional has the desirable
feature that p(A„)is interpretable as the gauge-
invariant probability of finding the system in the
physical field configuration A„.

To obtain the partition function (or any expecta-
tion value for that matter) from p(A„),a final inte-
gration over A&(x) is performed with the & = 0
part of the gauge-fixing 5 functional:

with

y(x, ~) = y(x, ~+hP). (4.29)
Z = DA„(x) 6(G'(A„{x)))p(A„). {4.31)

'"
6(G ) = 6(G (A„(x,~))).

b=j. x r vs0

(4.30)

The path integral in Eq. (4.25) completely inte-

The only modification of Bernard's results we
need to make in applying the Faddeev-Popov
ansatz to p(A„}is in the gauge-fixing 6 functional

+&,5(G )~ Bernard employs the same definition
for this quantity as that used in calculating the
Euclidean vacuum-to-vacuum transition ampli-
tude TV~, namely, a product of 5 functions over
all space-time points (0&v &h P). Unlike the
partition function, the distribution function is
obtained via the restricted path integral in Eq.
(4.25} in which we do not integrate over the
"starting points" A„(x). To make p(A„)gauge
invariant by construction, we simply define the
6 functional in Eq. (4.25} to be

{8(A„))= Z-' DA~(x) 6(G (Ap)}8(A„)p(A„}.

(4.32)

If the operator involves the ghosts [i.e.,
8 (A„,P*, Q)] then (8 (A„,P*, P)) must be calcu-
lated by removing det(SG~/S ~') in p(A„)and do-
ing an explicit integration over P* and P to ob-
tain the expectation value:

Although the explicit 5 functional in Eq. (4.31)
might seem to complicate calculations, it does
not do so in practice. One simply evaluates p(A„)
in a convenient gauge, call it p~(A&), and then
integrates over the fields occurring in p~(A„)to
obtain expectation values. Ne are assuming that
the only expectation values to be computed from
p(A&) are for operators not involving the ghost
fields explicitly:

{8(A„y+,y)) = Z-' DA„(x) 6{G'(A„))&4y+Dy exp—
0

d& d'x Z @„,(Q, Q*)

8(A„,0*, 4)[det(sG'/see')] 'p(A ) . -

A convenient alternate notation for the Faddeev-Popov 6 functional in Eq. (4.30} is

(4.33)
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lt g I

6(G') = lim ' '"
(2xh {).) '+ exp

4=1 a~O g 5=& X rs"'0 l 2ah dr d'xG'(A„) . (4.34)

Absorbing the prefactor in Eq. (4.34) into N(p}, Eq. (4.25) may be written as

1 ~58
p (A[)) = N(p) i DA])(x, w) {) D)p*(x) v)Dpt&(x) v)exp-

A [){r,0) A[(={x,))8)=A]){x) "Q
(f x R,{{(Ap)—2

G (Aq)

(4.85}

{)"E„„(x,~ ) + gA" (x, w) &E„„(x,&) = D"F„„(x,~) = 0,
with periodic boundary conditions A&(x, 0) = A&(x, h P) = A„(x).With the inclusion of quantum and thermal
fluctuations, ))„(x,y), around Ac"(x, &), we obtain for the semiclassical distribution function

(4.36)

[ Q

p(Aq) =N(p) {) Dq[)(x)&) {) D(I)*(x)~)DQ(x)'r)
4p

~ ae
xexp — ct d'x --,'Dpq ~ 8"g"+-,'D q" a,q" -gr„„q"x q" ——g' g

Q

where o. is an arbitrary real number (which all observable expectation values are, of course, independent
of}. The path Ap which dominates the semiclassical distribution function satisfies the Euclidean equation
of motion

where

~ hg

+ 8 ((t), P*) exp
&

dr d'xS„,(A~c"),
Q

(4.87)

(4.88)I p~v ~p~v+ g+p ~v '

The factor N(p) in Eq. (4.87) can be determined in the same way as for the scalar case. We "switch off

the interactions" and require that p reduce to

(4.39)p„,,„=' "'

(2 x 5 'p) ~~',
X

where p is the number of field components which are treated as dynamically independent in the chosen

gauge. For a Yang-Mills theory in the Feynman gauge (s„A"= 0), p = 4n. In the axial gauge (A, = 0),
Coulomb gauge (V,A, = 0), and temporal gaudge (Ao= 0), p = 2n. (Recall that for the scalar theory, p = 1.}
In Appendix C we show that Eq. (4.87) gives the exact probability distribution function for a pure Abelian

gauge theory in the Feynman gauge.
'

V. HARTREE SELF-CONSISTENT FIELD APPROXIMATION

As we have seen in Secs. III and IV, the Euclidean loop expansion proved to be a versatile method for
implementing the FTMPEP formalism'of Sec. II. Beyond the one-loop correction, however, this type of
expansion becomes notoriously difficult. To extend the range of applicability of the semiclassical method,
higher-order corrections are necessary. In this section we discuss a Hartree self-consistent method for
including such corrections to the semiclassical distribution function. This method was first suggested in
Ref. 13 for including the effect of quantum fluctuations in the (zero-temperature) vacuum tunneling ampli-
tude. Here we straightforwardly generalize the method to finite-temperature tunneling.

Using the FTMPEP concept, we found in Sec. II that the probability distribution function could be written
in the semiclassical form (modulo normalization)

p(x) [de'I( eg md
/dx + e p(x 9 g)e/xgx)]-' "exp (

—dp —— ' dx()m (x)[p(x) —p] ],„'" l, ) = ), . . . N,
"jl(xE)

(5.1)

where the integral is along the FTMPEP xc„()()connecting the turning point xx and the point x in the tun-
neling region. The symbols A. and T are path parameters related by
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dX 2[v(X) —E]
( ) (8 /8 )2

d) . mX (5.2)

with X(x) =—X(i=0)=X(i=kP) and X(x ) =X(v =hP/2). The determinant represents the contribution to p(x)
from paths near the FTMPEP,

) p )' ha

(der( —2, md'/dv*+ eP(x, „)/exexr)] 'l'= rl Pe(v) exP: dv 2 I-e„md'/r)v'+ 2'P(x, „)/ex ex Ie I,"0 4 0

(5.8)

where )l(&) =-x(v) —x«()) and )l(0) =)l(h p) =0.
Let us define two functions, ]~ and f(7), by

~ha

ex-p~ d7 f(7)
4 p

f'0 " hg-=Ilt) Dq exp —'

d~q, [ 5;,md-'/d7'
0 28 4p

(5.4)

+ 2'p(x„)/ex,.exr(erI,

.5)(5

The distribution function may now be written as

~ X(x&

plx)=exp(-BE —
2 dx(2m(l)(v(x) —z)) „'l

)l(XE)

1+ „—i

d7.f(7.) i, (5.6)5-0 j'
with the contribution of paths near the FTMPEP
now appearing in the exponent as (1/h) f,"~ d7 f(7').
Semiclassically, we assume that the third term is
small compared to the second term in the expo-
nent. Consequently, we may absorb f(~) into
V(X) to obtain an effective potential U= V-f,

~ X(~)

p (x ) = exp (- ()Z —— dl (2m (2) (rr —Z )1S.~,„)~ xE

(5.7)

Using the effective potential U reproduces Eq.
(5.6) to O(f'):

The contribution of the neighboring paths is then
to modify the potential t/ associated with the
FTMPEP to the effective potential U=V-f. This
suggests the following improved method of obtain-
ing the FTMPEP with corrections from neighbor-
ing paths included. We choose a trial path x(X)
and compute V, and additionally f due to neighbor-
ing paths. The FTMPEP is then determined by
minimizing

)t(x)
R(x) =

J
d&[2m(X)(U —E)]"'

X(xE)
(5.8)

~ )t(x)
5 dX[2m (A.)(U —E)]'/'

X(xE)

f' )l(x)
= 5~

' dk[2m(X)(V —E)]'"——,
'

( ) "0

in Eq. (5.7) with potential U= V-f. This method
is closely related to the self-consistent Hartree
approximation applied to the finite-temperature
tunneling problem. A self-consistent method is of
interest because it includes higher-order correc-
tions which are difficult to obtain by a loop ex-
pansion.

To make the connection with the Hartree approx-
imation, we first derive the equation for the im-
proved FTM PEP through the variation of Eq.
(5.9) with fixed end points x and x, giving

" X(xE&

4a~E)

"x(x) 2m g 2/2
—,'f(~) + O(f')

"2(.,)

, z(~)
d [2m(~)(V —Z)]'»

4 X(gE)

I
ha

J
«f(7')+O(f ) . (5.8)

~ X(x&

u[2m(~)(U —E)J'/'
~ X(~)

d X[2m (X)(V —8)]' /'
d 2(V —E)" '/

.2(„) ( dX m (X) dX

2m(~) '/' 1 8V &~

2~x; j

r hg
—62 d) f(7)=0.

dp

From Eqs. (5.4) and (5.5) we have

(5.10)
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+h8

( )
— d7.f(7)

+h8

( }ln exp —
~

dv. f(7')

r 0 1 a3V( ) 1 t'M
= —() Dq —q,

'"
q, exp —' d7f(7)

8 "0 x» xf ~'I 4 0

aV(x,„}1 a'V( „)
&(

(5.14)

with periodic boundary condition xc„(0)=x«(5P)
=x. We can relate the last two terms in Eq.
(5.14) to the expectation value of a V/ax; via

-1 a'V(,„)(,
2A a ;a ' n

-1 Pv(, „)=
an ax,.aP (5.11)

where

~0
y f h8

((x -x,„)')=- —&& Dq q' exp — d~f(~),
~8 ~0 ~ "0

(5.12)

a v(x„) a2V(x,„)
(Xf XC J

»

+ — (x, -x,„,. )(x, -x, ,)+ )x» xf xa

av( CL) 1 v(xcL)(( )2) ( )2 2 Rx

We may thus interpret Eq. (5.14) as the expecta-
tion value of the equation of motion

and we have used the fact that (x —x«) =0. Using
Eq. (5.11) in Eq. (5.10), we obtain

d'xg a V(x)-m 2 + =Q
B.

(5.16)

f-d 2(V —E) ' ~~ dx(
(dh. .m(X) . dP.

+ (-—
~

~5x,
&2 ~x»1 j

p CL r

»»dT'+ Rx gxf cL
™ dT' axexf ~L

"&8 g3y
+-,

~

d~ +(q')6x, =0. (5.18)

Expressing this result i.n terms of the ~ parame-
trization in Eq. (5.2) yields the equation of mo-
tion for the im roved FTMPEP x (v)

under the Gaussian fluctuation. It is well known
that the use of Gaussian fluctuations as trial func-
tions is equivalent to the Hartree approxima-
tion. '

To be able to solve Eq. (5.14}self-consistently,
we need a Hartree equation for the fluctuation,
q(~}=x(7) —xc„(7).This can be obtained through
the variation of Eq. (5.16) foliowed by taking its
expectation value,

a'v(x„) a'v(x, „)+d7' Bx,Bxf Bx,BxfBx„

a'v(x„)+ — (xa xcr.a)(xg xcr.g)+' ' '
2 ~.x'» ~ x'f ~xg ~x) xCL

d a V(xcz. ) 1 a V(xcz, )
m d~, +

ax ax
+

2 ax ax ax, ((x —x„)'). (5.1V)

We then have the Hartree fluctuation equation

a'V(x..) 1 a'V(x.„) (5.18)

with q~(0) =q&(KP) =0. From Eqs. (5.14) and
(5.18), xcz (r) and q(v) can, in principle, be de-
termined self -consistently.

In general, a direct self-consistent solution of
Eqs. (5.14) and (5.18) is quite difficult. An
iterative approach. may be easier. %e first de-
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[,ermine xc(„)(p)from Eq. (5.16), that is, neglect-
ing (q') =((x -xc„)')in Eq. (5.14). One then
guesses some reasonable (q(P)') and substitutes
it and x~~„'(p) into Eq. (5.18). Equation (5.18) is
now solved for q("(T). With the solution q("(~),
one computes (q")P) using Eq. (5.12}and substi-
tutes this back into Eq. (5.14). Equation (5.14)
is solved for xc('L)(r} which, along with (q("'), is
set into Eq. (5.18) for the next iteration. At any
stage, one can calculate p(x) using xc("„)and q(") in

Eq. (s.7).
The above Hartree approximation can be gener-

alized to field theory to evaluate the probability
distribution function. In Sec. IV we showed that
the distribution function for a scalar field theory
could be written in the semiclassical form (mod-
ulo normalization)

(s. 21)

where

m(x} = ' d'x(e(t/sg)' (5.22)

V(x) -='~ d'x[-,'(v„y)'+V(y) ).

It is simple to show that

to Eq. (5.6) by introducing a new path parameter
X(r) defined by

dX 2(V(x) —E)[ '~2

m(X)

a8
d& d x L,s((t)c„)

where

epp

&&exp
@ ~

dv
' dPx&,~((t«), (5.19)

where

" )t(y)
dX[2m(X) [V(),) —E])

X(g~)

(s.24)

Z.,(@)=--,'~
&

~

--,'(v„y)'-V(y),, t'ay'['
(s.20)

(s.2s)

and the v integral is along the FTMPEP Pc„(x,i),
with (t)c„(x,0) = (f&c„(x,hP) = $(x).

Equation (5.19) can be put into a form similar
Let us define two functions, gp and f (7.), just as
we did in the finite-dimensional case, by

~ M

&, =exp —
l~

d&f(T)
0

(-e' e e'p(p
))

= &) Dq(x, r)exp —, dT d'xq~ 2
—v, +

2 n.
p

'
2N p

(5.26)

The distribution function in Eq. (5.19) may now be written as

2 ~ x(y) ~55

p(P) =exp(-Pz —— de[em(X)[V(X) -&))e,"'e — dxf(x)),
s )t(y ) 8 +0

(s.27)

with the contribution of paths near the FTMPEP
now appearing in the exponent as (1/)p) fpPP drf(r).
Equation (5.27) is identical in form to Eq. (5.6)
for the finite-dimensional system, and the Hartree
analysis follows similarly. We only quote the
results.

We absorb f(r) into V(X) to obtain an effective
potential U= V-f,

"x(@)
p(p)=expI-px — d [em(x)x(p-z))-e, 'i'I.

5p)t(y, )

(5.28)

The FTMPEP, (t)cz(x, r), which maximizes p((t))
in Eq. (5.28) satisfies the Hartree equation of
motion
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@CL 2 p (4CL)Br2» GL

V((t)cL)
( 2 (5 sg)

By'

with periodic boundary coriditions QcL(x, 0)
= (t)cL(x, Sp) = $(x), where

&n'&=(le(x, r}-ecL(x, )]'&

~ne-=—22 DqrPexp — drf(r)
~B p L~ "p

(5.so)

The field 2)(x, r) = Q(x, r) —QcL(x, r) satisfies the
Hartree fluctuation equation

2+ B'V((t)CL} + 1 B V((t)CL) 2, 0

(5.31)

with rl(x, 0) =2}(x,SP) =0
The Hartree self-consistent field approximation

can also be extended to gauge theory. ' %e con-
sider a Yang-Mills theory in the temporal gauge,
Ap

——0. In this gauge

p(A, ) = det'I -5»1 2
— (D E,)

) ha

xexp '— dr
~

d xZ, (A, "), (5.34)
"p

where the & integral is along the FTMPEP,
A, "(x, r), and the primed determinant means that
the gauge-fixing and ghost terms are implicit in
the integration measure.

Using the l1 parametrization in Eq. (5.21), Eq.
(5.34) takes the form

p(A, )

( B2 B ) -1/2

2 }t(A) )

xexp~ -pd —— de[ere(e) [)r(r) —d]) „'r'),
}t(A&)

where (5.s5)

m(x) =-
~l

d'x

with periodic boundary conditions A, (x, o)
=A,(x, SP}=A, (x), and where D, is the gauge-
covariant derivative. The distribution function
has the semiclassical form (modulo normalization)

'

Z,s(A, ) =--,'B,A, B,A, —»'E», 'E», ,

where

(5.32)
V(g=—d d xF», 'E

a'A, (x, r) + D»E»1(» r}= o
BT

(5.ss)

kf kAf $ k g k

The Euclidean equation of motion (4.86) for the
FTMPEP, A, "(x, r}, is

~(A, ) =~(r=O) =~(r=Sp),
l1(A', ) = X(r = Sp/2),

A;. (x) =-A', "(x, r =SP/2) .
Defining two functions, gp and f(r), by

(5.s6)

( hB

t p =-exp — drf (r)
~S &p

( B2 B ) q-1/2-=det'] -5„2— (D E ()CL [

~ ' ( 1 "M -B' a
D 0(x r) exp~ dr d x r/

' 5»2 2 A
(D E ) 1Cj L[2lI

dp
' (3S .

p
Br BA»

(5.s7)

the distribution function in Eq. (5.85} becomes

)[j.(A ]) fh8
e()r. =(e (

x—e()d —— de[em(e)[(r(r) —zj) „'r'+—
fl drf(r)

~

}t(A) Q

f

(5.86)

[The prime on D'q means the same as on det' in
Eq; (5.34). ]

As before, we absorb f(r) into V(X) to obtain an
effective potential U= V —f,
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2 )t(A ])
p(A,.) =8xpl-))E — dk[2m(x)(U-z)] „'~'

x(AE)

(5.39)
The FTMPEP, A, "(x, 7), which maximizes p(A,.)
in Eq. (5.39) satisfies the Hartree equation of
motion
82gC L

s~2 ( k kl)AcL

e'A, '
+(DkFk~)cL87

with periodic boundary conditions A, (x, 0)
=A, (x, hP)=A, (x), and where

(g. q„)= ([a„(x,~) —A'."(x, r)] [W„(»,~) A.'„—'(», 7)J)

fo 1 gg-=—
IIt D'qq q„exp — dry(7) . (5.41)

&a() " .& o

1 8

S~ ( k kl)c &(lm in)
m n

(5.40)
The fields rj,(», 7'). =& (», 7')-A (x, 7') satisfy the
Hartree fluctuation equations

(~ y„)„+— - (DkEk()c„(q ~ q„)q, (»&). =0,
2 8A 8A BA

(5.42)

with )),(x, 0) = q, (x, hp) =0. From Eqs. (5.40) and

(5.42), Q) "(x, 7') and g,.(x, 7') can be determined
self-consistently.

A direct self-consistent solution is difficult,
and the iterative method might be preferable.
Because such an iterative calculation is self-con-
sistent, g& will contain the one-loop correction
to p(A, ) plus higher-order corrections after some
number of iterations. How many iterations are
necessary to achieve this depends on how good our
initial guess for (q„"'~ q"') is. Hence, we pay a
price for the higher-order corrections using the
Hartree approximation. In this respect, the ben-
efit over the conventional loop expansion may be
marginal. Qf course, the self-consistent solution
does not include all higher-order effects and could
neglect some important corrections. 7et in many-
body theory, the Hartree self-consistent method is
known to give improved results compared to the
lowest-order calculation. For example, the Har-
tree-Fock Hamiltonian provides, for most pur-
poses, a better starting point for nuclear many-
body calculations (Ref. 16, Chap. 15). This is be-
cause it already includes the average interaction
of a particle with the particles in the nuclear core.
It is an interesting but separate problem to inves-
tigate other methods for solving the above Hartree
equations, but we have not pursued this avenue.
At present the Hartree approximation is only po-
tentially more feasible analytically than the loop
expansion for obtaining higher-order corrections
to the distribution function.

VI. DISCUSSION

In the preceding sections, we have illustrated
a semiclassical path-integral approximation for
calculating the canonical probability distribution

function in field theory for systems in thermo-
dynamic equilibrium. The method can be phy-
sically understood using the %KB concept of fin-
ite-temperature most-probable escape paths. The
FTMPEP'3 are tunneling paths which maximize
the semiclassical distribution function and are
generally necessary for a complete understanding
of the semiclassical statistical mechanics of a
system. We have also proposed an improved
method for determining FTMPEP's with correc-
tions from neighboring paths included. This Har-
tree self-consistent field approximation is in
principle capable of taking into account higher-
order corrections which are difficult to obtain by
the conventional loop expansion.

Qur Hartree approximation scheme for the dis-
tribution function requires further development.
It wouM be an interesting problem to study the
application of this Hartree method to finite-tem-
perature systems. The possible returns are high
because of the self-consistent calculation auto-
matically includes some (but not necessarily all)
higher-order corrections. As for the loop ex-
pansion, it would be useful to calculate the next-
order correction beyond Gaussian fluctuations.
This is necessary to extend the applicability of
the semiclassical approximation. Finally, our
results remain to be generalized to include cou-
plings between scalar, fermion, and gauge fields.
To take account of density effects, finite values
of the chemical potential p, must also be included
[i.e., one must calculate the grand canonical dis-
tribution function p( p) =( (t)

~
exp(- pIf+ pN)~ p) and

the grand canonical partition functionj.
In Sec. II we discussed the distinction between

calorons and FTMPEP's with regard to the semi-
classical partition function. The question arises as to
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how much information in the partition function is
missed by using vacuum fields and calorons
alone. This question was recently addressed by
Gross et al."for a Yang-Mills gauge theory.
They conclude that the classical fields dominating
the functional integral expression for the partition
function are vacuum fields, periodic instantons,
and magnetic monopoles. The Prasad-Sommer-
field monopole is a gauge transform of the p7.'- ~
limit of the periodic instanton. Also, Yang-Mills
periodic instantons remain dynamic for all tem-
peratures because unlike the symmetric double
well-potential in Fig. 2, a Yang-Mills gauge
theory is scale invariant. " ' Under what general
conditions vacuum fiel.ds and calorons alone are
sufficient to dominate the semiclassical parti-
tion function should be investigated further.

Evenif vacuum fields and calorons alone dominate
the Yang -Mills partition function in the high temper-
ature regime, the utility of the distribution function is
not reduced since it contains more thermodynamic
information than the partition function. The evalua-
tion of p(A„)in Eq. (4.37) for a non-Abelian gauge
theory is, to say the least, a challenge. As the
mathematical machinery to solve nonlinear partial
differential equations improves, Eq. (4.37) will
become more tractabl. e. Our initial effort at least
demonstrates that the problem is physically well
posed and it is hoped it will generate further in-
terest. A better understanding of finite-tempera-
ture gauge theory will certainly find application
in cosmological and astrophysical problems. ""
Finite-temperature QCD may hold as yet unknown
experimental predictions for perturbative and
nonperturbative phenomena in colliding-beam
experiments and heavy-ion collisions. '

A.dded notes. After the completion of this work,
we became aware of a paper by H. Hata and T.
Kugo [Phys. Rev. D 21, 3333 (1980)]. They pro-
pose a modified statistical operator exp(- pH
—wQ, ) rather than the usual form exp(- pB) for
the physical equilibrium system in gauge theory,
where Q, is the Faddeev-Popov "ghost charge. "
Their ghost-charge method for fixing the gauge
is equivalent to the more familiar method used
in the literature and in our work. The diagram-
matic expansion for the partition function is dis-
cussed in their operator formalism, and Ber-
nard's" path-integral rule that the Faddeev-Popov
ghosts should be assigned periodic Green's func-
tions in spite of their Fermi statistics is con-
firmed. The gauge independence of physical quan-
tities is also discussed.
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II x —I=2mI —
I

-am~'x'( dx), (dx&'
E'«~ (Al. )

in thermodynamic equilibrium and calculate the
probability distribution function semiclassically
using Eq. (3.15). The effective finite-temperature
Lagrangian is

L,„(x(7'),x(7)) = —[-,'mx'+-,' m(o'x'],

where
1

% =dx/d~ . (A3)

First, the FTMPEP with periodic boundary con-
ditions x(0) =x(Kp) =x must be determined. The
Euclidean equation of motion is

d'x(7) = (v' x(~) (A4)

which has the general solution

x(7) =ae '+be (A5)

Imposing the periodic boundary conditions, one
easily obtains the FTMPEP

xc„(r)=x[(1-e 8" )e '

+ (es" —1)e ']/(e ~see" ). -(A6)

From this follows

x~(r) =~[(1-e s"")e '-(es" —1)e ']
8&ra e-bh~)

Integrating Eq. (A2) over v, we have

(A7)

Qp

he
d7' LI s (xcgy xcr ) 2 d7'(Pic~ + (d x )

0

APPENDIX A: PROBABILITY DISTRIBUTION
FUNCTION FOR THE SIMPLE HARMONIC

OSCILLATOR

%e will consider a one-dimensional simple har-
monic oscillator, with Lagrangian

The author wishes to thank Professor S. J.
Chang for many useful conversations and for a

m 0

ca cx. (AS)
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CL+CL
= 2am' tanh(pk&u/2) .

Equation (A8) now becomes

Using Eqs. (A6) and (A7), we obtain

(A9)

APPENDIX B: PROBABILITY DISTRIBUTION
FUNCTION FOR A FREE SCALAR FIELD THEORY

We consider a four-dimensional free scalar
field theory with Lagrangian

40
dr L,n (xe„,xc„)= —mrs'tanh(pRu/2) .

(A10)

By Eq. (3.15), the distribution function is then

m det (- d '/dr')
2xpn' det(- d'/dr'+ (u')

p(x) =

40Kx exp tanh(philo/2)

in thermodynamic equilibrium and calculate the
semielassieal probability distribution function
using Eq. (4.14). Because Z,ff is quadratic in P,
it is convenient to Fourier transform x to k in
Eq. (4.14):

It remains to calculate the determinants. The
eigenfunctiohs satisfying

det(- &'/& r')
&(»= ".."' p) '

g d.t( s/sr +k+m)

(-d'/dr+~')q'"'(r) =(u 'q "(r) (A12)

with the boundary conditions q'"' (0) = q'" (Kp) = 0,
are

- k, ' 'k (
d'k kka. (k, v))'

21 s, J (2w)' Br

q'"' (r) = sin(nw rlkp), n = 1, 2, . . . . (A13) +(u'(k) Pc„'(k, r)

The determinants in Eq. (All) are thus"

det(- d'/dr') = (n'r'/k'p')
n=l

- (n'~'
det(- d '/dr+ (o') = .„,(, , + uP~) .(kp )

The ratio of determinants in Eq. (All) is" 4'

det( d2/dr2) 1/2; —. t' @2p2~2 ) il2

det(- d'/dr'+ &u') "
I, n'~' /
1+

a~
A16

inh(pk(o)

(B2)

where uP(k) =k'+m', ktkc~(k, r) is the Fourier
transform of the FTMPEP ktkc„(x, r), and the
product H» is over unit cubes in momentum space
(analog of g, ). The exponential in Eq. (B2) can
be written as

0

(B3)

Substituting this into Eq. (All) yields

mes
2~5 sinh(pk&u)

p(x) =

—PWAXx exp tanh(pk(o/2)
la

(A17)

We have now reduced the calculation to an infinite
product (one for each k) of independent, frequency-
'(k), harmonic-oscillator contributions.

For each oscillator, we can use the results of
Appendix A. We then find

Reassuringly, this is the exact quantum-mechan-
ical probability distribution function for a simple
harmonic oscillator in thermodynamic equilibri-
um. " The partition function is then

Z = p(x)dx = (2 sinhkp ~/2) '

= exp —ln(1 —e 8"~), (A18)2

which is the usual result.

1 ~(k)
2@k sinhPhv(k)

x exp tanh[P k&u(k)/2]
~i

(B4)

which is the exact distribution function for a spin-
less ideal Bose gas." The field of Q(k) is the
Fourier transform of Q(x). Equation (B4) ean be
written in continuum notation as
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p(y) =exp' ', ln
i ~ .

l
expl

@
tanh[pj2co(k)/2]

I

l~(k) l" &- ~(k)0'(k)
(2 w)'

l, 2 wk sinhP ku&(k)& j (as)

The partition function is then

i DIP(4)=, , l2sinh '
l =expj2~(k l '

)
d k p k&0(k)

(a6)

This is the usual result for a spinless ideal Bose gas, with the zero-point energy of the vacuum included.

APPENDIX C: PROBABILITY DISTRIBUTION FUNCTION FOR A PURE ABELIAN GAUGE THEORY

We consider a four-dimensional pure Abelian gauge theory with Lagrangian

g(A„)=- ,'F2„F""— (Gl)

in thermodynamic equiliprium and calculate the semiclassical probability distribution function in the Feyn-
man gauge using Eq. (4.37).

In the Feynman gauge (a2 A2 =0, a = 1), Eq. (4.3'I) becomes
0

p(A„)= N(P) Drj„(x,r) I& DP*(x, r)DQ(x, 7)

] f'~8
x exp I dr d2»(-2'rj, a„a"rj"

40 4

det M&., 1
(detM )'i2 ~ ji

j 58
—4i*a„a"&g exp I dr Jtd2»$~(Ac2") (c2)

0 ~ei

(C3)

where

~(p) [de(- '/ r')]' "(2 k-2, )-2det,„(-.a'/a r') ';"

Mgg~ =~„ g~,

with rj„(x,0) = rj„(x,RP) =0,

with Q(x, r}= p(x, r+kp), and

(C4)

(c5)

(G6)

The exponential is the product of four terms, one
for each v. Each term is identical in form to that
of the scalar field theory discussed in Appendix B.
The ghost determinants are straightforward and
one obtains

p(A„)=Ze ', , p'(A„),

where p'(A„) is given by Eq. (85) with A„(k)re-
placing Q(k). This is the exact distribution func-
tion for a massless spin-1 ideal Bose gas in the
Feynman gauge. " The partition function is then

&.w(A. (» r})= 2a& A. (»,-r-)a'Ac&(», r), (C7)

with A„(x,0) =Ac/(x, kp) =A, (x).
Equation (C3}now takes the explicit form

(A )
detghoa (aga")

d et',.„(-a'/a r')

(2wjg2p)-y/2 [detA( a /ar )]
[det (a a")]'i'

r h8

(GS)

Z„=Ze' DAop'(A2)

DA,p'(A, ) DA, p'(A, ) Jl DA, p'(A, }

d 'k —pl(u(k), 8„(2),
"

(C10)
This is the usual result for a massless vector
ideal Bose gas. The two physically allowed polar-
ization states (two degrees of freedom) are evi-
dent from the form Z@', which is a gauge-invariant
result.
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