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Vfe first review a recent result on the uniqueness of the extension to the conformal group of massless

representations of the Poincare group. By restricting these representations to SO(3,2) we obtain a unique definition
of massless particles in de Sitter space. This definition is compared with the concept of masslessness that arises from

considerations of gauge invariance. Next, we recal the startling fact that the direct product of two Dirac singleton
representations of SO(3,2) decomposes into a direct sum of the massless representations of SO(3,2). A theory of
interacting singleton fie1ds is developed and a simple expression is given for the intertwining operator between
massless fields and two-singleton fie1ds. Fiinaljy, we discuss the behavior of these massless representations with

respect to the contraction of the de Sitter group to the Poincare group.

INTRODUCTION

In 4909, Cunningham' discovered the role of the
conformal group as a covariance group in relativ-
1stlc physics 81nce that time 1nterest in th1s gI oup
has been periodically renewed. Indeed, the con-
formal group has both a geometrical meaning,
arising from its definition, and a dynamical sig-
nificance, associated with its representations,
with conformally invariant field equations, scaling
behavior, etc. In both directions much progress
has been made.

In particular, the concept of conformal compac-
tifjCatjen (S XS )jets Of MjnkoWSkj SpaCe, and ite
universal covering B'XS have recently been clari-
fied; field equations and their properties have been
extensively studied (this includes, at least in the
analogous Euclidean case, the Yang-Mills fieM
equations, etc.' ~). The compactifications make it
possible to deal with a global action of the con-
formal group 8 or of its universal covering. These
actions are known' to be locally causal, i.e., a
neighborhood of the Poincare group 6' in 6 acts
causally on a neighborhood of the origin in Mink-
owski space.

The (projective) representations of 6 have also
been studied for some time with various degrees of
completeness. In particular, it was known more
than 10 years ago that the so-caBed most degen-
erate (ladder) representations of e remain irre-
ducible. when restricted to 6', giving rise to mass-
less, discrete-helicity representations. ' Further-
more, those unitary representations of (P that cor-
respond to massless particles (zero mass, dis-
crete helicity} are the only ones that can be ex-

tended to the conformal group. (It is obvious that
the mass has to be zero, and examination of the
so-called continuous spin representations of 5'
shows that they do not qualify. } A complete classi-
fication of all irreducible projective representa-
tiolis of 8 and of 80(S, 2) wltll charactellzatloii of
the unitary ones, has recently been obtained by one
Of uS.

Given a massless (=zero mass, discrete-heljc-
ity} representation W of 6', we thus know that it is
the restriction to 6' of a unitary irreducible rep-
resentation (UIR} of e; but the uniqueness of the
extension was not known. Worse, even the uni-
tarity of every extension to e was an open ques-
tion, and in some applications unitarity had to be
proved in each particular case. This situation
arose, in particular, in the study of conformally
invariant field equations. Furthermore, the unique-
ness of the extension within an equivalence class of
representations was also open.

In Sec. I we shall recall a recent result that
settles all this uncertainty: When a unitary, ir-
reducible representation V of 5' has an extension
to e, then there is a unique equivalence class of
UIH's of 6 having V as its restriction to 6'. %'ith

V given, there is in fact a unique extension; the
operational form of this extension. may be given
explicitly. This is due to the fact. that V is irre-
ducible; the intertwining operator between two
equivalent representations of 8 having the same
restriction must commute with V and is therefore
the identity.

In Sec. II we describe the projective represen-
tation v'+„of e whose restriction top has mass
zero, helicity n, and positive energy. Section. III
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is preparation for Sec. IV and contains a descrip-
tion of the relevant representations of SO(3, 2).

In Sec. IV we consider the restriction of V'„ to
the subgroup SO(3, 2). This restriction is irreduc-
ible for nO 0. Associating these irreducible rep-
resentations of 80(3, 2) with elementary particles,
we obtain an unambiguous definition of massless-
ness in de Sitter space. In Sec. V we show that
this definition coincides, for (n ~

&1, with the con-
cept of masslessness that one obtains by consider-
ations of gauge invariance. ' '

Massless particles in de Sitter space differ from
massless particles in Minkowski space, in that they
can be interpreted as two-particle states. In Sec.
VI we recall the most exciting property of the Di-
rac singleton representations of SO(3, 2): the di-
rect product of two positive-energy singletons re-
duces to a sum of massless, representations of
80(3, 2)." The field theories associated with
singletons are discussed in Sec. VII in somewhat
greater detail than in previous publications.
This discussion is continued in Sec. VIII where we
obtain a simple and direct relation between mass-
less fields and two-singleton fields. .

Finally, in Sec. IXwe investigate the contraction"
of the massless representations of 80(3, 2) back to
the starting point of massless representations of
O'. An interesting aspect of this contraction is that
helicities n and —n arise by contraction of one and
the same representation of SO(3, 2).

The emphasis that this paper places on massless
particles is justified by the observation that all
physical theories that pretend to be fundamental
make use of masslessness in one form or another.
Thus massless photons and gravitons are basic to
electrodynamics and to gravitation. Massless neu-
trinos probably play the same role in weak inter-
actions, although this expectation has not yet been
realized. Currently popular models of both weak
and strong interactions employ massless fields in
an essential way. In our opinion, all these the-
ories suffer from a basic limitation: they are all
conceived in a far too unimaginative imitation of
electrodynamics. Thus, the masslessness of neu-
trinos has not yet been fully exploited. Perhaps
this will happen only when neutrinos are integrated
with photons and gravitons in the picture that is
based on singletons.

This picture, which represents massless parti-
cles as two-singleton states, "has much in corn-
mon with the quark model of hadrons. Let us
stress, however, an important feature of single-
ton dynamics that is quite unlike quark dynamics.
If by confinement of quarks one means that quarks
cannot be observed directly as individual particles,
then singletons may also be said to be confined.
But singletons are unobservable, in practice if not

in principle, for purely kinematical reasons. The
relation energy =p"'&&angular momentum (where p
is the curvature of space-time and hence very
small) means that an apparatus of cosmic dimen-
sions is required to detect singleton absorption by
energy balance. An absolute (super) selection rule
forbids transitions between elementary particles
by one-singleton emission. Thus singleton "con-
finement" is automatic and natural, and indepen
dent of the dynamics.

I. MASSLESS REPRESENTATIONS
OF THE POINCARR GROUP HAVE UNIQUE

CONFORMAL EXTENSIONS

Massless particles in Minkowski space are as-
sociated with unitary, irreducible representations
of the Poincarb group, with zero mass and with
discrete helicity; we shall refer to such represen-
tations as "massless representations. "

It is well known that the only unitary, irreducible
representations of the Poincar0 group that have ex-
tensions to the conformal group are the massless
ones. More surprisingly, it turns out' that any
system that is invariant under a massless repre-
sentation of the Poincarh group is invariant under
a uniquely determined, unitary, irreducible rep-
resentation of [the fourfold covering SU(2, 2) of]
the conformal group. The precise statement is
the following:

Theorem 1. Let v' be a projective representa-
tion of the conformal group t:, such that the re-
striction v ~d' of f'to the Poincarb group& is uni-
tary and irreducible. Then V is a unitary repre-
sentation of SU(2, 2), the operational form of which
is uniquely determined by that of 9 )(P.

Outland ofproof. Let (I,~), A, B=0, 1, 2, 3, 5, 6
with L~ = -I», be a basis for the Lie algebra
associated with V'. This Lie algebra is isomorphic
to so(4, 2) and the basis will be chosen so that the
structure takes the familiar form

[I'As ~ Ico] = ~ (Re c Lac + 8xo I'a c

OAC LBD 1BD LAC) '

The metric tensor is diagonal with g»= g» =+1,
f22 g 33 g 86 1 These commutation rela-

tions, and all relations written below, are valid on
a common invariant domain of differentiable vec-
tors for V', dense in the Hilbert space SC of the rep-
resentation.

The Lie algebra g(6') = so(3, 1)x t4 is the sub-
algebra of so(4, 2) spanned by fL„„), p, , & = 0, 1, 2, 3
(Lorentz transformations) and by (P„=I,„,+I,„~), —
@=0,1, 2, 3 (translations). The operator D =- L„is
the dilation operator. The restriction f'~6' is
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massless; this implies that

(1.2)Lgp —2npp =0, P~P~ =0,

where n is the helicity (2n fixed integer). (We use
Feynman s summation convention, e.g. , K„„
=E~ 3i . Also e,»3 =e»2333=+1.) These expres-
sions generate an ideal of the enveloping algebra
of so(4, 2), which implies that

AB CDEIi CD E AB

L~ Lgq+Lg~ L~ = —,q~~C,

(1.3)

(1.4)

where C =- &I.~ I~ is the second-order Casimir
operator for so(4, 2). Equation (1.3) gives, in par-
ticular,

2nD- Color Lpg La (1.5)

for n4 0. (The case n =0 can be treated in similar
fashion, ' using the relation PpD=P~Lo~ —iP„but
will be ignored here. ) It also follows easily from
(1.4) that W = J'2, where J''= 2I» L» is the Casi-
mir operator for the rotation subalgebra (k, I
summed over 1, 2, 3) and W —= L„'—L„'—D' is the
Casimir operator for the so(2, 1) subalgebra gen-
erated by L», L«, and D=L„. [The correspond-
ing subgroups of the universal covering group of
& will be referred to as SU(2) and SO(2, 1) in what

follows, while 8, will denote the solvable sub-
group of SO(2, 1) generated by P, and D.]

We may realize the representation space as
R =L'(R', d3P/~ p~) and decompose it according to
the eigenvalues of J ' as X =5;X;, j taking the
values s=~n~, s+1, . . . , and J'=W having the
value j (j + 1} in R; . Now direct inspection of the
operator D inR; shows that the subgroup R2XSU(2)
acts irreducibly and unitarily in'Xz. Since J~ = W,
R& is stable under SO(2, 1); therefore, SO(2, 1)
&&SU(2) acts irreducibly in R&. The problem
is thus reduced to one of lower dimension: to
find all representations of SO(2, 1) that have
the value j(j+1) for the Casimir operator and
are unitary irreducible when restricted to the
subgroup 8,.

The solution of this simpler problem is trivial.
In any irreducible Harish Chandra module of so(2, 1)
thecompact operator Lo5 has a discrete spectrum.
The restriction to 8, is irreducible if and only if
the spectrum of Lp5 is either positive definite or
negative definite. The restriction of v' to SO(2, 1)
is therefore equivalent to one of the unitary rep-
resentations of the discrete series in which the
spectrum of Lo, is either j +1,j+2, . . . or
—j —1, —j —2, . . . . Since 1 )II2 is given explicitly
in terms of v'~(P, and is unitary, the intertwining
operator is in fact the identity and v

~ SO(2, 1) is
thus uniquely determined by v'~d'. It follows that
V is uniquely determined.

Let V„' and V„denote the unitary, irreducible
representations of 6' with zero mass, helicity n,
and positive and negative energy, respectively.
The corresponding representations of e will be
denoted V „and v „. We shall now describe these
representations of C.

II. DESCRIPTION OF g„+-

The operational form of the representation V'„'

in R =I,'(R', d3p/~p~) is given by the usual expres-
sions for the Polncare generators Lp, and pp in

V„;

P6 II ~P &

with P, =+(P,'+ P,'+ p,')"',

Lhk 3 (P383 P3 3)

Lp~ = -iPoBa+ nT~,

(2.1)

(2.2)

(2.3)

where I3, k = 1, 2, 3, s2 = s/a p, , and we have chosen,
e.g.,

S„=1, T, =O,

S23 Pl(PO P3) 2 9

S13 = —P2(PO+ P3
' = T

(2.4)

The five other generators are then given by

L,.= D= -2 (P.82-+ I}

L„,-L„=q,=P, '[D(D+3)+J'],
L33-L33=-@3=&[L03 @ol

(2.5)

(2.6)

(2.'I)

LpILp, -Z -D -s + (2.8)

which follows from (1.4) and by a special case of
(1.3)

&oaa) LoII Lag 2nD ~ (2.9)

We give a brief account of the (already well-known)
weight diagram of v „'.

In this representation, relation (1.3) holds in the
enveloping algebra of so(4, 2) which shows (taking
B=6) that when n40 the latter coincides with the
enveloping algebra of so(3, 2) in the representa-
tion 5„'. From this it follows that the restriction
of v'„' to the (3 +2) de Sitter group generated by
the L~ (A, B0 6} is irreducible when n4 0; this
restriction will be denoted by D(s+ 1, s), s =~ n ~,
in Sec. III.

Moreover the two (Casimir) generators of the
center of the enveloping algebra of the Lorentz
Lie algebra so(3, 1) generated by the L„, [common
to Poincarh and so(3, 2)] can be expressed in terms
of n (or s) and D only, in the representation V'„' by
the relation
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Consider the subalgebra so(4) =so(3)x so(3) of
so(4, 2) that is spanned by (L,~}, a, 5 =1, 2, 3, 6.
The two summands are spanned by L,"= 2-(L„+L&,),
where ijk is a cyclic permutation of 123. Using
Eqs. (1.3) and (1.4) one easily shows that

P(L', L', —.I,, I,, ) = nL„[from (1.3)],

g (L; L~ +L, I, ) = s L»'+ —,
' C [from (1.4)] .

The value of C in f'„' is 6n2 —3, so

C =—Q L,~L, =4 (L.» + n +l)(L o+5n —1) .

The discussion for the preceding section shows that
the spectrum of I.„is j+1,j+2, . .. for each j =s
=~n(, s+1, . . . . The restriction of t' to the com-
pact subalgebra so(4) is thus given by

X= 8 R@, -

E —S+ lgS+2 ~ ~ ~ ~

where 5C~ is the eigenspace of L,p, with eigenvalue
E, and so(4) acts in'~ by the irreducible rep-
resentation D(k', P ), 0 ' =(E + n —1)/2, in which
the Casimir operators C' take the values k'(k'+1).

III. REPRESENTATIONS OF SO|'3,2)

Minkowski space, according to the general theory
of relativity, is the point of departure of a sequence
of approximations to a Riemannian space, the
metric of which satisfie's Einstein's equations with

vanishing cosmological constant. In quantum field
theory (in its present imperfect form) the Minkow-
ski metric is the vacuum expectation value of the
Riemannian metric. It seems unsafe to restrict
the attention arbitrarily to the special case of van-
ishing cosmological constant, for this ease is un-
stable to deformations; a nonzero cosmological
constant may, for example, appear spontaneously
through renormalization. In that case the zeroth
approximation (or vacuum expectation value) of
the metric cannot be Minkowski, but must be de
Sitter. Our previous analysis must therefore be
modified by the substitution of the de Sitter group
for the Poincarb group. There are two de Sitter
groups, SO(4, 1) and SO(3, 2}; here we consider
only the latter. More precisely, what we call the
de Sitter group is the universal covering of the
connected component SO,(3, 2); for convenience we
abuse the notation and refer to this group simply
as SO(3, 2}. We must now describe some of its
representations.

For our purposes it is convenient to define the
Lie algebra so(3, 2) as the subalgebra of so(4, 2)
that is spanned by (L„~), ct, P =0, 1, 2, 3, 5. These

10 generators satisfy commutation relations simi-
lar to (1.1) obtained by replacing indices A, E, . . .
with range 0, 1, 2, 3, 5, 6 by indices a, P, . . . with

range 0, 1, 2, 3, 5. The subalgebra so(3, 1) spanned

by (L»], p, v=0, 1, 2, 3, plays the same role as
the Lorentz subalgebra of 6' and contains the usual
rotation algebra so(3) spanned by [L»], i't , l = 1,2, 3.
The role of translations is taken over by the gen-
erators {L»], p = 0, 1, 2, 3, and I,» corresponds to
time translations.

The representations of the Poincarh group that
have direct relevance to elementary particles are
characterized by the fact that the energy spectrum
is positive definite. It is expected, therefore, that
the representations of so(3, 2) of the most immedi-
ate interest to us are those in which the spectrum
of I,» is positive definite. [Such representations
have no analog in so(4, 1) which is the main reason
why we reject the other de Sitter group. ] In an
irreducible representation of this type, in a Hil-
bert space 3C', . let 8p denote the lowest eigenvalue
of Qp5 then

E —Ep Ep+ &, ~ . .
where 3.'~ is an eigenspaee of L,» wwith eigenvalue
E. Now it is ea,sy to verify that so(3) acts irre-
ducibly in 3C~ . Let D(s) be the representation of
so(3) that appears here, 2s being a fixed non-neg-
ative integer. In X~ we may diagonalize L,», the

~ p
eigenspace with highest eigenvalue s corresponds
to an extremal weight (L», L„}-(E„s) of the rep-
resentation. This extremal weight uniquely de- .

fines the whole representation of so(3, 2) up to
equivalence and we may thus denote the equivalence
classes of interest by D(E, , s). This corresponds
to the labeling of representations of tP' by mass
and spin, as will be seen later.

Concerning the problem of the unitarity of D(E„s),
the following was known. (i) The inequality E,& s+ 2
is a sufficient condition for D(EO, s) to be equiva-
lent to a unitary representation"; (ii) the inequal-
ity E,&s is a necessary condition'; (iii) when s =0
the necessary and sufficient condition is Ep o 2,"
and when s = 2 the necessary and sufficient con-
dition is E,&1'; (iv)D(s+1, s) is unitary for all
s. This left out most of the interval s&Ep&s+2
for s ~1. The question was resolved recently and
the result is given by the following.
Proposition 1.' D(E, , s} is unitary if and only if

one of the following conditions holds: (i) s = 0, Eo
(ii) s= 2, E,&l (iii) s&1, Z. ,&s+1.

The proof is given in Ref. V.

The spectrum of X.p5 is Ep, Ep+1, . .. in all
eases, and E denotes any one of these eigenvalues.
We give the irreducible representations D(j) of
SO(3) that occur in each eigenspace Xz, including
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the multiplicities. In all cases s+j is an integer,
~ j —s

~
-E -E, and j&0 .The following special

cases are distinguished by the fact that all the
multiplicities are equal to one:

D(Z0, 0), Eo& g, j =E Eo,z Z, 2, . . . ,
1 or 0 (Ref. 15)

D(z„-'.), E,&1, j ——,'=z z„z z, i, . . . ,

0 (Hef 16.)

D(s+1, s), s&1, j=s, s+1, . . . , E —1 (Ref. 9)

D(-„0)= Hac and D(1, —,') =Di, the two Dirac single-
ton representations, with the drastically reduced
weight diagram given by j=E--,' (Hefs. 15 and 16).
Notice the lower cutoff on j in D(s+1, s}; this is
strongly reminiscent of a property of massless
wave propagation in Minkowski space. As will be
seen, these are the massless representations. For
D(Z, , s), Zo&s+1&2, the multiplicities are all
equal to those of the reducible representation
D(s+1, s) SD(ED+1, s —1). (This is an easy con-
sequence of the facts discussed in Sec. V.) The
highest multiplicity is thus s+1.

spin, it is related to the absolute value of the hel-
icity, as we have seen and as we shall confirm
later, but the sign of the helicity is not an attribute
of a representation of 80(3, 2). (Chirality can
nevertheless be defined in de Sitter space, at least
for neutrino fields. ") We wish to explain how this
comes about.

As earlier, we denote by V„" (V„) the unitary,
irreducible representation of the Poincar6 group
6' with mass zero, helicity n; and positive (neg-
ative) energy. Recall that V'„(V„) has v'„' (v'„) as a
unique extension to the conformal group —more
precisely SU(2, 2)—and that v'„' are given explicitly
in X =I (R', d'p/~p ~) by the formulas (2.1)-(2.3).
Now the conformal group contains two classes of
Poincark subgroups, one that contains 6' (generated
by I„„andp„) and another that contains the sub-
group 6" generated by L„„and Q„. The Cartan in-
volution L» —L» of so(4, 2) exchanges P„with Qt"

but is given by ari outer automorphism of t. . How-
ever, the restriction of v'„(V'„) to g ' is equivalent
to V'„(V„). This follows from the relations

IV. RESTRICTION OF V „TO SO(3,2)

Recall that the eigenspace 3C~ of L05 in 7'„car-
ries an irreducible representation D(k', 0 ) of
SO(4). In identifying SO(3, 2) with a subgroup of
SO(4, 2), we relate the rotation subgroup SO(3)
of SO(3, 2) to the subgroup of SO(4) generated by

(L»J, k, l=l, 2, 3. Restriction of D(k', 0 } to
SO(3) gives (p,D(j }, with the summation re-
stricted to [u'-k

/
&j & /u'+u

f or s=fn/ &j
&E -1. This is, for soO, precisely the spec-
trum of j in the eigenspace $C~ of the representation
D(s+1, s) of SO(3, 2). In the case of s=0, it is the
spectrum of j in the eigenspace$C~ of the repre-
sentation D(1, 0)SD(2, 0). Hence we conclude the
following.

proposition 9. The restriction of the massless
representation 'T„' of the conformal group to SO(3, 2)
is the massless representation D(s+1, s) of
SO(3, 2), s =~n ~, except that the restriction of v'o is
the sum of D(1, 0) and D(2, 0).

This, of course, is one of our reasons for calling
D(s+1, s) a "massless" representation, but it is
not the only reason. In fact, those representations
are the only ones among the particlelike repre-
sentations D(z„s) that are associated with the
usual type of gauge invariance. ' "" Another type
of gauge invariance arises in connection with
singletons. ' "

In de Sitter space one finds no precise analog of
the concept of helicity. The quantum number s is
non-negative and is more appropriately called

where we adopt the same definition &p p &p p 56

for both 6' and (O'. The involution defined by the
exchange of the coordinates 5 and 6 changes P„
into P„, Q„ into -Q„, and e»z, into -e„„„
thereby changing n into -n. In the representa-
tion space, this involution transforms V„' into
V'„and changes the signs of part of the conformal
gerierators. The subgroups 6' and 6" are con-
jugate only in the full, nonconnected group SO(4, 2)
and in the representations extended from V „' are
transformed one into the other by the involution
8 P exp(ivL»), where P is the spatial reflection
operator P: f(p) f(-p}, pc R'. On the other
hand, the conformal group contains only one con-
jugacy class of 80(3, 2) subgroups, and 8 commutes
with the action of SO(3, 2) in X.

From the above, and from the knowledge of the
Poincare conjugacy classes within the conformal
group, it follows that no UIB of the latter will
have both V„' and V'„as its Poincare restriction.
The distinction between V„', and V „, characteris-
tic to both 5' and e, has no analog for SO(3, 2): in
de Sitter space, massless particles are com-
pletely characterized by the absolute value of the
helicity (the "spin " s =

~
n

~ ).
Proposition 2 shows us that the representations

D,', where we define

,'=D(sD1,+s) if s&0,

D,'=D(1, 0)D(2, 0),
are restrictions to SO(3, 2} of a (unitary) repre-
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sentation of e, namely V+„where I=+s. We may
now ask the same question as in theorem 1, name-
ly, the (operatorial) uniqueness of the extension
from SO(3, 2) to e. The answer is what can be
expected.

gggoyg~ g . The only extensions of D from
80(3, 2}to a projective group representation of
1'. are v'+„. When s4 0, there are two possible
inequivalent extensions, each operatoriaQy unique-
ly determined by its restriction to 80(3, 2}. For
s=0 there are two possible equivalent realiza-
tions of the extension.

The proof is basically the same as for theorem
1, and we adopt the same notations. %e can stiH
decoxnpose the representation space 3*.= ;X;
(j =s, s+1, ...) according to the eigenvalues j (j + 1)
of J'2, and look for the subgroup 80(2, 1}of 6 gen-
erated by the compact generator I,o, of so(3, 2), D,
and L,06. In each 3.*& the spectrum of Lo, is semi-
bounded and of the form ((j+n+1); n&Nj. This
determines uniquely the representation of 80(2, 1)
in question. If we denotebyI. 05, I.56, andI. 06a
set of generators of this so(2, 1) Lie algebra that
satisfy the same commutation relations as L,o„
I.,s, and I.«, the only ambiguity in the extension
is the identification B-=L,„=~L,'56 and I.„=~L,p6 %71th

the same &=+1. Whichever choice is made, re-
lation (2.8) will hold in the enveloping algebra of
so(4, 2), which gives us the (unique) operatorial
expression of D' from the restriction of D,' to the
Lorentz subgroup generated by the L,„„.

If s40, we may then, on the basis of (2.9), choose

56 OhÃrl Oh kl

and define e = &s. For each choice of & we then ob-
tain the extension &„'. [The operatorial uniqueness
of each extension. follows also from the irreduci-
bility of D(s+1, s).j The involution 8, which com-
mutes with the generators of so(3, 2) and anticom-
mutes in particular with D, transforms one of
these extensions into the other one. On the other
hand, when s=O, the enveloping algebra of so(3, 1}
determines only D -and we have a decomposition
X;=X,'-X, '-, henceX=X'$3". , according to the
eigenvalues of the involution 8. Each X' (v =1, 2}
is invariant under 80(3, 2) represented by D{v', 0}.
I„and D' leave X,' invariant (&L«having for
spectrum [&(j+r)+I, sc=Nj on X,'. , j&N) while
D transforms X& into 3C& ". Therefore, we ob-
tain in this case, operatorially, taro passible ex-
tensions, each equivalent to V,' and transformed
one into another by 8. A similar result is true in
the negative-energy ease (representations v'„}.

lowing is a brief sketch of ordinary gauge invari-
ance in de Sitter space. Singletons will be dis-
cussed in Sec. VI.

Integer spins QA.s in flat space, D(Eo, s) is nat-
urally associated with symmetric tensor fields of
rank s on de Sitter space:

h=@„...„(x}j, p„.. . , p.,=0, 1,2, 3,
satisfying the wave equation

—,
' g L z' —E,(E0-3)—s(s+1) h=O (5.1)

and the subsidiary conditions

g "h„„...=O, g""v„h„... =0. (5.2)

Here I, ~, by abuse of notation, is the Lie deriv-
ative associated with an infinitesimal 80(3, 2)
transformation of de Sitter space, g is the de Sitter
metric, and V the covariant derivative determined
by the metric connection.

If Eats+1 (when s =0, if Eo e~), the solutions of
these equations with suitable boundary conditions
carry the irreducible representation D(EO, s}. But
if Eo=s+1, s &0, then there exists a subspace of
solutions of the form of gauge fields:

a„... = g v. g„..., g' =0. (5.3}

satisfying the wave equation

[iy "D —p' (E —&})'s= 0

and the subsidiary conditions

y"h„...=0, g""v„h„...=0.

(5.4)

(5.5)

Here D„ is the spinor-covariant derivative and
4„=D„-y„p'I'j2i. Again one finds that the case
Eo =8+ j. s ~ p is dlstlnguished by the existence
of a space of gauge field solutions of the form

[Notation: g is symmetric and the trace g' is
g""$„„.... The sump, is over the s =s!/(s —1)!
essential reorderings of the s indices. ]

The representations D(s+1, s}, s =1,2, . . . , are
thus further distinguished among the D(E, s) by
the fact that relativistic wave fields exhibit gauge
phenomena. Qauge-invariant wave equations have
been found' for all spins; they describe electro-
dynamics when s =1,~7 linearized gravitation when
s=2 zv

Half-integer spins. " Again as in flat space,
D(EO, s) is associated with Rarita-Schwinger spin-
or-tensor fields of tensorial rank n on de Sitter
space:

h=(k„. „(x)j, p„.. . , p„=0,1,2, 3, n=s ——,',

V. GAUGE INVARIANCK I„...=gv„g„..., g =O. (5.6}

Gauge invariance arises from the association be-
tween representations and tensor fields. The fol-

Here g' is the spinor trace y "g .. Gauge-invari-
ant wave equations have been found'0 for all half-
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integer spins as well; for s =
& they describe the

spin = —, sector of linearized supergravity (with
cosmological constant}.

The representations D(s+1, s} for s ~ 1 have two
attributes of masslessness: gauge invariance
and extensions to ~,, No gauge invariance seems
to be associated with D(—,', —,'), but this representa-
tion is unique in that the field is chiral. " As a
matter of fact, gauge invariance appears with the
lowest value of E, that is compatible with unitarity
(cf. Proposition 1) in the family D(E„s). This
value, for s ~ 1, is E,= s + 1 while for s = 0, —,

' it is
pp s + 2 The gauge invariance of the last two
(singleton) representations is explicated in Sec. VI.

VI. SINGLErONS

perboloid y' =1/p satisfying the wave equation

(aL,gL" + g)4'=o

L,~ P =—i(y~8~- y88~) P.
(6.1)

(6.2)

pm~8, 8~$ =0,

(y 8 + —,')g =0.
(6.3)

(6.4)

A set of solutions is given" by (j =E ——,
' =0, 1, . . . )

Here -~4 is the value E,(E, —3)+s(s+1) of the Cas-
imir operator in the case Ep p s 0 Note 'that

I.,~ is a vector field on the hyperboloid. Now let
us extend the definition of Q to R by fixing the de-
gree of homogeneity to be ——,

' (see Ref. 9 if a more
pedantic formulation is desired); then the above
wave equation simplifies to

The singletons Rac =D(—,', 0) and Di =D(1, 2) have
the following wonderful properties. "

Theorem 8.

e...( y)=r'F'F,
, „(II)e~( i«)-,

F =- (y'y'+y'y')" ', yo/y, = tant,
(6.5)

RacRac = 8 D(s+1, s),
S"-0 ~1 e. ~ ~

RacgDi= 8 D(s+1, s),
2$=1 t3 y ~ ..

C

DiDi = 8 D(s+1, s) SD(2, 0) .
s=l y2 g. ' ~

Massless particles can therefore be thought of as
composite objects. Note that this is possible in
de Sitter space as long as the curvature is non-
zero, but not in flat space. We believe, neverthe-
less, that it may be very useful, even within the
strict context of physics in Minkowski space, to
recognize that massless particles are composite
in some limiting sense. What makes this espec-
ially attractive is that singletons are practically
unobservable. First of all, absorption of a single
Di or Bac particle by an apparatus of earthly di-
mensions involves an energy so small as to make
detection by energy balance quite impossible. De-
tecting singleton emission or absorption by zero-
energy spin transitions between massless particles
(e.g. , photon -neutrino+ singleton) is forbidden
because of a special property of singletons: for
massless particles E —j is always an integer, but
for singletons E —j = —,'. (It was this feature that
drew Dirac's attention to singletons in the first
place. ")

, In view of this relationship between singletons
and massless fields, it is not surprising to find
that sing.'eton fields are encumbered by gauge in-
variance. To describe this phenomenon we embed
de Sitter space in R' by means of a differentiable
and locally invertible map given by (xo, x', x', x')
-(y', y', y', y', y') with y'= q~y y~=l—/p. (The
metric g is the same as in Sec. I and p is -a positive
constant related to the cosmological constant. )

The Jiac.""Consider scalar fields P on the hy-

where Y,. are spherical harmonics. Qn the hy-
perboloid, F2=(r +1/p), r2—= (y')2+ (y2)2+ (y3)2,
so these solutions have the property that

I'm &"'0,, (y}=F,, (II) e&p(-iEi),
r~~ (6.6)

where Q stands for the angular variables.
These solutions do not transform among them-

selves under the action of 1.. Qne finds, how-
ever, that

lim x"'L,~p, „(y).
OO

(6.7)

lim r"'p(y) (~.
r

(6.8)

The subspace Uo of U on which this limit vanishes
is an invariant subspace for the action of L ~ in 'U,

and the Hac is realized on the quotient.
Fields that satisfy limr"'P(y) =0 will be called

gauge fields. If the degree of homogeneity has
been fixed once and for all by (6.4), as we shall
suppose from now on, then such fields are equiva-
lently characterized by the statement that

lim P(y) =0,
y 2~p

(6.9)

the limit being taken with y, t fixed. The physical
Rac states are thus given, not by the field P, but
by the restriction of P to the cone y' =0. Alterna-
tively, one may adopt the language of Penrose, "
and say that the physical states are given entirely
by the value $(t, 0) of r'"P(y) at infinity.

The Di. I et P be a spinor field satisfying the

is a finite linear combination of the Y, , and that
the matrices so defined are a realization of
D(-,', 0) in the Hilbert space P. In other words, we
introduce the space 'V of solutions of (6.3) and (6.4)
satisfying the boundary conditions
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wave equation"

(~+ —,')g =0,
~=-2iZ~y e~.

(6.10)

Here g is the Dirac wave operator for de Sitter
space, (P ~), u, P=0, 1, 2, 3, 5, are the matrices
of the four-dimensional, symplectic representa-
tion of so(3, 2) =sp(2, R). The constant term has
the value that is appropriate to the representation
Di =D(l, —,'}, thus the above is equivalent to (5.4)
with 80=1. Now we proceed as in the case of the
Rac to fix the degree of homogeneity, replacing
(6.10) by

y'8 /=0,

(y 8 + 2)/=0.

A set of solutions is (E=j+ ~)

0, „=y s.~' '& 'JJ;. (0) exp(-ist),

(6.11)

(6.12)

(6.13)

where 'JJ,. are spinors of fixed angular momen-
tum. " (The y matrices used in this section are
(y t= (y', y', y, y', i J, (y J= (yo, y', y', y', -i), where
(y"j, p, =0, 1,2, 3 are the usual, constant Dirac
matrices. )

The solutions (6.13) have the property that the
limit

lim w" 'g,. exists, (6.14)

while "gauge fields" have the defining property

lxm r"'/=0
+ OQ

or equivalentl. y,

(6.15)

lim g(y) =0,
y ~0

(6.16)

VII. MORE ABOUT SINGLETONS

Singleton fields on the cone. A classical field
theory of interacting singletons may perhaps be
formulated as a variational principle and based on
a Lagrangian density on de Sitter space, that is,

the limit being the same as in (6.9). The situation
is in all respects the same as for the Hac, except
that the scalar field P has degree of homogeneity
--,' while that of g is —~.

Because the solutions of singleton wave equations
include so few that are physically rel.evant, dif-
ficulties akin to those encountered in more fam-
iliar gauge theories are to be expected. However,
the fixing of the degrees of homogeneity, which
permits us to define gauge fields by the limit y'
-0 instead of doing it in terms of the limit r- ,
leads to an easy solution of these difficulties, or
at least some of them.

on the twofold covering of the hyperboloid y' =1/p
in R'. The Lagrangian must be SO(3, 2} invariant,
but it should also be gauge invariant, that is, it
must somehow be guaranteed that only physical
singleton states propagate. A covariant propagator
will contain many unphysical modes that must be
suppressed through the choice of interactions.

The problem appears greatly simplified when it
is remembered that the physical content of a sing-
leton field is preserved by projection on the cone
y' =0, whil. e unphysical modes are eliminated.
Therefore, by restriction of the homogeneous
fields of the preceding section to the cone, all
complications seem to disappear. (Of course, it
is not immediately clear how one should proceed
when other fields are present as well, but one
problem at a time. )

An integral over the cone of a Lagrangian den-
sity constructed from homogeneous fields cannot
have any meaning. To obtain a finite action we
must integrate over the three essential dimensions
only. For y' =0 l:et

y =y5+y3y yp, =y++p, ~ (V.1)

dauE u (V.3)

is invariant if and only if the conformal degree of
E 1S -3.

Proposition 4. Let E be a scalar field on M, of
conformal degree -3; then the field I. on R' de-
fined by

L,(y) =y, 'E(u) (V.4)

is a scalar field. Conversely, if L, is a scalar
field on R', homogeneous of degree -3, then E
is a scalar field on M, of conformal degree -3.

Lf E is local and polynomial then the only pos-
sible form for L, is (see the Appendix}

L =-k (9 Q)'+p(~ r~)+g+z, Q'+z, Q'g( y, g)g.
(V.5)

The variable g, may be regarded as the coordinates
of a three-dimensional Minkowski space M, .
Fields on M, are defined by (see the Appendix)

Q(y) =y, ' 'P(u),
(V 2)

4(y}=y. "'le 'l(u}.
Now the action of SO(3, 2} in R' induces an action
in 34, that is precisely that of the conformal. group
in M, . Singleton fields may therefore be inter-
preted (locally) as massless fields in a three-di-
mensional spac ctime (Penrose's infinity'9). The
problem is therefore to construct a Lagrangian
density on M, that is invariant under-the conform-
al group SO(3, 2}. The conformal degrees of @

and g are ——,
' and -1, respectively The acti.on
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The most general interaction depends on only two
real coupling constants g, and g, . For E one finds
(see the Appendix)

d-g4»a')' iA-"s.f+Z, 4'+/I, 4'4~, 4. (7-8)

The sum. mations are on a =0, j., 2 and y, =y y,y,y, .
Global cooxChnutes. Three-dimensional Minkow-

ski space has a natural causal structure that is
locally, but not globally, conformally invariant.
The cone y' =6, on the other hand, also has a nat-
ural causal structure that is globally 80(3, 2) in-
variant. This latter causal structure is the phys-
ically relevant one, but it is awkward to describe
it on M3j this is due to the singularities in the
transformations (V.1) and (7.2). Global coordinates
on the twofold covering C of the cone are given by

I

y, =accost, yo =r sint, -2z(t (2m,

y =~cosg, y, =rsing sing, . . . .

An invariant distribution on C x C depends on

y ~ y' —=y y' and on 7—=t-t', in 7 it is piecewise
constant. Figure j shows the regions in which y
is in the future, in the past and spaeelike relative
toy', with

cosg=—y y'/xr', y y' =re'(cosT —cosg) .
Any invariant distribution is independent of 7 (that
is, it depends only on y y') within each of the four
regions.

Quantization on the cone Here we. limit our-
selves to the ease of the Hae fields. A basis is
given by

(y) (2I + 1} 1/2~ 1/2 i»ty. (y~)-

iwth EI, +z and y =y/r; it is orthonormal with re-
spect to the inner product

((, ( ') f@()t)~8,=4 (y,)~ . '

For each (I., 1IE} in the range M = I., I+1, .-. ., I.-
and I.=0, 1, ..., introduce creation and destruction
operators g~ = a» satisfying the usual commuta-
tion relations

[a» a» 1 = [a». a» ] =o.
(This leads to conventional, Bose-Einstein statis-
tics, although the possibility of other alternatives
should not be excluded. ) Defining the field opera-
tor

Vf8. INTERTVANING OPERATOR

Theorem 8 (in Sec. VI) shows that massless par-
ticles can be interpreted as two-singleton states.
This will now be expressed in terms of (classical)
mass1ess fieMs and two-singleton fieMs. Again
we limit ourselves to Racs and integer-spin mass-
less fields.

As in Sec. V, let h& ...&
stand for the compon-

ents of a symmetric tensor fieM on de Sitter space.
Let x- y be an embedding of de Sitter space as the
hyperboloid y = 1/p, let y& be the coefficients of
the differential of this map. Let k,... be the
components of a symmetric tensor field on 8',
completely determined by

h„,...„(x)=y„&" y"„~h ... (y),
y"h~. ..(y) =0,

(8.1)

(8.2)

Here T =f —f' and s(r) is defined as an analytic
function of cos~ in the complex plane with a cut
along the real axis from +1 to -~, positive for
cosv. & I. The commutator is thus zero for space-
like separation of y, y'; that is, for y y'&0. For
equal times„ if @(y)=(d/(ft)P(y},

[ e(y), i(y')1,=, =i(~~')-"8(y, y').
To complete the quantization of free Rac fields on
the cone we define the Fock space in terms of a
vacuum state on which a„vanishes.

Indefinite-metric quantization of Rac fields on
the whole of de Sitter space will be set up in a
future publication"; we also plan a similar con-
struction for Di fields.

The quantization scheme developed here is the
most conventional one possible. The implications
of adopting it, for the dynamics of massless par-
ticles, are not completely clear at this time;
therefore, it is important to keep alternative op-
tions in mind. One possibility is parastatistics or
color, another is to reverse the normal associa-
tion between spin and statistics. (This association
is less strong in three dimensions than in four di-
mensions —a fact that may be relevant to singleton
dynamics. }

e(y) =/ [4»(y}a»+ 4»(y}a»]

one finds

[y(y), y(y')] = (2yy') '/'[s(~+is) —s(v —ie)],1

s(v) =(cosa -y y') '

FIG. 1. Regions on the cone are described relative
to a fixed y' on it. The variable Q is given by cosP
=y.y'/r r'. Points labeled ($,2x) are to be idenh6ed
with points labeled (Q, -2w) .
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(y"s +s+1)hz. ..=0. (8.8)

The degree of homogeneity is chosen for later con-
venience. The subsidiary conditions (5.2) take the
form

k 6
—0, q B„A8...-0. (8.4)

When (8.2)-(8.4) are satisfied, then the wave equa-
tion (5.1) reduces to

q 8 88k'. .~ =0.eg

Now let us combine all these fields (with s
=0, 1, ...} into a single scalar field on R'x Rs, de-
fined by

(8.5)

K(y, z)=-'Q z ~' ' ' g ~h (y) .
S

nz as (8.6)

dX
@(P q} = —„~K()p+qll, ~P -q/) ). (8.V)

0

It has the following properties.
(1) &omogeneity. Equation (8.8) gives (y s„

+ z s, +1)K =0 and (8.V) therefore implies that
(p B~+q 8, +1)C =0. Further,

( g~ oo

(p. s, —q-s, )o(p, q}-Ki~p+ —,~~-—q q

=lim X 'K(p+q/X', p -q/X')

—lim XK(li'P+ q tX P -q),
) ~Q

which vanishes provided only that K(y, z) exists
for y =as. Thus

(p s, +-', )C =(q s, +-",)@=0. (8.8}

(&) Transversality. Equation (8.2) requires that
all components of K be "transverse. " This can
always be achieved by adding a suitable field of the
form y zA to K. Now (8.V) is to be evaluated at
p' =q' =0, so that the integral involves the values
of K on the surface y. z =y'+z2=0 only. Long-
itudinal components of K (terms of the form y zA
with A well defined at y z =0) are therefore irrel-
evant for the evaluation of 4 on C x C. In other
words, when one requires that E be transverse,
namely, condition (8.2} or

y 8 K=O, (8.9)

then one restricts the extrapolation of 4 off C x C.
(3) Gauge invariance. If each h&, &

is a gauge
field, then K has the form

The problem is to relate this field to a two-single-
ton field 4. This was done already in Ref. 9, but a .

much more convenient formula can be given.
Consider the (classical) field on C x C defined by

K=[g s„+(z.s, -y s„-2}g~ y/y']A, (8.10)

with (z. s, + y s„+1)A =y- s,A =0. Thus, when
z-y=0 K(y z)=(z ~ s +y s )A and K(xp+q/Z
&p -q/X) =(X&/&X)A(XP+ q/X, Ap-q/X); substituting
this into (8.9) one obtains 4 =0 by the argument
used above to establish (8.10}.

(4) Wave equations and the Lorentz condition.
The trace condition and Lorentm condition (8.4),
and the wave equation (8.5), are expressed by

8 E=B '8 K=B E=O.
Af

It is easy to see that this gives

Bp @ =8 @ =Bp'8 4 =0.

(8.11}

(8.12}

Each of these conditions involves the values of 4
off C x C. W'e have already restricted the extrapo-
lation of 4 by the conditions (8.10) of homogeneity,
and this is sufficient to give unambiguous meaning
to the first two conditions. The third condition,
8~-8, 4 =0, restricts the extrapolation further; it
is related to (8.9). This does not mean that the
condition'B~ ~ 8,4 =0 serves only to govern the ex-
trapolation. In fact, it serves to eliminate all two-
Rac fields constructed from two Res with opposite
energy sign.
One sees, then, that when K in (8.9) describes

massless fields with positive (negative) energy,
then 4 describes two Racs with positive (negative)
energy. In fact, this mapping is a unitary bijec-
tion, though we do not exhibit an explicit expres-
sion for the inverse mapping.

where [, ] is the bracket of 8,. The contracted
Lie algebra 80 is defined by the bracket [x,y]0
=lim„,[z,y]„. This will not be equivalent to 8,
unless limz 0S& is invertible.

For representations on a Hilbert space X we
shall realize this contraction with a domain g,
dense in X and endowed with a complete Hausdorff,
locally convex topology, and a family (Zg of
closed one-to-one linear operators. Each Sz is
densely defined in X with domain containing $, Z,
is the identity operator on R, and the restriction
of Zz to 8 is continuous (for the topology of h).
Furthermore, the map defined by X Zzg from

IX. CONTRACTION OF MASSLESS
REPRESENTATIONS

(a) The contraction from a Lie algebra 8, to the
Lie algebra 8, 0 will be realized in the common un-
derlying vector space 8 by a family fS~] 0& z ~ 1,
of vector-space isomorphisms, such that X-Sz is
a continuous map into GI, (8) with S, the identity.
One defines a family [8„]of Lie algebras, e'ach
isomorphic to 8„with the bracket
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(0, I) to K is continuous and Iim() Z~Q)[ as X-0 ex-
ists. We denote by 3! the closed subspace of 8
that consists of all Q such that Iim(( Z„Q[( =0 and we
shall realize the contracted representation on the
completion X' of the locally convex space 8/X with
respect to the Hilbert space norm lim() Z„Q)(. If
U' denotes the original representation of 8, in X
and if we suppose that its domain of definition con-
tains Zzg for 0& A, ~ 1, then we can define a rep-
resentation U~ of 8 z by

Z„U'(x) = U'(S„x)Z, .
These representations will also be defined on a
domain containing S. Now for all x in 8, and Q

in g, U (x)Q=—limz OU"(x)P will be defined and

belong to g, and X will be invariant under Uo(x).
We can thus finally define a representation U' of
6, in K' as the quotient of U' on 8/3'. .

Notice that this type of contraction involves only
one equivalence class of representations of 8„ in
contrast with the other usual type of (Wigner-
Inonii) contractions that utilize an infinite family
of inequivalent representations.

(b) As earlier, let [L~&], a, p = 0, 1, 2, 3, 5, be the
basis for so(3, 2). We define S~ by

SgL p 5
= X (2 —A. )I, p 5 .

Our "massless" representation U' [that is,
D(s+1, s) with so 0 or else D(1, 0)D(2, 0)] is
realized in K =I,'(R', d'P/~ p~) as specified in Sec.
II [that is, by extension to 8 of either V', or V',
and restriction to SO(3, 2)]. Next,

defines a family of unitary operators that we shall
restrict to the dense-invariant subspace g of dif-
ferentiable vectors for the representation of t:.
Each Zz evidently commutes with the Lorentz sub-
algebra generated by [L»j, p, v =0, 1, 2, 3; while

Z„'I,Zg = —', [X P +P '(8 +D +iD)].
In the limit X -0, the Lorentz subalgebra remains
unchanged while

L ~= lim Z~"' U (—S~ L~)Z~ = Po = Po.
)~0

Therefore, L», defined in a similar way for p,

=1, 2, 8, are identical to I'„on g, and U
= limz OU~ is just the representation p+ or V+, of
L (6'). Since the Z„are unitary on K, the kernel
subspace X is zero.

We have justobtained V, and V; by contraction of
D(s+1, s) or ofD(1, 0) SD(2, 0), makinguse of thetwo
equivalent realizations of these latter representa-
tions in K = L'(R', d Q/

~ p ~
). This shows that each

massless representation of SO(3, 2) can he contracted

(in our strict sense and with kernel subspace = 0) to
either V+ or 7'+, . It is doubtful whether any other
representations of SO(3, 2) have this property.
Contractability thus furnishes yet another justifica-
tion for the term massless as app1ied to the mass-
less representations of SO(3, 2). [Strictly, only the
direct sum D(1, 0) SD(2, 0) deserves the designa-
tion, though we have sometimes applied it to each
irreducible part. ]

(c} Contractions to nonfaithful or nonintegrable
representations. If we choose Zz ———I, then the
D (s + 1, s) will contract to their restriction to the
Lorentz subgroup, which are reducible into a di-
rect integral of UIR D~ (s, o) of the principal ser-
ies, o varying over the spectrum (which is R and
simple) of the dilation D. Since D~ (0, o) and

D~ (0, -v) are equivalent and the dilatation D ex-
changes the R& (r'=1, 2), the two contracted repre-
sentations of D (r, 0) will be equivalent one to the
other and the integral will be taken over the spec-
trum of L)'. By suitable choices of the Z~ one can
obtain an integral (or sum) over any Borel subset
of the spectrum R of D.

Now let 5 be the subspace of differentiable vec-
tors for a representation of 8 with helicity +st 0,
say&,' to fix ideas, on K=I, (R', d'p/( p~}, and 8
an involution transforming f", into V', .

We can decompose b = 5, g, 8,according to the
spectrum of I'0, in such a way that on the closure
of 8, in K the latter is [0,PO'], on that of g2 it is
[po', p02] and f po2, +~) for g„. these subspa, ces will
be invariant under the Lie algebra action. VFe then
can choose Z,'to coincide with &Z, on S„with I on 8,
and withZ~onS, . Thenthe restrictionof L„toh,
contract to the P„ofV'„ that to 8,will contract to
0, and that to g, wi11 contract to the P„of V,'. The
spectrum of the limit of L~ will be [0,p, '] on the
component defined by 5„0on the one defined by
4'„and R' on the one defined by 83. However, due
to the boundary conditions that appear, this limit
will be symmetric, not essentially self-adjoint.
Thus the contracted Poincare Lie algebra repre-
sentation, where both helicities (+s and -s) ap-
pear, will not be integrable to a Poincare group
representation. If for simplicity we take p, ' =pa',
i.e., g2 = [0], we thus see that an irreducible inte-
grable representation of so(3, 2), which does not
distinguish between the helicity signs, can be con-
tracted into a nonintegrable representation of the
Poincare Lie algebra L(6'), decomposable into a
sum of two Schur-irreducible" representations of
L(6'), one for each helicity sign.

It is conjectured that no contraction procedure
of the type here considered will allow the contrac-
tion from an irreducible representation D(s +1,s)
of SO(3, 2) to a representation V,' @ V+, of the
Poincare group (P, representing a massless parti-
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cle with both helicity signs. Clearly the procedure
used above requires the passage to nonintegrable
Poincare representations, with the mentioned dif-
ficulty regarding the non-self-adjointness of the en-
ergy operator, if we want both helicity signs to be
present. This could be related to a similar diffi-
culty in the localizability" of massless particles,
such as the photon. (The problem in proving com-
pletely this conjecture is that one needs to prove
the nonexistence of a contracting family gz of op-
erators, which is difficult to handle. ) On the other
hand, for fully polarized particles such as the neu-
trino ([n )

=—,') the impossibility to obtain both hel-
icity signs from the same D(s+1, s) within the
framework of unitary group representations is in
full accordance with the experimental situation.

APPENDIX

There is an interesting complication in account-
ing for the Di on M, . The matrix M in Eq. (V.2) is
required in order to reduce the action of the three-

dimensional Poincare subgroup e, of 80(2, 2) to the
familiar form. The translation generators P& and
their action on four-dimensional de Sitter spinors
are

Pp =I @3+ Lfp5 iy&s„-iy 8&-—y&(1-zy3)

5+$3 s ~p 95+83 & P, Ox 1v 2

We require that the action of P„on g =y„'~2M'
reduce to P„=-i s/ su~, and find that

M =1+(i/2)y"u„(1 -iy, ).
The dilatation operator D = I.» now becomes

& =-~(1+ us„) —(i/2)(1 -gy, )

and the wave operator ~ is reduced to

-(1-&y )(-&y"s/eu") ~

Restriction to the chirality subspace iy3 1 thus
gives a three-dimensi:onal chiral field with con-
formal degree -1.
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