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Space-ttssse s~sssetries for theories with extended objects
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We em~inc the implications of space-time symmetries for quantum field theories with extended objects. It is
shown that the existence of the quantum coordinate (coH'ective coordinate) g is a direct consequence of the canonical
formulation of translational invariance. In 1 + 1 dimensions, Lorentz invariance fixes uniquely the structure of the
theory in the no-particle sector. If the tree approximation is used, the structure of the one-particie sector is also
uniquely determined. Finally, the techniques developed in this paper allow us to deduce that nonspherically
symmetric objects in three dimensions require additional quantum coordinates besides g.
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I. INTRODUCTION

The set of physical systems describable by quan-
tum field theory has been vastly enriched by the
realization that the latter can accommodate ex-
tended objects in addition to the more familiar field
quanta. ' The theory of such quantum many-body
systems in the presence of extended objects has
been formulated in two different ways. One form-
ulation uses path-integral techniques while the
other relies on conventional quantum field theory
and focuses on the relationship between the basic
Heisenberg fields g and the physical fields P (e.g.,
in-fields) which describe the Hilbert space of the
system. This is the method followed in this
payer, and we start with a brief outline of the
main features relevant to our considerations. A
detailed description of the formalism ean be found
in Refs. 3-6.

One starts by solving the Heisenberg equations of
motion under the boundary condition of a homogen-
eous (space-time-independent} vacuum; the matrix
elements of the Heinsenberg field operator g in the
physical Hilbert space are thus determined and are
summarized compactly in the dynamical map:

In this relation, Q (x) are the physical fields in the
absence of extended objects. The next step con-
sists in performing a boson transformation

where the c-number function f(x} obeys the same
(free) field equation as P (x). Then the Heisenberg
fieM

y'(x) = y[x;@'(x)+y(x)] (1.2)

is also a solution of the original Heisenberg equa-
tion of motion. ' Physically, the transformation
(1.2} corresponds to a nonhomogeneous condensa-
tion of Q quanta which creates the extended object.
Thus g~(x) describes both the extended object and

the field quanta, as well as their mutual interac-
tions. . The properties of the extended objects are
controlled by the function f in Eq. (1.2); in the
following, this function will be assumed to be time
independent, thus leading to static extended ob-
jects.

%e will consider theories whose dynamical equa-
tions of motion before the boson transformation
(1.2} are invariant under the full Poincare group.
It is clear that after the extended object has been
created, the physical system will not manifest
translational or Lorentz invariance. On the other
hand, since the transformed Heisenberg field g~
obeys the original equation of motion, the genera-
tors of space-time transformations will be still
conserved when expressed in terms of gr(x). The
purpose of this paper is to examine the implica-
tions of these conservation laws.

It will be shown that the study of space-time-
invariant transformations is a very powerful tool
in elucidating the structure of systems with exten-
ded objects. At least in 1+1 dimensions and in
the tree approximation, it- restricts the dependence
of gf on x and f, and gives explicit expressions
for the Hamiltonian and the generator of I orentz
transformations in the sectors of the Hilbert space
with at most one particle quantum present.

The implications of translational invariance are
deduced in Sec. II. It is shown there that the ex-
istence of a conserved momentum P implies the
presence of a quantum coordinate q conjugate to it.
The translation x -x+ a is rearranged into the
translation q-q+ a of the quantum coordinate.
Thus, any field operator must contain x and q only
in the combination x+ q.

Section III examines the consequences of I.orentz
invariance for the no-particle sector of the theory.
It is found that the time independence of the Lor-
entz generator in 1+1 dimensions fixes uniquely
the dependence of the momentum and the Hamil-
tonian on (q, q). The resulting expressions are
those of a relativistic point particle. The explicit
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form of the Lorentz generator is also obtained.
The implications of Lorentz invariance for the

Heisenberg field in 1+1 dimensions are discus-
sed in Secs. IV and V. In Sec. IV it is shown that
the expectation value of P» in the no-particle state
(order parameter) depends on x, q, and q only
through a particular combination, which we call
the generalized coordinate X. In Sec. V, we ex-
tend our consideration to the one-particle sector.
%e find that, in the tree approximation, the full
Heisenberg field g» depends only on two general-
ized coordinates X and T. This result is very
useful for computations. It implies that the effect
of the quantum coordinate in the tree approxima-
tion can be neglected in calculating g»: It can be
fully restored by the substitution x-X, t -T in
the final result. In the same section, we deter-
mine completely the generator of I orentz trans-
formations and the Hamiltonian in the tree approx-
imation.

Section VI is devoted to a summary of our re-
sults and to an indication of possible extensions of
the methods developed in this paper. Using these
methods, we prove there a powerful theorem'. if
the only quantum coordinates in 3+1 dimensions
are the three q's conjugate to the momentum oper-
ator, the extended object is spherically symmetric
in the rest system and, in fact, its energy and mo-
mentum are those of a free relativistic point par-
ticle. Therefore, objects with more complicated
structure must have other quantum coordinates
besides q.

[q»(x), p] = iVy»(x) . (2. I)

If we expand the right-hand side of Eg. (1.3) in
a Taylor series around P =0, we obtain

(2.2)

where

5
5»= Jld'op'(o)

( ),
y»(x) =(0 ly»(x) lO).

Then

(2.3)

(2.4)

(2. 5)

II. TRANSLATION IN VARIANCE
AND THE QUANTUM COORDINATE

In this section we discuss the implications of
translation invariance for our system. If the ori-
ginal I agrangian is invariant under space trans-
lations, there exists a. time-independent operator
P with the property

y» = y»(x+ q) . (2. 6)

Then Eq. (2.2) shows that the same property holds
for the Heinsenberg field g»:

0»= t»(x+ a) .. (2. 9)

This equation shows how translational symmetry
is rearranged in the presence of extended objects.'
The translation

x-x+a (2.10)

is implemented by a shift of the quantum coordin-
ate

q -q+a.
We can call this phenomenon a "CQ transmuta-

tion": The transformation of a classical coordinate
is transmuted into a transformation of a quantum-
mechanical vari. able. e will see more examples
of this later.

The fact that a coordinate translation does not
affect the particle quanta becomes less surprising
if we recall that. the position and spatial distribu-
tion of the extended object defines the origin of the
coordinate system'. A change of origin is effected
by moving the extended object. Further comments
on this point will be found. at the end of Sec. V.

The occurrence of the quantum coordinate and
the property expressed in Eg. (2.9) were discussed
in Ref. 5 from a different viewpoint. It was shown
there that the physical spectrum in the pres-
ence of an extended object can be deduced from an
eigenvalue equation involving the so-called self-
consistent potential. This spectrum contains
zero-frequency modes, which correspond to the
quantum coordinate q. There are also scattering
and possibly bound-state solutions, whose field
operators will be denoted by g (x) [these should not
be confused with P (x), which denote the physical
fields in the absence of extended objects]. One im-
portant result of that analysis was that q, P appear
alcuays in a symmetrized form. ~

If we compare this with Eg. (2.1), we see that
the translation of the Heisenberg field is imPle-
mented solely by the translation of g»(x). In par-
ticular, 5 commutes with the creation and annihil-
ation operators for particle quanta. Equations
(2.1) and (2. 5) lead to

[y»(x), p]= iVy»(x) . (2.6)

Thus P»(x) is not a c-number function; it depends
on a quantum coordinate q canonically conjugate
to P:

[« ~»]='6~». (2.V)

In fact, Eg. (2. 6) implies that P» depends on x
and q only through the combination x+ q'.
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The Hilbert space for our system has the form

3'-=3', x (2. i2)

where X„is the Fock space corresponding to X and

K, provides a realization of the canonical pair
(q, P). We denote the vacuum of X„by ~0). There-
fore, for any operator 3'.,

(2.13)

is a quantum-mechanical operator, and

is a classical object. In this paper, the expecta-
tion value of operators with respect to ~0) will be
denoted by a bar over the operator symbol, as in
Eq. (2.13).

A consequence of Eq. (2.9}which will be very
useful in the sequel is if 6 is an operator which can
be derived from a local density

formation q -qp is time dependent.
This completes the study of the translational

invariance. We found that the invariance of the
Heisenberg field equations under spatial transla-
tions has the following implications:

(i) Besides the field quanta, there appears a
quantum coordinate q. The dependence of field
operators on q is obtained by replacing x -x+ q
everywhere.

(ii) The operator conjugate to q is the totaL mo-
mentum operator P (i.e. , the generator of space
translations for the system). As a result, the co-
ordinate translation x x+ a is implemented by the
shift q-q+ a.

(iii) The quantum coordinate q is a linear func-
tion of time.

Let us also note that since q and the quanta of p
correspond to different degrees of freedom, q and

q commute with the field opera. tors y .
6= d xpx, t (2. i4)

III. LORENTZ TRANSFORMATION PROPERTIES
OF THE QUANTUM COORDINATE

H=H(P;x ) (2.15)

H=&OiHiO) =H(P). (2.15)

The quantum coordinate was introduced above by
considering the vacuum expectation value of the
Heisenberg field:

&0
~ g

I
~

0)= P~(x + q, q) . (2. 1V)

Therefore, the time development of q is generated
by H(P) in Eq. (2. 16):

«q ekHt«q e"4Ht (2. iS)

and p(x, t) depends on x only through the combina-
tion x+ q, it is clear that G is independent of q.
In particular, the Hamiltonian is of the form (2. 14};
therefore,

For the remainder of this paper, we restrict
ourselves to relativistic models in one space di-
mension. We also deal exclusively with the static
extended objects,' therefore,

Q~(x+ q, q) =- &0
~
g

~
~
0) (s.1)

M~ = dx xTpp —tT„p, (s.2)

where T„„ is the canonical energy-stress tensor
(we deal with a scalar field theory, so that T„„is
symmetric). The Hamiltonian and the generator
of space translations are

has no explicit time dependence; it depends on t only
through q. The generator of Lorentz transforma-
tions is given by

qo
——q(t =0), (2.19) dx Tpp,

I'=- dxT& .

(3.3)

(3.4)

Lq=[q, H]=iq(P) .
It then follows that

~ ~

q=0
and q(t) depends linearly on time:

q=qp+tq .

(2.2o)

(2.2i)

(2.22)

(s.5)

where

As we saw in Sec. II, P coincides with the can-
onical conjugate of the quantum coordinate q.

Using (3.3) and (3.4) we can rewrite Mz as

M~ =Z(q, Xo) +tP - qH,

Notice that, although qp is independent of time,
its commutator with the Hamiltonian is not zero,'
in fact, for Eqs. (2. 20)-(2.22) we get

[qo»] = zq.

This is due to the fact that the canonical trans. -

I=- dx x+q Tpp. (s.5)

Since E is of the form (2. 14), it is independent of

q, as indicated explicitly in Eq. (2.5).
We are interested in the Lorentz transformation

properties of the quantum coordinate, ' we can
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therefore restrict ourselves to the vacuum sector
of X„. Using the definition (2.13), E(l. (3.5}be-
comes in this sector

hl~=F(q) +tP —qH .
The IIorentz lnvarxance of the He18enberg equa-

tion of motion implies that M& is a constant of
motion:

—q(e) =e""&i[I~,q Je ""&

and, using E((ls. (3.7} and (3.17},

t[M~, q]=1-q2.
Therefore,

(s.so)

d—I =0. (s. 6) —q(e) = 1 —q2(e) (3.21)

Then since q, I', and H are independent of time,
E(I. (3.7) gives the relation

q(e}= tamI(w+ e) . (s.22)
I'=qH,

and since (q, P) are canonical conjugates,

i = [q, p] = [q, q]H+ iq' .
On the other hand,

. „8II
iq=[q, H]= [q, q] . .

Bg

(s.9)

(s. lo)

(3.11)

The operator A is defined by

A=tanh q.

Next, define

q(e) =e""&qe ""&=q()(e) + tq(e), (s.24)

(s.12)

with solution

Comparing E(ls. (3.10) and (3.11) we see that H
obeys the equation

8II q .2H

where

qo(e) =e""~q,e ""~

and qo was defined by E(I. (2.22}:

(3.25)

m
~ 2)I/2

m is a c-number constant. Then from (3.9)

Vlg
~ 2)(/2 )

H (p2 ~ 2)(/2

(s. 13}

(s. 14)

(s.»)

q, =q(t =0) .

From (3.7) and (3.17) we get

t[M~, q]=—(I-q')' +t-qq.,
7R

and therefore

This relation shows that m is the mass of the
classical extended object.

(3.16)

It was shown in Ref. 6 that E(I. (3.15), although
true fo1' ally (1+ I)-dImensional 1'elatlvlst1c model,
does not generaIly hold in 3+ 1 dimensions. This
point will be discussed in Sec. VI.

E(luations (3.11) and (3.13}also give

[q, q]=i(1-q')H '=—(1-q')"'
m

i[~~ qo]=—(1-q')'" . -qq, .

Then E(l. (3.25) leads to

,~eII(e) =—I( ()'(e))'"I.„)——()(e)qs(e. )-;

(sF BF'I)

( Sq&. 22))

(3.26)

(s.27)

Ne now have all the ingredients to discuss the
Lorentz transformation of q and q. %e define the
Lorentz-transformed q by

'
(e) ei()I/~ &

1()I)~- (s.16)

where 8 is related to the boosting velocity v by the
formula

Vfe also have

F( ( )) ') &(
0'(

se (sq &, se q Leq/),

and we can rewrite (3.27) as

„q.(e) = [1—q'(e)]'"—,'—, —q(e)q, (e) .
tanhe= y. (s.19) (3.26)
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Using the formulas [see Eq. (3.22)]

1
cosh(A+ 8) '

F(0(8)) "
» F(tt(8))

88 ~osh(A+ 8). cosh(A+ 8) 88

F(4(8)) tanh(A+ 8)cosh A+8

q(8}=q()(8) + iq(8)t,

cosh(A+ 8) 'qo(8) =

q(8) = tanh(A + 8) .

(s. s6)

(3.s7)

(s.s8)

A =tanh (3.39)

.The constant operators A and B are given by Eqs.
(3.23) and (3.3O):

~ (8)](j2 (q(8))
g8

1
~ 2& 1 /2qp(1 q) (3.40)

F(q(8)), ,
cosh(A + 8)

we can integrate (3.28)

q (8) =
h A „B+—F(q(8)),1 +1- (s..29)

where the operator B is independent of t and 6)

and is given by

B=coshAq, — F(q) = —. 2 «2q, — F(q). —
(s.so)

The operator B has the following curious property.
From Eqs. (3.7), (3.9), and (3.13) we obtain

M~ F(q) + t(P ———qH) —qoH

0 dx x+q &pp 0 = 0 dx x+q Tpp 0 + q- q H

=0. (s.42)

.This implies that, if we write the I orentz genera-
tor as

Another remarkable result is the following: By
definition,

0 dx(xq 0)Tx 0) F(q) = H(q=)H 'H
4

= (q —q)H. (3.41)

Equation (3.32) was used in the last step. There-
fore,

mqp—F(q) x 2x1/2 q(1-q i

and comparision with (3.30) gives

M~ = -rnB . (s.31)

M~ —— dg x+ q Tpp + tI' —q&,

we have

M~ ——tP-qH.

(s.4s)

(3 44)

q = q -—(» -q')" 'F(q) = q -H 'F(q) .
m

Since

[q P]=[q P]

(3.32)

(3.33)

the transformation q -q is canonical. We also
have

[q, H] = [q, H],
A ~q=q.

(s.34}

(s.36)

The Lorentz-transformation law for q is quite
simple:

Equations (3.22), (3.24), and (3.29) determine
the Lorentz-transformation properties of q, q
completely.

Compared to the transformation law for q(8), the
transformation of qo(8} is quite complicated. This
suggests that there may exist a time-independent
canonical transformation leading to a new quantum
coordinate with simpler I.orentz-transformation
properties. This is indeed the case,' define the
covariant quantum coordinate q by

We can also rewrite Eqs. (3.36)-(3.38) in a sug-
gestive form by introducing

Then

1
2 )g2 = cosh~ .

(1 —v )
(s.46)

q(8}= [ ]
[qo+&(~+q)t] (s.46)

This has the familiar form of the Lorentz trans-
formation of the coordinate of a particle in uni-
form motion with velocity q (i.e. , q=qo+qt). It
shows that q is not related to the velocity of the
coordinate system, ' the latter is given by v.

It is clear from the above that the cova, riant
quantum coordinate is the natural quantum coor-
dinate for relativistic systems. Starting from any
original choice of q, q can be calculated by means
of the formulas

q =q ——(1—q')" 'F(q),
tn

H(q) =
(0 ((dx(x+q)T„0

1
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IV. THE GENERALIZED COORDINATE

We saw in Sec. III that the existence of a con-
served Lorentz generator has far-reaching con-
sequences: It determines completely the depen-
dence of I' and II on j. In this section, we show
that it also fixes uniquely the way in which q and

q appear in

X(x+q(8, t), q(8)) =X(x+q(t), q) + 852X,

62X=(1-q ) L (x+qo)+(L+L'q+M')t+N'

+—(1 —q )'~~E'L — .2qoL

where, e.g. ,

(4.9)

(o]q~ ~0)=y~(x+q, q). (4. 1)
eL(g)

Bq

Under a, Lorentz transformation with parameter 0,

x-x' = x cosh'+ t sinh6},

t -t'=xsinh8+t cosh&,

(4. 2a)

(4.2b)

(( (x'+q(t'), q) =(0 ~e""*'t/i e '"*'(0). (4.3)

Since a Lorentz transformation should not change
the total number of particles,

(0
i

48N pp f t8kf~
i
0)-48Ngo@f i8M p-

=y'( +q(e, t), q(8)), (4.4)

where q(8, t) and q(8) are the transformed q(t) and

q, given explicitly in Eqs. (3.22), (3.24}, and

(3.29). If we combine (4.3) and (4.4), we obtain
the condition

According to (4.6),

g (X=52X.

Since this should be true identically for x, t, and

q„ it leads to the differential equations

L'(q) =1 . 2 L(q),

(1 —q2) L'(q) = M(q) + qL(q),

(1—q')lqL'(q) + L(q) + M'(q)1= L(q),

(4. 10a)

(4. 10b)

(4. 1Oc)

N'(q} +—(1 —q')" 'I" '(q) L(q) = 0 (4. 10d)

X), ;,=x. (4. 11)

The initial conditions are provided by the require-
ment

y'(x'+ q(t'), q) = P'(x+ q(8, t), q(8)) . (4. 6) They are

This puts severe restrictions on the dependence
of Q~ on x, q, and q. It implies that

L(0) =1,
M(0) =N(0) =0.

(4. 12a}

(4. 12b)

yt (x)

where X is a function of x+ q, j with the property

The system of equations (4.10) with these initial
conditions has the unique solution

1
L(q}=.

j
X(x' + q(t'), q) =X(x + q(e, t), q (8)) .

Let us assume that X has the general form

X=L(q)(x+q) +M(q)t+N(q)

=L(q)( +q,)+ [(M(q)+qL(q)]t+N(q),

(4. 6)
M(q) =o,

N(q) =--J(q) .

Therefore, X is determined to be

X(,q(t ),q) =X(x,q(t), q) + 8&,x,
6,X = L(q)t + [M(q) + qL(q)Jx.

Similarly, using (3.22), (3.24), and (3.29), we
find that

(4. 6)

where L, M, and N are arbitrary functions of q
(they cannot depend on q, since q must appear al-
ways in the combination x+q). Strictly speaking,
the t dependence of Q~ can only come from q(t),
and there is no need for the M(q) term in (4.7);
by including it, we generalize (4. 6) to include the '

possibility that X depends explicitly on t.
Under an infinitesimal transformation,

1 1—
~X—

(1
~ 2)1/2(x+ q} ——&(q) . (4. 13)

The condition (4. 6) uniquely determines X; even if
the initial conditions (4.11) had not been imposed,
X would have been fixed up to an irrelevant over-
all multiplicative constant. Equation (4.6) pro-
vides another example of the concept of CQ trans-
mutation introduced in Sec. II.

Thus invariance arguments restrict the function-
al form of Q~ to a remarkable extent. A Priori,
Q~ could be a function of three variables, x, q,
q. Translational invariance implies that it is a,

function of two variables only, x+q and j. Final-
ly, Lorentz invariance specifies that it is a func-
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tion of the single variable X. We will call this
variable the generalized coordinate.

As a result of this analysis, we have the follow-
ing prescription for including the quantum coor-
dinate in P~: (i) Compute Q~(x) by ignoring the
quantum coordinate, (ii) replace x-X everywhere,
and (iii) expand in q, q and symmetrize fully with

respect to q, j. This symmetrization rule, which
can be proved on general grounds, allows us to
ignore questions of ordering between q and q in
this section, ' such questions never arise.

What can we say about the dependence of the
Heisenberg field on q and j'p This question is
pg, rtially answered by the results of this section:
The inclusion of the quantum coordinate necessi-
tates the replacement x-X everywhere, where

X=X+ (terms depending on y, ) . (4.14)

Since g~ carries the prescription of normal or-
dering with respect to y. , the second term in (4. 14)
is consistent with the result of this section. A
more complete specification of the dependence of
P~ on (q, q) will be given in Sec. V.

Finally, let us note that, if the covariant quan-
tum coordinate q is used instead of q, Eqs. (3.32)
and (4.13) give

are constructed. ' If the Heisenberg field before
the boson transformation obeys the equation of
motion,

(-s'- p')4(x) =&[4(x)]

8 —8 8t z

(5.1)

(5.2)

(-s'- ~')('(x) =+[ij'(x)]. (5.3)

In the tree approximation, where contractions
among physical fields are ignored, this leads to
the following equation for Q~(x):

(- &'- u') 0'(x) =&[d(x)]
'

Now recall Eq. (2.2):

('(x) = Q—„, : 0 &"'(x):
1

Fl

ijg"'(x) = (~~)"0'(x)

5~ —=
J

do @ (o')
( )

.

(5.4)

Since (5.4) is valid for all f(x), and both f(x) and

p0(x) satisfy

then according to the boson transformation theo-
rem,

1x=, .2, i(2(x+q) .
(1 —j )

(4.15)
(-s'- ti')f(x) = (-s'- W')4"(x) =0,

we can deduce from (5.4) that

The generalized coordinate in this form was
found in Ref. 6 starting from different considera-
tions, although the fact that q must be the covar.-
iant quantum coordinate was not realized there.

The simple expression (4. 15) shows again that

q is the natural choice for quantum coordinate.
We shall use it exclusively in the sequel, and for
notational convenience we will drop the caret:
q from noiv on stands for the covanant quantum
coordinate.

V. THE GENERALIZED COORDINATE T

The main result of Sec. IV was that the inclusion
of the quantum coordinate has the effect of re-
placing x in P by the generalized coordinate X
(up to )(0-dependent terms). The question naturally
arises: Is there also a generalized coordinate T
that replaces tP This section is devoted to the
investigation of this problem.

It is clear that an answer to the above equation
cannot be found if one stays within the vacuum
sector of R„, since for static extended objects
P has no explicit t dependence. We are led there-
fore to examine the one-particle sector of K„. The
tree approximation will be used throughout this
and the following sections.

Let us first recall how the one-particle states

(-9' —p')gq"'(x) = 5~F[g~(x)]

= V(X)g"'(x),

where

(5.5)

V[X]=, , S [yi'(x)] (5.6)

[-8'- p,
' —V(X)]y'(x+q, t, q) =0. (5.7)

They are characterized by the boundary condition
that, for ~x~ »R,

)f0(X+q t q)
—

I (ei»4c+ql- lV i»i O
1 ~dK

v'2W»

+H.c.) . (5.8)

In this expression, n~ are the annihilation oper-
ators for particle quanta in mode K, and 8'~, K
are functions of j satisfying the condition

(WK+qK)' —IP = P,'. (5.9)

is the self-consistent potential induced by the ex-
tended object. In Eq. (5.6) we used the fact that

P is a, function of the generalized coordinate only.
For an extended object of finite size, the poten-

tial V(X) will have a finite range 8 (in the one-
dimensional models under consideration, 8 is
of the order of p '). Thus Eq. (5.5) will have scat-
tering solutions, which we denote by X:
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This condition is obtained by substituting (5.8) in
(5.7) with V=O.

We introduce the generalized time coordinate T
by the requirement that all of the (q, q) dependence
in (5.8) should come from X and T:

and

K(x+q) —WP =kX —w, T (5.10)

(5.11)

Since we also have

X~ , ,=x,

it follows from Eq. (5.10) that

K(q =0) =k,

W»(q =0) =w2,

and from Eq. (5.9)

26g —k'. = p

(5.12)

(5.13a}

(5.13b)

(5.14}

T = (1 —q')" 't+
(

.,}„,(x+q) . (5.15)

If we assume that T is a linear function of (x+q),
and t,

T =A(q)(x+q)+B(q)t+C(q),

the requirements (5.9)-(5.11) and (5.14) fix the co-
efficient functions A(q), B(q), and C(q) uniquely
and we obtain

(-s,'+s '-
t ')0'=+[0'],

and this has a solution of the form

gt(x+q, t, q) =gt(X, T) . (5.22)

We will assume in the following that (5.22) is the
physically correct solution, at least in the tree
approximation. Several consistency checks of
(5.22) will be made in the remainder of this sec-
tion.

Notice also that Eq. (5.8) can be written as

., „—,(s +qs, )gt(X, T) .

We now turn to the consequences of the ansatz
(5.22). Consider first thematrix element (for
/x/»H)

)t'(X, T) = — (e'"» ~&r 'a, +H.c.) (5.23)
1T 2w2

for ~x
~

»R. Here n» is denoted by o.2, since there
is a one-to-. one correspondence between K and 0
[cf. (5.16) and (5.17)]; Eq. (5.18) was also used in
deriving (5.23).

It should be noted that (5.22) does not imply that

q and q occur through X and T in all field oper-
ators; operators other than gt can have additional
q, q dependence. For example,

gf- s yf+ s yf
9 BX BT

ex ~x ~x

We also find that

k-gw,
(I '2)1/ 21

W»= (1 —q')" 'w, ,

from which we deduce

(5.16)

(5.17)

gl/ 2

(oint(X T) ik) (2»2w, )"' (5.24)

where Z is a wave-function renormalization con-
stant and ~k} is the state of a single particle in
mode k. The generator of time translations is
the total Hamiltonian, which can be written as

s(K, W )
s(k, w, )

(5.18)

The pair of generalized coordinates (X, T) have
the following important properties:

H=H+H'(q, )IP) .. (5.25)
H' represents the contribution of }t' particles to
the energy. Since 8 depends only on q, which com-
mutes with X,

(9 —s„)f(x+q, t, q) = (6 —s )f(x+q, t, q), [H, H']=0. (5.26)

(5.19)
H' annihilates the K„vacuum.

Let us also define the time-translated X and T:
s(X, T)
s(x, t)

(5.20) X =( 2 ii2[x+q(t+u)]=X+ 2 x&2~
1
'2 l/2 ] (5.27)

In Eq. (5.19), f is an arbitrary function of the in-
dicated arguments. Equation (5.19) allows us to
rewrite (5.7) as

2p&2[x+q(t++)]+(I q ) (t+&)

[s —8 + p + P'(X)])t = 0 . (5.21)
a

(1 — ')"' ' (5.28)

Therefore the assumption that )to depends on (q, q)
only through (X, T) yields a solution of this equa-
tion. Similarly, (5.3) can be written as

Then we obtain from (5.24)

gl/ 2

(0
~

e i»aq (X T)e-&Ha
~

k) — e i 2»~-w2
(222w p"
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which leads to

i7fae tfItX-foieT)e-iHffe-iEyg = i IeXa fftk a

ere H' lk) =E2lk). Since

g2[H, X]—

q
'2

2[H, T] —(,)„,,
we have

(5.29)

runs over the bound-state solutions of Eq. (5.5).
Equation (5.31) is in agreement with Eq. (5.17).

It shows how the energies of X quanta are in-
fluenced by the quantum fluctuations of the ex-
tended object: The energy of mode k is given by

(1 —q')" 2w, .
We can also derive Eq. (5.31) by purely algebraic

means as follows: from

[Cr H]=i —e/=i —e +- e let. B' . BT BX
Bt Bt T Bt X)

e'N'(kX —w T)e '"'=k X+—
2 .(1 2)1/2

Qg
2 (1 2)1/ 2

= kX, —w2[T, —a(1 —q2)" 2]

i&aei@X AT)g-i.Ha-+ikXa if4)ylTa-af1-fy ) ]2 1/2
(5.30)

-(1 ') .(

B . , B4" H] =[q H] . e'=iq—y/—
Bg

. . (BX BT
=iql —e +—e

(BX X Bx T

(5.33)

Comparison of (5.30) and (5.29) yields the result
that, in the tree approximation,

(1 '2&1/2 ( K q T)4 f
j

(5.34)
H' = (1 —q')" 'H„,

where

H„= dk gg~Qpf]t~+ gg,.Q,.(M i ~

(5.31)

(5.32)

we obtain

[q/, H'] =i(1 —q2)1/'eT)I/r (5.35)

The sum on the right-hand side of this relation
with H' defined in Eq. (5.25).

%(hen the quantum coordinate is ignored,

1"
gr(x, t) = Q —, d(r, . .d(r„c.r(x, t; (r, . .o„):X. 2((r, ). . . )to(o„):8 0

(5.36)

and for a static extended object, cf depends on t and t, , . . . , t, only through the differences t -t, , . .. , t
—t, . Thus

B B
i —(t)r(x, t) = i —

)
-d(r, . . .do„cr(x„t;o, . . .o„):)to((r, ). . . yo((r„):

Se

=Z — dO'1- . .d(T Cf X, t, O'1. ..O'„.X 0'1 . . . g 0'. . . .g
ff 5 0 i

= 4 ', H, ]. (5.3V)

Since H„does not depend on t, the inclusion of
the quantum coordinate (i.e. , the replacement
x X, t T) g1ves

ie,yr=[y/, H„] (5.3$)

M~=M~+M~ (5.39)

where M~ contains the contribution of Xo quanta
and annihilates the 3C„vacuum. M~ is given by
Eq. (3.44).

and comparison with (5.35) leads again to (5.31).
Finally, we consider the generator of Lorentz
transformations

Let us define

(X)~ i i ~

T' =(T)x~, i~~ ~

where x', t' are the Lorentz-transformed coordi-
nates [see Eq. (4.2)J. Then, by steps similar to
those that led to Eq. (5.29), we obtain the condition

(0 le((N~+N~ )Hei(kx-~w2T)o( e-((N~+N~)()lki)

—e i(kx' w2T'&(k
l
ki)-(5 40)

o(2 is the annihilation operator for state lk). We
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restrict ourselves to infinitesimal g; then

t+qxX -X+8(1 .,)„„
x+qt

e
(1 '2)1/ 2 I

and (5.40) gives

[M, e'"x ""-](III') e"-" "'-(t IM„'It )
1

( 2)1/2 [t2(t+qX) 2i/2(X+qt)]

x ei(2x-w2ri(y
I
I I) (5.41)

t+qx
[ gOt ] (I '2)1/ 2 l

x+qt
[M~, T] —-2

(5.42)

—i(q —qt }(1—q2)" ' . (5.43)

Then Eq. (5.41) reduces to

(q —qt)(1 —q2)" '~.&~
I
~'& +&~

I M~ lu'& = 0 .
Therefore,

M~ =-(q —qt)(1 —q')"'H„ (5.44)

We have thus succeeded in determining explicitly
all the generators of space-time transformations
in the tree approximation. They are given by

Notice that, since e'"x ~& ' came from the
Fourier expansion of the field }t, it is understood
to be fully symmetrized with respect to q, q. Using
Eqs. (3.44), (4.15), (5.15), and the commutation
relation (3.17), we find that

Equation (5.48) follows immediately from (5.46).
The second relation merits a little discussion.
Reverting to the notation

we have

m
2)1/2 &

[M„,H]=[tP qH, -H]+[tP-qH, I-q2]H„
—[(q - qt)(1 q')-" ', H]H„

-[(q- qt)(1- q')"', (I- q)"']H„'. (5.5o)

We can easily compute that

[tP —qH, H]= iqH=-iP, - (5.51a)

[tP —qH, (1 —q2)'/2] =iq(l —q2)'/', (5.51b)

[(q —qt)(l —q')" ', H] =iq(l —q)" '. (5.5lc)

(5.52)

The last term in Eq. (5.50} must be dropped in
our approximation. The reason is that H„con-
tains 2U„, and therefore is of order h (11 is the
Planck constant). Since we calculated M~ and H
to this order only, it is not consistent to keep a
term proportional to H„2, which is of order h .
Then combining (5.50) with Eqs. (5.51) we verify
that Eq. (5.49) is satisfied. The discussion con-
nected with Eq. (5.49) shows that the expressions
for H and M~ given by Eqs. (5.45) and (5.46) are
not expected to hold beyond the tree approxima-
tion.

Next, we examine the change of the one-particle
states under a Lorentz transformation. Using
(5.44), we find that

eiellf2O Iy)
—sic&a-011(1-i 1 sl2Iy)

H=( . )/ +(1—q)' H„,1 —q

mq
(1 '2)l/ 2

—(q —qt) (1 —q')" 'H„.

H„ is defined in Eq. (5.32).
If we compare (5.46) with (3.5),

(5.45)

(5.46)

Thus the transformed state differs from the
original one only by a state-dependent phase factor.
This is reminiscent of our previous result, that
the generator of space translations does not act
on particle states. Both are manifestations of the
rearrangement of space-time symmetries caused
by the presence of the extended object. Equation
(5.46) implies that H„ is unchanged by I.orentz
transformations; at least in the tree approxima-
tion

M = ~fdx(x+q)T +tP —qH, [M„„H„]=0. (5.53}

we obtain the result

(5.47)

[M, P] =-iH,

[M, H] =-iP.
(5.48)

(5.49)

This may be an artifact of the tree approximation.
As a consistency check, we verify the commutation
relations

This gives us a better physical understanding
of the meaning of the energy and momentum of
quanta iri the presence of the extended object: The
coordinate system is fixed by the extended object,
and coordinate transformations are implemented
by transformations of variables characterizing the
extended object (i.e. , q and q). The energy and
momentum of particle quanta are to be understood
relative to the extended object itself. For this
reason the particle quanta do not contribute to
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the total momentum of the system. An example
of this is a crystal, where it is well known that
the phonons give no contribution to the total rno-
mentum.

by a bar the vacuum expectation value,

M(0=F)(Q) tP( —q)H,

7;(ii)= 0 fd x(ii*+ql,T„O). .
(6.2)

VI. CONCLUSIONS AND EXTENSIONS

[q, , P, ]=t6,„.
If the q, are the only quantum coordinates,

H =- (0[H[» =H(&)

(6 1)

and the q, are time independent and commute
among themselves. The commutator [q, , q, ] is
obtained from the generator of Lorentz trans-
formations by the method of Sec. III: Denoting

In the previous sections, we examined the con-
sequences of space-time translation and Lorentz
invariance for systems of interacting extended ob-
jects and particle quanta. %e found that such in-
variance considerations are very powerful; let us
list the main results here, in order of decreasing
generality.

(i) The existence of a conserved generator of
space translations 5 implies that the set of physi-
cal observables includes a quantum coordinate Q,
which is canonically conjugate to P. The transla-
tion %- X+ K is implemented by the operation Q- Q
+'K, and therefore X and g appear always in the
combination X+Q.

(ii) In 1+1 dimensions, the existence of a con-
served generator of Lorentz transformations com-
pletely determines the structure of the theory in
the no-particle sector. The inomentum and Ham-
iltonian are functions of q only, and their depen-
dence on q is that of relativistic point particle.
The Lorentz generator is also completely deter-
mined as a function of q and q. Finall. y, the order
parameter (i.e., the expectation value of the
Heisenberg field operator in the particle vacuum)
depends on z, q, and g only through the gener-
alized space coordinate X.

(iii) In 1+1 dimensions and in the tree approxi-
mation, we found a consistent solution of the the-
ory in the one-particle sector. The Heisenberg
field operator depends on x, t, q, and q only
through the generalized space and time coordi-
nates X and g. The momentum, Hamiltonian, and
Lorentz generator were constructed explicitly.

The considerations of this paper can be extended
in various directions.

(i) One can consider models in 3+1 dimensions.
Although the arguments become more complicated,
the techniques developed here allow us to establish
an important result, which we present here.

According to Sec. II, there appears a quantum
coordinate g canonically conjugate to 5:

Then the time independence of M, , implies that

J', =q,.H

and substitution of this result in (6.1}gives

(6.3)

(6.4)[q ( y q y ] = 1(5
~ g

—q g q y
)H

The dependence of H on Q can be obtained from

BH .

tq, =[q„H]= [q;, q, l,
Using (6.4), this gives

8 inH
y, =+(5„-q,q, )

(6.5)

or

The only analytic solutions of this equation are
spherically symmetric

H =H(4') . (6.7)

In fact, we have the explicit result

m

(1 ga)x/2 ' (6.8)

(t) i lit (0)
- $8t

However, for the fully interacting system of quan-
ta+extended object, the time developed should be

Therefore, we get the following theorem: If q
is the only quantum coordinate, the extended ob-
ject is spherically symmetric and behaves like a
point particle. More complicated extended ob-
jects will require other quantum coordinates be-
sides Q.

(ii) One can explain no relativistic models, and
replace Lorentz invaria e by Galilean invariance.
In 1+1 dimensions, we e ect that the techniques
developed in this payer wil be as powerful as in
the relativistic case. This extension of our work
could be physically very interesting, since there
are indications that one-dimensional systems with-
solitons may occur in organic conductors. -

(iii) One can extend the work presented here
beyond the tree approximation. Although precise
results in this direction are still missing, one
general feature seems to emerge from the calcu-
lations presented in this paper. In Sec. II, we
defined the quantum coordinate q(t} by Eq. (2.18):
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governed by the full Hamiltonian &:

q(t) etHtq(0)e-iHt (6.9)

9=t[H Ql=Q(»X ) (6.11)

and the fluctuations in position of the extended ob-
ject will be influenced by the y' quanta present in
the state. Physically, this is quite reasonable:
It corresponds to a kind of Brownian motion of the
extended object. It also restores a symmetry in

Although the complete & is not known, we have a
partial result in the tree approximation [Etl.
(5.45)j:

H=H+(1 —tl )'~'H„.

This indicates that, when the quantum correc-
tions are properly included, the Hamiltonian con-
tains X'-dependent terms with coefficients depend-
ing on &. Then the full quantum coordinate, de-
fined through Eq. (6.9), will contain terms de-
pending on the creation and annihilation operators
of X . In particular,

the interaction between quanta and extended ob-
ject; we saw earlier that the energy of the quanta
is influenced by the presence of the extended ob-
ject. It is not known at present whether (6.11)
leads to a linear time dependence for Q, i.e.,
whether Q =0.

Work along the three lines of research suggested
above is now in progress.
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