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SU(3) monopole with magnetic quantum numbers (0,2)

J. Burzlaff
Fachbereich Physik, Uniuersita't Kaiserslautern, Kaiserslautern, Federal Republic ofGermany

(Received 4 August 1980I

We prove the existence of a spherically symmetric finite-energy SU(3) solution with magnetic charge 0 and
isomagnetic charge 2. Because of the special ansatz this solution cannot satisfy the Bogomolny equations in the
Prasad-Sommerfield limit. At the origin the solution is given in the form of a convergent asymptotic series, At
infinity we give convergent asymptotic expansions in the Prasad-Sommerfield limit.

I. INTRODUCTION II. MODEL AND EXISTENCE OF A (0,2) SOLUTION

There are several reasons for the interest in
monopoles: Monopoles are in some sense particle-
like objects. They resurrect the concept of the
Dirac monopole' in a new attractive form. And
they may even be relevant to color confinement in
quantum chromodynamics (QCD).' In spite of
their importance and the large amount of work
which went into this field of research (compare,
e.g., Goddard and Olive's review article') only
a few regular monopoles are known. To the auth-
or's knowledge these consist only of the 't Hooft-
Polyakov monopole, ' its generalizations' which
lead essentially to the same equations for the
regularizing functions, and the solutions of Bais
et al. '

In this paper I add another solution for a non-
vanishing Higgs potential which differs essentially
from the known ones because it does not satisfy
the Bogomolny equations in the Prasad-Sommer-
fieM limit of vanishing Higgs potential. This
solution is the regularized version of a pointlike
Higgs vacuum found by Corrigan et a/. ' Taking
their ansatz, in Sec. II of this paper we only ex-
ploit the similarity with the 't Hooft-Polyakov
solution to prove the existence of a finite-energy
solution.

Because one does not know its exact analytic
form we study its asymptotic behavior at the ori-
gininSec, III. InSec. IVweareabletogiveconver-
gent asymptotic expansions at infinity in the Prasad-
Sommerfield limit where our proof does not ap-
ply. Because Kerner's arguments are wrong
in the case of the 't Hooft-Polyakov monopole,
also in our case no quantization condition holds
and we find a continuous spectrum of asymptotic
solutions for x-~. However, one does not know
whether these asymptotic solutions match with
finite-energy solutions for r -0 which in the 't
Hooft-I'olyakov case is only true for the Prasad-
Sommerfield solution. ~

The theory we are going to study is given by the
Lagr angian

8 = ——
Gp „G," + 'D

p Q
—D" Q, —U(Q}, (I

where

Gp„= Gq„x,/2 = sqW„-B„Wq-f [Wq, W,],
DpQ = Dpi''A. ~/2 = spQ —t [W~, 'Q],

O'y ~y ~ + ~ Op ~y 2) Sy Qy At ~ ~ o 1) ~ ~ ~
p

8

(2a)

(2b)

are the field strength and the covariant derivative,
respectively, with Gell-Mann matrices X, and
potentials W& = W& X,/2. The Higgs field self-in-
teraction is taken to be

l'(e) = P[I -2 Tr(e'}]'
+ q[2 Tr(y') + 8 W Tr(y')

-STr(y') Tr(y'}+ 24 Tr(y')], p, q&O,

(2c)

i.e., we choose the most general renormalizable
possibility which breaks the symmetry spontan-
eously. For convenience, we have set the coupling
constant equal to one and assumed that P is nor-
malized in its ground state.

Because of the potential (2c} all monopole so-
lutions are "X,-like." If we further restrict our at-
tention to spherically symmetric solutions of this
theory we are left with generalizations of the 't
Hooft-Polyakov ansatz, corresponding to the "U-
spin" embedding of SU(2) in SU(2) and the most
general ansatz for the "nuclear physics" embed-
ding

P = 4 (r) cp, + B(r) y„
W, =~[I -D,(r}1[m„s,e,] D.(~)[~r., spe, l,

(Sb)
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with

(q'x)o =rara & 6uo (q'ah& = a~uara o

i, j, .. .= 1, 2, 3.
(3c)

With our special ansatz which does not satisfy
the Bogomolny equations

&i = a &&ya Gya = ~ Dg4

1
A =

4 (y, - Pa), & = + 4~ (4 ~
+ 4a) o (4a)

D, = (a, -a,), D, =+ (a, +a,), (4b)
1 1

where P„and a„are

Within the second class of solutions three Higgs
vacuums with magnetic quantum numbers (+ 1, 0),
(a 1, 1), and (0, 2) (Ref. 7) and in the Prasad-Som-
merfield limit one finite-energy solution, the
regularized version of the (+ 1, 0) Higgs vacuum, '
are known. This finite-energy solution has regu-
larizing functions

(r'A')' = 6D 'A + 4 p r'A (~4 A. ' —1)

+ ~qr'A (A + —,
' W ) (A + —,

' W ),
r'D," = D, (D '+r'A' 1)-

(8a)

(Sb)

These equations are, on the other hand, the Euler-
Lagrarge equations of the energy functional

Z(A, D,)

d 4 DIa (D, -1)

irrespeetively of the functions A and D~, the Euler-
Lagrange e(fixations of the Lagrangian (1}reduce
to

+, a„= (2Q, „)'
n + n

Q, , = -', [+ (r/& +1)e'"~a +e""~+].

Its asymptotic behavior is

(5a)
+ —',r'A" + 4A'Da'+ py'(a& A a —1)'

)2
+ a+qr'A'

I ~ A + 1 I

whereas for the other two, missing solutions
(+1, 1) and (0, 2),

(6a)

(6b)
E(c,v) = 4v

4p

+2 +12
oe.~o'*+ + o*+ ov'+ p'+ «*)

,(10)

To prove the existence of a solution one there-
fore has only to show that the energy functional
(9) attains its minimal value. This is an easy
task because we can cast the energy functional in
the form

(6c}

has to hoM, respectively.
l'f we restrict the ansatz (3}further by putting

B = D, = 0 we are thus restricting our attention
to the solution (0, 2); Although it is topologically
trivial it is not clear whether such a monopole;is
trivial from a physical point of view. Under rea-
sonable assumptions the isomagnetic number is
quantized' and the solution thus cannot be continu. -
ously deformed into the vacuum. Besides, the
degeneracy is a feature of our restriction to X,-
like solutions forced upon us by our choice of the
Higgs potential with q0. For q = 0 the Higgs
field can only be SU(3) rotated to a linear combina-
tion of X, and A., and the isomagnetic quantum num-
ber becomes a topological one. Furthermore,
isomagnetic quantum numbers may even be rele-
vant as measurable physical quantities as Goddard
et al. ' cpnjectured.

o =2D„&= A —1,
2

1 (02
c(~ + 1), v = —

~

— 1z (4

p = r~p r (~ + 2), z = r Wq (7'+ 1)(~ + 2),

which is the starting point of Tyupkin et al."for
their proof in the 't Hooft-Polyakov case.

Except for some unimportant factors the proof
can be transcribed literally and yields the exis-

, tence of a finite-energy solution with lim„A(r)
= ——,

' &3 and lim„„D,(r) = 0 in the weak sense. That
is to say, we have proven that there exist functions
h (r) = r A(r) and h(r) = D,(r) with weak derivatives
such that for any pair of test functions qo, ,E Co(R,}
with compact support in the open half-line 8,
= (0, ~}the following equations hold:
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Sk' r) 4ph r), ,h'(r) y', (r)+, h(») y, (r)+, [;—h'(r) -r']cp, (r)

+ *
I,
h(»)+ «~ ~h(r}+ 4 «I~i(»}d»=0,16qh(r)t ~ ) (

4 '.i

y'g qy2g +—; km @2r dr=0.
0

(11a)

IH. TAYLOR EXPANSION AT THE ORIGIN

As well as in the 't Hooft-Polyakov case we do
not know the existing solution in terms of familiar
functions. To obtain some knowledge of its
characteristics and a starting point for numerical
calculations we therefore study its asymptotic
behavior at the origin proceeding as follows:
First, it is proven that h, k, and all their deriva-
tives exist at the origin. Then, the coefficients of
the Taylor expansions are given by recurrence
relations and finally, the convergence of the series
is px'oven

For the first step we again take advantage of the
close analogy to the Prasad-Sommerfield case.'
In both cases general theorems guarantee that the

. differential equations (8}hold in the strong sense
on the open half-line (0,~) and h(r) and k(r) are
even C" functions there. To integrate Egs. (Sa)
and (81) one uses the Green's functions

1 fs3 t3
6 (r s) = ——

~

—e(r-s)+ —e(s-r) I, (12a)k L 5 ~»2 S ) '

1 t's2
O,(», s) = ——

(

—e(r -s)+ —e(s -r) I (121)s i

for the differential operators I.~ = d'/dr' —6/r'
and L ~ = d'/dr' —2/»' which describe the leading
behavior of Egs. (Sa} and (81), respectively, and
the solutions r', 1/r' and r', 1/r of the correspond-
ing homogeneous equations.

With this input one obtains for 0&&0--r ~z, & ~

h(») =, [r,h'(r, ) + 2h(r, )]
1

+ ', [3h(r,) -roh'(ro}]
5w

V,(r) = Sa(k+ 2)h+ 4ph(34 k -r')
+ ~ qh(h+-,'TS «)(h+-.'WS«),

V,(») =(1+5)a'+Sk'+P. {14c)

a(r) = p«'+ o(«') (15a)

$(r}= o»'+O(r') (151)

hold with arbitrary coefficients p and o. Then we
conclude by induction that all even terms of the
Taylor expansion of h and all odd terms of the
Taylor expansion of 0 vanish. In fact„ if we as-

h=g a„» "+O(r'"")
05=1

(16a)

N

k=g k r +Kr +'+O(r + ), (161)

we obtain from Eq. (131) (2N —1)K = 0 and there-
fore K = 0. If we assume on the other hand

Following the same line of reasoning as in the
Prasad-Sommerfield case we can first set ro= 0,
find next lim„ah/r = lim„ak/r = 0 and prove
finally the existence of lim„o h/rm and lim, aa/«2
and by general theorems the existence of all
derivatives at r = 0.

Equations {13a)and (131) now also permit us to
write recurrence relations for the coefficients of
Taylor expansions at the origin. To find these
relations we set re= 0 and x, = r. The first thing
to notice is that

r' "'~ V,(s), J' sV,(s)ds- — ', ds, (13a)
ro 4r

k{r}= ——

2 [r,Ã'(r, }+f(«,}]+ ~ [2k{«~}-»05'(r~}]

~2NI+1+ II~QN+2+ O ~2N+3

N+1
k = k„»'-+O(r'""),

(Ila)

(1rb)

Vm{s)ds- — '3 ds (131)
1 f' rm

t
"x V, (s) we obt~i~ from Ee. (13a) (2N —1)& = 0 and & = 0

as well.
%e thus have

k(r) = a(r) -1, (14a)
a(r) = g h„r'""

St=/
(18a)
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and

h(r) =1+
m=

Plugging this once more into Eqs. (13a) and (13b) yields the recurrence relations

(18b)

2tyl +m-3 «1 1 2 }+ 2
m»e2 «1

9$ } sl2 153 15~PS }+m2+ fyl3
h

m }'~2 m3«1

+~ (p+q) Q h h„h„5 „,„, „-(2p-q)h„, +2M q Q h„h„5m~«1}2'}2}t }s 2

(19a)

(3a. h. ~.,„,.+h„,h„a„,„,, „)488 -m-1~ m m «l 1 2 & } 2
2—l

(hm am hm 3m m +m +m + hm hmmam ~m, m +m +m + g)2 3 ' 1 2 3 1 2 g
~ 1 2

+
1,m»na3» 1

To prove the convergence of the Taylor series we now show by induction that

(19b)

(20a)

(20b)

m-1

"' ~+ 2 ', (na, + 1)' (m —m, + 1)'

~St
la-I - (,,)2

/

hold for sufficiently large m and M ~1. For this purpose, we estimate the sums as in the following ex-
ample:

"m-}/2 1(~7$
"(1+x)'(m-x+ 1)'

4 1 1 1 2m+1 M
(m+ 2)2 8 2m+ 1 m+ 2 3 (m+ 2)2 (21)

Treating the other sums analogously we arrive
at

(22a)

I

have to satisfy the equations

~'a" = 6u'a

r'h'= (h'+ a'-1) h

(23a)

(22b)

This proves the inequalities (20) and at last the
covergence of the series (1S) for r ~ 1/M.

IV. ASYMPTOTIC EXPANSIONS AT INFINITY
IN THE PRASAD-SOMMERPIELD LIMIT

We now look for asymptotic expansions at in-
finity. Because in the preceding section we al-
ready found a starting point for numerical calcu-
lations in the case where our existence proof
holds and are mainly interested in a comparison
with Kerner's work we restrict our attention to
the Prasad-Sommerfield limit of vanishing Higgs
potential. The solutions we are looking for hence

and have to fulfill h-, „-—,'WSr and h-, „0.
fBecause of the form of Eqs. (23a) and (23b) a
change of scale and sign is always permitted in the
Prasad-Sommerfield limit. ] We shall furthermore
attempt to find expansions in exponential functions
with polynomially bounded coefficient functions.

If we assume that k falls off as an inverse power
in the asymptotic region, Eq. (23b) together with
the linearity of h leads to a contradiction. There-
fore, in an exponential expansion k falls off ex-
ponentially and ek2fg does not'contribute to the
zero-order term of h which thus reads

h,(r) = —(—,
' Wr+ n).

Using Eq. (28b) this on the other hand yields
for the zero-order term of h (z = Wr, y' = am
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d Kp 1 O-', y—+ —+' —

2 Kp. (25) k(r) g k (r)e (&3/2)(2x(+1)r

m=p
(801)

As in the 't Hooft-Polyakov case we arrive
at Whittaker's equation of the second kind. [This
comes as no surprise because hp differs only by
a scale factor and Eq. (281}is the same compared
to the 't Hooft-Polyakov ease. ] However, we do not
arrive at Kerner's quantization condition which is
wrong but find exponentially dec reasing solutions
for every &, namely,

Z,(r) =PW „,(z)

MP p( 1) ni P)
I (-2y)

+P (,)
M n y(z)

(r)e-&3r/2 —
p &-Par/2r nM-

where k3 and k3 are given by (24} and (26), re-
spectively.

To find the functions h and k form = 2, 3, ...
we write the recursive differential equations

k„"-2&mb' + Sm2k„

6
r2 &m &m &m ~m, m +m,+m, + ~1 2 3 2 I 2 3

m ,m ,m p

(31a)

k„" -W(2m+ 1)k'

+ -', (2m+ 1)'-—3 g 3a O2

1 k, k, k, O

my, m22m3» p

M n y(z)
j.

'1
I

1
+ 2 ~ '~m hm ~m ~mm +m +m

= &m ~

m m»p g 2 3 ~ 1 2 3X'2'3
m+m &p

(n + y + —) ((2 + y + R} z
(2y + 1)(2y + 2) 21

(261)

and the asymptotic behavior

W „„(z} e-'/'z- [1+O(z-')] . (2V)

For quantized & = —(n + n + 1)j(2n + 1), & + y + 2
= -n, only the solution (26) becomes especially
simple because the series (261) is finite and M „
is a solution with the appropriate asymptotic be-
havior in this case.

Using Eq. (23a) one can now conclude that the
function II, in

k =k, +H, e ~3"'+O(e ~3')

satisfies

therefore takes the form

IIXr ~&Sr/2+ p2eW3r/2I

(28)

(29)

and has to be identically zero because (29) is not
polynomially bounded. In the next step one derives
for the functionK, of order e '" in k VRittaker's
differential equation (25). However, we already
know that the solution of this equation is of the
order e ~ '+~". We thus find that K, has to vanish
and by induction finally

k(r) = g k„(r)z-~". (80a)
m=p

These equations are solved recursively by

(311)

h (~(= I dr e r "~'(r'*r)q lr'(, -
r

(r) ]t dr rr-nrr-n e&33((r r')-
r

where
r~ e&3x M 2(r)

k(r, r') = dz

(821)

(82c)

I(W3/2) (2m+1)

Sup ~k e (W/4)(2"+')r~& o

(m+ 1)'

form& N. %'e then conclude

(8$1)

with the functions M„of Eq. {26}.The solutions
(32) are unique because the solutions of the homo-
geneous equations corresponding to ($1), which can
always be added to the special solutions (82), are
not polynomially bounded. The solutions (82} on
the other hand are polynomially bounded which can
be shown by induction and the integrals exist for
sufficiently large r [Notice t.hat M (r}& 0 holds
for sufficiently large r because of (2V).]

To prove the convergence of the expansions ($0}
we proceed again by induction. We assume

M&3m
sup ~k

z-(Wsl23xr) ( 0

Q+ 1)' ' (SSa)
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&~ash)are
i
& sup Jt d»t c(~s/2)ar(r r'-) (»I ») sup I(( {»t)s-(rsht)er'

i

r&ro r&r r r'&ro

sup i)i (» I)e ( i/8/s)N r'
i {34)3pp N

To estimate sup[@„e '~'i2)""
i one uses the same technique as in the preceding section. For sufficiently

large N we can thus prove (33a).
For the functions k„we estimate supi((~(»') exp[ WS-(2N + 1)»i/4]i analogously and notice that by partial

integration and because of Mg»)/M {»'}& 2 for sufficiently large» and»'&»

sup il (f»»- »™c(''('"-' '-"'c- ' h(»» )& — — + 1+Oi
M~{»') ' 3(2N —1){2N+3) i(N»0) i (35)

hoMs. Hence, we arrive at the following result. For sufficiently large r &ra and r & 2 ln M solutions of
the Eqs. (23) are given by the expansion (30) with functions h„, k given by (24), (26), and (32).

V. CONCLUSION

Mfe have proven the existence of a monopole with
magnetic quantum numbers (0, 2) and given a two-
parameter set of Taylor expansions at the origin
which contains this solution. Which parameters
belong to the solution could be answered by a
computer calculation. The proof does not apply
to the Prasad-SommerfieM limit, but because for
smaO coupling constants p, q the Higgs potential
only contributes for large r and the solutions are
kept fixed for all P, q& 0 at infinity we conjecture
that a nontrivial finite-energy solution also exists
in the Prasad-Sommerfield limit.

In this limit we found at infinity a two param-
eter set of solutions. However, we do not know
whether a solution or, if our conjecture is right,

which solution matches with a finite-energy solu-
tion for r —0. It is also not obvious, at least
not to the author, how to apply similar techniques
as in the 't Hooft-Polykov casee and reduce the
problem to the solution of two first-order equa-
tions. The best one can do at the moment is thus
a computer check.
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