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Coincident anharmonic oscillators
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We discuss and extend an observation of Zinn-Justin that the double-well potential in one dimension and the
anharmonic oscillator in two dimensions have coinciding perturbation expansions.

I. INTRODUCTION
H(g) =g H g ~ (2.1)

Zinn-Justin noticed a remarkable coincidence
for anharmonic oscillators'. The double-well
(DW) potential in one dimension and the spheri-
cally symmetric x~ anharmonic oscillator (AO)
in two dimensions have, up to an over-all con-
stant and an alternating sign, identical per-
turbation coefficients for the ground state. This
observation is based on computer calculations.
It was found to hold to an accuracy of at least
12 places and to all orders computed. The
reason for this coincidence is not known.

Our results are as follows: First, we sharpen
and extend the observation of Zinn-Justin. Second,
wedevelop a method for handling certain coinci-
dent perturbation expansions. However, we only
handle finite orders of perturbation theory. More
precisely:

(a) For the DW in one dimension and the spheri-
cally symmetric AO in two dimensions, the coin-
cidence of perturbation. coefficients for eigenvalues
holds analytically (in contradistinction to numeri-
cally) at least up to orderg" (there is strong evi-
dence that this result is in fact true at least up to
order g '). Moreover, itholdsfor a/I levels of the
D% and their corresponding levels in the I = 0
sector of the AO (an in particular for the ground
state).

(b) We map the DW in one dimension and the
x AO in two dimensions on a common space.

(c) We analyze general AO's in one and two di-
mensions and determine the coupling constants
so that the two AO's have coincident expansions
to a given order. This is done explicitly up to
g'. By extending to higher orders one would either
prove that the example found by Seznec and Zinn-
Justin is unique or manufacture other such exam-
ples. %e have not succeeded in carrying the
computations to sufficiently high order to achieve
either goal.

II. COINCIDENT EXPANSION

The perturbation coefficients (Es}for the Ith
level of the Hamiltonian

are defined by the recursion relations

(2.2)

where [(E,-HO) ']„~is the reduced resolvent. The
subscript 0 denotes unperturbed quantities. For
H, the harmonic oscillator (HO) and H, =&~~ x~ ~'. ,
j& 1 it is known that ~E„~ ~C"(t)I/2)'t. By sym-
metrizing Eq. (2.2) one shows that g(g) to order
K determines E(g) to order 2N+1. Consider the
two Hamiltonians H(g) and h(g) of the form (2.1)
and suppose there is

S(g) =1++S,g'
y=1

(2.3)

(H, S, —S, h» )) = 0, k = 1, . . . , M (2.4)

then we say that H(g) and h (g) coincide to order
M. Equation (2.4) implies that if P(g) of H(g) is
given to order M then (t)(g) =S(g)g(g) is a pertur-
bative eigenfunction of h(g) to order M. In parti-
cular, the perturbation coefficients for the eigen-
values of the two Hamiltonians, (E&}=(e,.}, coin-
cide for all j~ 2M+1, for all levels. With Hp Ap

=2n, where n is the one-dimensional HO, Eq. (2.4)
can be written as a recursion relation for the S~,

[2n, S ] = -Q (H; S —S,h,-) .
/=0

(2.5)

To solve (2.5) we make use of the Eriedrichs I
ojerator, defined on the operator B with (m ~B~m)
=0, where ~m) is the one-dimensional HO eigen-
function, by

[2n, I'(B)]=B. (2.5)

In particular,
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b" a~~ k &0r( «)
5 «a, k 0

a"', a&0.
Equation (2.5) now reads

S,=-r(T,),

T«-g (H«» S» - S».Pg«») .
/=0

(2.7)

(2.6}

I
I""'lo).

l I

'=
I I; .. :e"""&'I0&» I

I'
f r.',

=
I
le""""

I 0& I
I"

" i~I'" (2m)t

. .o (2 &
(ml)'

= (1 —~')-"'

Thus if T~ is in the domain of I. for I k «M —g,
then H(g) and h(g) coincide to order kL

III. ANHARMONIC OSCILLATORS IN DIFFERENT
DIMENSIONS

Perhaps the most surprising fact about the
coincidence Seznec and Zinn-Justin found is the
way in which different dimensions enter. We
start with coincident spectra for harmonic os-
cillators in one and d dimensions.

Let a = (x+ ip)/M,
Ho"=at a, xaam~. (3.1)

(a')"
ln&=( I)„, lo&, (3.3)

The scalar & =-,'a a is a ladder operator for H»:

[H&, At]=A'», d o 2. (3.2)

Henceforth H»o will be restricted to 8„(At)"
I 0)„,

which is the K= 0 sector of the space of states of
the d-dimensional harmonic oscillator. The spec-
trum for d & 2 is the non-negative integers. The
spectrum of 2HO in one dimension is also the non-

negative intergers. The coincident spectra and

degeneracies give a unitary map between one and

d dimensions.
Let

On the other hand,

I
IA'"I o), I

I'.
m

Equating powers of »«gives the result Fi.nce

I I (A~)" '
I 0), I I

ct Il(At)ml ) II + »

d —2't '/'
=U~ n+ at m

2 j
=Ut n+ atU m

2

we find

d-2 '/'
U&U= n+ -a~,

2

2) 1/2
UAUt =al n+

2 )

Proposition 3.2:

d-2) ~ f d-2Ux'ut =nl n+
I +I n+ at

+ 2n +d/2,

(3.7)

(3.6)

(s.9)

(s.lo)

(3.11)

Then,

(At)nl0)
ll(A~)" Io)~ll

(A')«lo& lo& ~ ~ lo)
I I(A») lo), I I

(s.4)

(3.5)

2 d 2
Up Ut= -a n+

( d-2&"',
-ln+

Proof:
Equation (3.11) follows from the identity

x' A+At+H»+d j2

(3.12)

(s.ls)
is unitary and

Ug~ ~ aU = 2ata,

I emma 3.1
(3.6)

and Eqs. (3.10) and (3.6).
Equation (3.12) then follows from Eq. (3.6) and

H,'=-,'(p'+x'-d) .

I I
(A')"

I
0)

I
I'=~ '

I
~+

Proof:
Using the tensor product property and Pytha-

goras's law,

Proposition 3.2 and the functional calculus give
an explicit expression for U[H»0+ V(x«)jU~ in the
Fock space 8„"Oln& of the one-dimensional oscil-
lator. In the next section we shall use this to
construct recursion relations.
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IV. RECURSION AND CONSISTENCY RELATIONS

H(c, g) —= (p'+x'- 1)+—,Q cI k(gx)~, x eB',
f=3

h'(e, g}=-—,'(p'+x'-d)+ —,Q e',. k(gx)~, (4.1)
f=3

ge2f,~
——0, xeA .

g~ is restricted to L=O. The two Hamiltonians
coincide in the sense of perturbation theory if 1~
is in the domain of F and

S,= -r(T,) = -c,i'(x'),
2 4 3 2 4T2=c4x +c3x S, —e4x

Now,

&m Ix'lm&=
I lx'lm&

I
I'=-:{2m'+2m+»,

&mix'l(x')Im&= —,', (30 '+30 +11),

(4.4)

(4.6)

&m lx'lm& =
I I «'lm&

I
I'= 6m'+ Mm+ —I+—.

2 2

Remark: No condition is imposed on cf, ef with

j -5.
Prooj:

0-f +2+@-f k-f ~4+2-fS
k k+2-j k+2-j f) t

y=o

s, = -r(r, ) .
(4.2)

The equation for consistency, (m I2'klm&=0, trans-
lates to the set of linear equations for (ckk, ckk, e4k):

We used the abbreviation x' for UxfU~. We call
the equations

gQ 2 C2
3

16 2 3d c4 =0.2 (4.6)

&mlrklm&-=0, I-u-~-I (4.3)

ProPosition 4.2:
If the Hamiltonians II"'(c,g) and Ii "'(e,g) I ~,

have coincident perturbation expansion to second
order {and then also to third order) then

{a)d = 2 implies (ck c„ek)= X'(4, 1, -1), A, arbi-
trary;

{b)d+2 implies (c,', c,', e,')=0.

consistency relations for coincidence to order ~.
E'enation (4.3) can be viewed as a set of equations
for the unknowns {c}and {e}.

One proves by induction that if S~ and E~ exist,
their parity under ref lection x--x is (-)k. Since
the HO eigenfunctions Im) have definite parity we
get the following:

P~oPosition 4.1:
Suppose T~, 0=1, ..., 2M satisfies the consis-

tency condition (4.3), then T~„also satisfies
(4.3). It follows that (4.3) is nontrivial for k even
only.

We shall now consider the first few consistency
relations for even orders.

—,' d(1+d/2) e,'
The determinant of the matrix is —', (2 —d). Thus
a nontrivial solution exists only for d = 2 and then

(ckk, ck, ek)=A. (4, 1,-1). (4.7)

Remarks: 1.X is a trivial scale parameter. 2.
Setting cf =ef -—0, j ~ 5, and c3,c4, e4 as above,
gives the coincident Hamiltonians found by Zinn-
Justin.

The recursion relations for the operators S~ in
Eq. (4.2) can be written as recursion relations for
functions {szk'}introducing

Sk=gs,k. (n)b~, (4.8)

b' as in (2.7). This is convenient for computer
calculation via formal languages, such as FOHMAO.
The following result is a consequence of such a
calculation, going up to @=5.

Proposition 4.3:
For the (c„c„eJas in Proposition (4.2) and

. e, =c,.= 0, i ~ 5, giving the DW and the x AO,
coincidence holds at least to order g'. Moreover,

InS(g) = -ig( —,'P'+xPx)

' {p,D} g)+;{n,D}+-,'[a'(n -n) &'- H.c.]+4(an'&'- H.c.)

+ ik [164nk+246n +266n+89] I+0(gk) .

Here D =—(kxp +p}xgenerates dilations, and {,}
is the anticommutator.

Remarks: 1. The output listed S~ and T~ and the
consistency condition was checked by hand. We

1

also cheeked the consistency numerically Ci.e.,
letting the machine compute &m I Tklm) for specific
m). This check was performed up to k =7. 2. The
tedium in such calculations may be appreciated
by the 300 seconds it took IBM 370/168 to iterate
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the recursion to k = 7 and the 450 full length lines
of print for the functions (s~~j.

We shall now return to a systematic study of the
consistency conditions for higher order. The pur-
pose of this exercise is to see whether the
Zinn-Justin example is a unique solution to this
set or whether there are also other solutions for
higher-order polynomial self -interaction. We
have not succeeded in going far enough to esta-
blish either result.

Consistency for T4 is

&m (c,'x'+c,'x'S+c,'x'S, +c,x'S,

-e,'x'- e,'S, x'(m&-=O. (4.9)

S, and S, are independent of c„e„i ~ 5, while

S,=-col'(x') —F(c~x'S, +c,xsS, —e~S x ).
(4.10)

By Proposition (4.3), Eq. (4.9) holds for c&, e, =o,
i ~ 5. It remains therefore to consider

&m
~
c,'x'- c,c',[x'I'(x')+x'I'(x')] —e,'x' ~m) -=0 .

(4.11)

To evaluate (4.11) the following is useful.
Lemma 4.4:

Let l, , be odd, then

&m ~x'21 (x')) -x'xi'(x'2) ~m&—= 0.

Proof:
Write

14] 16

~29
16

-20 f
c4

6

c3c5 =03 (4.16)
—" -+" -(3d'+M+4)

6-
-ad(d2+6d+8)

(aa

The rank of the 3 x 4 matrix is 2 if d = 2 and 3
otherwise. For d =2 a one-parameter family of
solutions is

(4.16)

A summary follows:
ProPosition 4.5:

H"'(c)g) and h' '(e, g) T, 0 coincide to fourth
order, and then also to fifth order, if

(a) d = 2: (c ', c ', e ') = &'(4, 1, -1),
(2Ac'„c64, e', ) = (A.p, )4(66, 106, —~97 ),

A. and p. are arbitrary;

(b) d4 2: c„e,. =o, i~ 6.
Remarks: 1. Choosing v =Xp, can be done without
loss since c,= 0 implies c, = e, = 0, i ~ 6. The form
we choose has the right scaling properties. 2.
Zinn-Justin's case corresponds to choosing
p, =0.

Coincidence to sixth. and seventh order deter-
mines p, . We have not succeeded in completing
the computations to this order, but we can still
say something on the general character of the
equations.

Coincidence to sixth order requires

m&-=o

m

&m y{m) 6 +tk+ H. C ~ ~

Then

(4.12)
with

T6 C8X +C7X S1+C6X S2+C 5X
6 8 5 7 4 6 3 5

+C4x $4+C3x S,—e4S4x2 4 3 2 4

&m/x /m&= ( /x /m}f f'=m'+ —'m +'—'m+-,

&m ~x I'(x ) ~m&=~3~ (146m3+219m +203m+65),

&m
~
x

~
m) = 20m + 15dm + (3d2+ M q 4)m

+—(d +6d+8)
8

(4.i4}

gives

g fkgk
(m (x™('(x') ~m) = (m

-X" '(x) )(ax'(x)
k

+k 'a X" '(x)X" '(x)aa) m)

(4.13)

which is symmetric in l, and l,.
Using

4 ~S 6~8-e6$2 x —e8 x ~ (4.17)

We shall not write explicitly the s& appearing in
(4.16) as this is partly unnecessary and partly
very space consuming. The consistency equation
turns out to be a quadratic equation in ( p,'),

a'A (m) i),'+ x'B ( m)p'c+(m) =, 0. (4.18)

Here

&(m) =-(33)'&mix'I'(x') lm& (4.19)

is a polynomial in m of degree 4. Besides p, Eq.
(4.17) has an additional three undetermined
parameters (c'„cs,e',). (X is a scale and thus not
a free parameter. ) By Zinn-Justin, p, =c, =c,=e,
=0 has to solve (4.17). This gives

c(m) = &m ~c',x' —2W', [x'I'(x ) +x'1 (x')] - e', x ~m&.

(4.2o)
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Since

(m ~x'~m}=~ (70m +140m'+350m'+253m+105),

(m ~z'~m)=70m +140m +1VOm +100m+24,
(4.21)

(m jx'~ I'(x') ~m)=~(120m +270m'+420m'

+ 270m + 75),

c(m) is also a'polynomial of degree 4.
Now either B(m) is a polynomial of, at most,

4 or not. In the second case (4.18) holds only if
p, =0, and by (4.21), c, =cs=e8=0 and Zinn-Jus-
tin's example is, in a sense, unique. Qn the
other hand, if B(m) is a polynomial of at most, ,
degree 4, Eq. (4.18) reduces to five equations
with four unknowns. Generically, such a sys-
tem is overdetermined, but since this system
appears to be rather particular it should not be

too surprising if one finds solutions to (4.18)
other than the trivial p. =0.

This type of analysis can, in principle, be con-
tinued to arbitrary order. Unfortunately, the
computations become so tedious that we suspect
that further progress along these lines can only
be made with the help of a computer.
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