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The general-relativistic equations of motion and subsidiary conditions are found for particles with spin whose

energy-momentum tensor has zero trace (normally considered to be therefore massless) but which may have

comoving internal charge currents. The procedure is an extension of that used in the pole-dipole model of traceless
particles without charge currents.

I. INTRODUCTION

In two previous papers" we have presented a
theory for the propagation of a traceless particle
with momentum p' and spin S'~, that is, with pole
and dipole moments of the energy-momentum ten-
sor T'~. The word "traceless" refers to the re-
quirement

demanded of the energy-momentum tensor. We
described such a particle as massless, but strictly
speaking, tracelessness is its defining property.

To get the basic pole-dipole equations, we fol-
lowed the procedure of Papapetrou, ' which was
to take moments of the equation of motion T'~.„
= 0. We found the same equations as did Papape-
trou (and others before and after him), except
that the path parameter q could possibly represent
a null geodesic trajectory. 'The new content of
the theory were the corresponding moments of
Eq. (1.1). Duval and Fliche' found these moments
also, by a different method.

In the present paper, we wish to consider the
equations governing the motion of a particle which
is charged and has electromagnetic dipole mo-
ments, and still is traceless according to Eq.
(1.1). This is to be regarded as a natural exten-
sion of the theory, but is not meant to correspond
to any known particle at the present time. Con-
sideration of particles of such a type go back at
least as far as the series of articles in j.947 by
Weyssenhoff and Raabe, ' who at one point dress
up a 2:ero-mass particle with charge and elec-
tromagnetic moments. Their definitions and ar-
guments are, however, quite different from ours.

We again use the method of Papapetrou, ' ex-
tended to include charge and electromagnetic mo-
ments and fields. Other, more rigorous, thor-
oughly covariant approaches have been found"
since Papapetrou. However, these methods in-

variably involve the definition of a momentum rest
frame comoving with the particle in terms of which
a center of mass and an invariant integration sur-
face could be defined for use in the moment ex-
pressions.

We used the Papapetrou formalism not only for
its simpler mathematical character, but also just
because it does not refer to a rest frame, since
for a traceless particle there may in fact not be
a rest system. The momentum may not even be
timelike. This feature is even more important
when electromagnetic fields are involved. The
Papapetrou approach uses constant cooxdinate-
time surfaces in the moment expressions. Upon
transformation of coordinates, the surfaces
transform accordingly.

The situation is reminiscent of the classical
problem of the transformation and conservation
properties of the four-momentum of electromag-
netic fields. For free fields, constant coordinate-
time surfaces are appropriate, but for fields
bound to a massive point particle (e.g. , the elec-
tron) constant proper-time surfaces are appro-
priate. ' In our case, the fields are in fact bound,
but to a traceless particle. For such a bound

field, the appropriate surface is, we suggest,
again the constant coordinate-time surface.

The basic equations and moment definitions are
given in Sec. II. Sections III and IV present the
moment calculations, with the results for the spin
and momentum equations given in Secs. V and VI.
These two equations have the same form as those
found by other authors (e.g. , Dixon' in the general
and DeGroot and Suttorp' in the special-relativis-
tic case). The derivation is, nevertheless, briefly
outlined here so as to provide the internal equa-
tions needed in the derivation of the side condi-
tions. 'The arguments in any case are quite dif-
ferent.

The side conditions which are the moments of
Eq. (1.1) are derived in Sec. VIII. In Sec. IX, we
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assemble the whole set of equations. Comparison
with other work is contained in Sec. X. In Sec.
XI, a discussion of the problems associated with
radiation reaction is given. Appendix A gives the
proofs of the transformation properties of the
tensors of the theory. It is interesting to remark
here that the Papapetrou approach leads directly
to the polarization tensor Jj» as the basic and only
electromagnetic dipolar object that transforms as
a tensor. In Appendix B, it is shown that the as-
sumption Jj -S' leads to a rather simple trajec-
tory equation.

Mj = Ti dQ M' = TjdQ, (2.8)

Mmjk xtn Xm ~ Tj» yg (2.9)

Moments of the J 's are denoted by bars,

M' = J'dA, (2.10)

as the differential element and integrating on a
constant time surface in whatever coordinate sys-
tem is being used, we define the moments of T'»

as (these are the same as in Ref. 3)

H. BASIC EQUATIONS AND DEFINITIONS
OF MOMENTS M'~= — [x' -X'(q)]J~dQ . (2.11)

'The total energy-momentum tensor is taken to
be the sum of a matter part T'» and an electro-
magnetic part E'», with the equations of motion
given by

Ti» + gi» 0g» (2.1)

T', =O. (2.3)
Ej» is separately traceless and its divergence is
taken to have the usual form

In addition, there is a current density J' satisfy-
ing

(2.2)

'These are the two basic equations of the problem
The program is to take moments of these equa-
tions within the pole-dipole approximation.

To get the side conditions we use the definition
of the traceless particle

The antisymmetrized form is called S,
s"=m»j -iP", s"=-m" . (2.12)

These moments are not in general tensors. As
shown in Appendix A, the combinations that do
transform as tensors are

S =(M ' -M' )/u

J' =—S' +(1/2u )(u S' -u'S ) O' =S'
(2.13)

(2.14)

It should be remarked that Eq. (2.14) is the
"polarization tensor" which contains both the
electric. and magnetic dipole inoments. In the
present formulation we do not find that the parts
(e.g. , S") by themselves transform as tensors,
only the combination. See, however, the discus-
sion in Sec. X.

We show also that there are quantities that
transform as vectors,

(2.4)

where the electromagnetic field tensor E'» is
treated as a given function of position. Equations
(2.1) and (2.2) then become

6( g)&&&7"~/sx&+ ( g)&&mr& 7'~&

P' = (1/u )(M' + I"' u ~S~ F' J~ )-
p* =M' -d(S"/u')dq,

!

and one that transforms as a scalar

e =Ma/u'.

(2.15)

(2.17)

8(-g)' J'/Bx' = 0

-(-g)'"F"J,= o, (2.5)

(2.6)
g; (x)=g,. (X)+(I',„+I',. )6x" + ~ ~ ~, (2.18)

Finally, it is assumed that certain quantities
can be expanded about X':

d&=uo( g)i(2dsx (2.7)

Equations (2.1)-(2.6) represent the formal defini-
tion of the particle. It is to be understood, however,
that T'» is already renormalized with an electro-
magnetic self-energy and that E'» will depend on
retarded and advanced integrals over J» to be ob-
tained ultimately in terms of the moments in the
problem. See Sec. XI for a further discussion.

We assume the existence of a reference point
X'(q) as a function of the path parameter q and
about which moments are taken. The velocity of
this point is u' =dX'/dq. Using

r'„(x)=r'„(X)+r*'„(X)6x + ",
F' (x)=F' (X)+F' „(X)6x"+ ~ ~ ~,

(2.19)

(2.20)

III. THE MOMENT EQUATIONS

We now take the moments of Eqs. (2.5) and

(2.6). Multiply (2.5) successively by u'd'x, u'
u'6x" d x, and u 6x"6x'd'x and integrate. 'Then,

where &x"=x" -~".
This completes the basic relations needed in the

derivations below.
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d(bio/uo)/dq = 0,
d(M "o/uo)/dq iM u"lu + M"= 0,

(3.4)

(3.5)

just as in Ref. 3, we get

d(M*'lu')idq+1*~ ' I—*,„Mn™F-*~'
+F'b „M" = 0, (3.1)

d(M""lu')/dq -M "u'/u'+ M'"+ I ' ~™
-F*P7 ~ = 0 (3.2)

u'M +u'M"' -u (M '+M" )=O=Z'" (3.3)

with electric field corrections in Eqs. (3.1) and

(3.2). Taking the same moments of Eq. (2.6) we
get

P' = (1/u') [(u'/u')(M" + I'~Sdou')

+DS"lDq+ &'pe" -F',P'] . (4 6)

V. THE SPIN EQUATION

To get the spin equation, we return to Eq. (3.2)
and construct it using the q derivative of S'" as
defined in Eq. (2.13):
DS' /Dq -(u /u )DS' /Dq+ (u'/u )DS /Dq

Many of the equations obtained in this section con-
tain M'~. 'This of course can be put in terms of
Z'b by Eq. (4.4).

u"M "+u'hl"O-u'M~ -n M S
O (3.6)

= (u t, -u F,)M"/u -(u'F u F', )M '/

The spin equation comes from Eq. (3.2), the mo-
mentum equation comes from Eq. (3.1). Equation
(3.4) shows that charge is a constant; Eq. (3.5)
relates moments of J' to zg'.

IV. CONVERSION TO TENSOR NOTATION

One major problem is to convert the M's in
these equations to the S' and J ', etc. that trans-
form as tensors [see Eqs. (2.13)-(2.18)]. The
procedure for doing this is similar to how it was
done in Ref. 3.

From (3.3), noting that Z" +Z "-Z'"=0, we

get

"=u'S"+u'S"' —(u'/u')(u"S' +u'S' ) (4 1)
From (3.2), after a tedious reduction modeled
after that in Ref. 3 in Sec. ID, we get

DS' /Dq=P'u -P u'+F'g -F J
'This is the spin equation.

(5.2)

VI. THE EQUATION FOR Xf

The basic equation is (3.1). In this equation,
for M" use what Eq. (2.15) gives and for M~
use what Eq. (3.2) gives [in both of these using
(4.6) to get (u'/u')(M" + l,dS 'u') in terms of P '].
Continuing in Eq. (3.1},for M"~ use what (4.1}
gives, for M"d use Eq. (4.4), for Mb use Eq. (4.5).
Following this prescription, we get eventually

F*b;8"+-&F'b.

This is the desired equation.

(6.1)

(5.1)

For the factors involving DS' /Dq, use Eq. (4.6)
and for Mb' use (4.4). Then we get

-udl"+" + (F',+u'F', /u')M '. (4.2)
VII. THE ELECTROMAGNETIC EQUATIONS

This last expression should be considered sym-
metrized, since M' =52".

To get Eq. (4.2), the first step is to set i = 0 in

Eq. (3.2) to get

M = dS /dq+ (u /u')(M' + I'o~Sdouc)

I o dScb+ Fo~bc
cd (4.3)

M"=u'M /u + d(S' /u )ldq . (4.5}

Finally, consider putting (4.3) into (2.15). We

We shall need this equation later. 'The rest of
the derivation of (4.2} is to substitute this back
into (3.2) and reduce the result.

'The corresponding electromagnetic quantities
are obtained from Eq. (3.6):
M~= o

8"'- (I/2uo)(u'S"o+u "S")=Z"'-ucJ"o/uo (4.4)

and from Eq. (3.5),

The nonelectromagnetic equations (3.1) and (3.2)
have yielded equations of motion for spin and
momentum. One might expect that the electromag-
netic equations (3.4)-(3.6) might yield equations
of motion for J' and p . In fact, from the defini-
tion in (2.16) and Eq. (3.5), we find

P =8M

where e is given by Eq. (2.18). This is a, solution
forp .

However, there emerges no equation for J' .
To go further one must assume, or derive on
some microscopic model, how J"may be related
to other quantities for which we do have an equa-
tion, such as 8' . For example, the usual assump-
tion for massive particles is J'~= GS'~, where G

is some scalar. 'This type of assumption is pur-
sued in Appendix B.

Our ignorance of/ ~ in this theory is a special



SPECULATION ON TRACELESS PARTICLES KITH CHARGE. . . 1271

case of the general feature of General Relativity
that systems characterized by charge and mass
densities with no "equation of state" connecting
them are indeterminate, A possible approach'
toward bettering the situation is to imagine that
the system contains two types of particles with
number densities, say n„n„with an energy
density and pressure (or whatever) a function of
them. From this one could hope to obtain an equa-
tion of motion for each of the n;, and this would
ultimately be equivalent to.determining J'~.

This type of procedure would seem, however,
to be inappropriate here, since the object is al-
ready characterized by its moments, not by sub-
sidiary number densities. The equation of state
should, in the context of the theory, be in terms
of the moments. Thus something like Ji"=GS"
is what we would desire and it should be regarded
as the moment of an equation of state. (If the
theory went beyond the pole-dipole approxima-
tion, it would need supplementary relations of
this type for each higher moment. ) However,
there is no basic reason to believe that Ji~=GS'~
is adequate for the problem here.

VIII. THE AUXILIARY CONDITIONS

'The traceless particle is defined such that T';
+ E'; = 0. Further, we assume that E'; = 0 by it-
self, so that we are left with just the condition in
Bef. 1, T',. = 0. Then we must consider moments
of this equation. The argument of Appendix A of
Ref. 1 can be taken over here without alteration
since Eqs. (A10) and (All) of that appendix are
unaltered. Thus M',. and M~',- will be zero in all
systems of coordinates if they are zero in one.

Similarly Eq. (B1) of Ref. 1 is still valid, is in
fact Eq. (4.1) above. This leads directly to Eq.
(84) of Ref. 1 which reads

The last term is written in terms of J'~ by means
of Eq. (4.4). The final result is then

P'u; = -da/dq+ F;,J'» . (8.4)

IX. THE COMPLETE SET OF EQUATIONS

P'u, = da/d-q+ F,»J'.
S Mg = aQip i

(9.3)

(9.4)

As shown in Appendix A, it is possible to use
another momentum p' related to I" by

P'-P' E' zo J~
m (9.5)

in terms of a vector w which is general except
for its normaliza, tion

u'ui =1. (9.6)

It is useful to have equations in terms of the p'
s'ince then they are more easily compared with the
results of previous authors,

Dp'/Dq =»R &~u~S~+ (D/Dq)F'»ge„J~

DS' /Dq=p'u"-p»u'+F' (J -u"wg ")

F» (J mi ui~ Jmn)

p'u; = da/dq+ F;-»(Z' -u»gy„J'"),

S g, =-au .

(9.7)

(9.8)

(9.9)

(9.10)

Equations (9.1)-(9.4) are 15 equations in the 15
unknowns P', S'», u', and a. The six J'» must be
obtained by some other theory.

The four basic equations are Eqs. (6.1), (5.2),
(8.1), and (8.4). We collect them together here
in one p1.ace,

DP'/Dq =»A'z~u~S+ -F'», J»m+ eu»F' (9.1)

DS'»/Dq=P'u -P u'+F' Z -F» Z~ (9 2)

S zg~= -a~,iQ i (8.1)

where a is a scalar equal to -S"u,/u'. Thus the
first of the auxiliary conditions is unaltered by
the presence of charge or a magnetic moment so
long as the tracelessness of T'~ is preserved.

It is different, however, with the other condi, -
tion. From Eq. (A9) of Ref. 1,

For M' use Eq. (4.2), which has electromagnetic
effects and for M ~ use (4.1). After substitution,
all the quantities must be in terms only of well-
identifi'ed tensors (e.g. , p'). After a laborious
calculation in which much cancellation takes
place, we find

X. COMPARISON WITH OTHER WORK

Equations (9.7) and (9.8) are the same whether
or not the particle is traceless and therefore can
be compared to results that others have obtained
for charged massive particles. Dixon has worked
the problem in covariant general relativistic form
for charged massive particles. Our Eqs. (9.7)
and (9.8) correspond to his Eqs. (6.32) and (6.31).
There is complete agreement, with the following
remarks.

Dixon separates out a four-vector in the rest
(or rather, momentum) system which is the
electric-dipole moment. He calls this q~ and it, in
our terminology, plays the role of

M'; = O=P'u;+da/dq+F, »(M' +Pou'/uo) . (8.3) q =-P zo (10.1)
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By the same token he has a tensor which in the
momentum system is the magnetic-moment ten-
sor and in our terminology plays the role of

m"=P'-u'u Z'™+u'uJ' (10.2)

If there exists a rest system in which u'
= (1,0, 0, 0), then for the space indices n and P,
and with u)' chosen to be u', Eqs. (10.1) and (10.2)
give in this system

qo J =S =— dQ6x J, q =0 (10.3)

gpss -J ~ $ ~=——' dQ5x J —5xJ, m' =0

(10.4)

the last forms coming from the definitions in Sec.
II. These expressions do have the character of
electric and magnetic moments.

In the case of flat space, we can compare our
results to those of Ref. 7. In particular, our Eqs.
(9.1) and (9.2) correspond to DeGroot and Sut-
torp's Eqs. (96) and (102), (111)and (112) in their
Chap. IV. Their Eqs. (115}and (116) correspond
to our (9.V) and (9.8) if we identify u)' with

u' =P'/P'u, . (10.5)

XI. RADIATION REACTION

In Eq. (2.4), E'~Z~ is the electromagnetic force
acting on the particle. Ever since Dirac, "this
force has been understood to contain an external
part E,„,' J~ and a radiation reaction part —,'(E'„',

E',~~, )j~ from th-e retarded and advanced fields
of the charges themselves. The field from the
charge also contributes to a renormalized self-
energy that we anticipate will be included in our
T' . The theory of Dirac has its roots in the

Although this satisfies Eq. (9.6), we can not be
certain in the case of traceless particles, that
p'u; is not zero. Thus Eq. (10.5) may not be gen-
erally applicable.

It is interesting that the Papapetrou approach
has led directly to J'~ as the basic electromagnetic
tensor and not, say, to q~ or m' (which require
u)' for their definition). This 2' is precisely the
moment combination that DeGroot and Suttorp use
as the basic tensor in their work.

It should be emphasized in comparing our re-
sults with other work that in principle we cannot
assume at the outset that there is a realizable
rest or momentum system for a traceless parti-
cle. And, as stated in the Introduction we do not
therefore define the integration surfaces in the
moments as constant proper-time, but rather as
constant coordinate-time surfaces.

work of I,orentz and has been elaborated by many
others

It must also be remembered that the external
field E',~, not only contributes to the force on the
particle, but also helps to curve the space: it
enters the Einstein equations.

There are then two problems: First, how can
the original energy-momentum tensor be con-
ceived to give the self-energy and radiation re-
action effects in a consistent way, and second,
how can E',~„and E~~, be written in terms of the
moments p~ and J'~ that the rest of the theory con-
tains?

'The first is one of the central questions of clas-
sical radiation theory, even in flat space, and
lies essentially beyond the scope of the present
article. W'e shall simply assume that such a con-
sistent formulation is possible so that the force
in Eq. (2.4) is the usual radiation reaction plus
external forces:

(2+re) 2+(Ld((+Eext}x a (11.1)

and that the T'~ of Eq. (2.1) contains a (localized)
renormalized electromagnetic self-energy. For
work along these lines in flat space, see Refs.
11-14. Notice that in the pole-dipole theory, an
explicit form for T'~ is not needed [Eqs. (9.1)-
(9.4) determine its moments], but the form on the
right in Eq. (11.1) is needed for an explicit solu-
tion to the problem.

However, even with these identifications, we
are still faced with the second question, of how
to write the fields Epeg etc. in terms of the mo-
ments that we have defined in Sec. II. This can
be answered directly. Write as usual E,.~ in terms
of the four-pc'ential A~,

in which G,.„(x,x') appears as a bitensor. The in-
tegrand of (11.2} transforms as a scalar at x'~

(the index k having been contracted) and as a vec-
tor at x~ according to the index i; The argument
we make is independent of whether G,.~ is the re-
tarded, advanced or whatever function, and makes
no use of its explicit form.

We now break up Eq. (11.2) into a time integral
over x' and a space integral,

d'x' = dx' d'x' = dq'd'x'u" (11.3)

where u"=dx "/dq'. Here q' is an integration

where the subscripts ret and adv will be omitted
from now on. The fields that are generated by the
source currents may be taken from the work of
DeWitt and Brehme, "
A,.(x)=(4x/c) fd x(- )"*Z'X(x ')a, ,(x,x ), ()i.2)
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variable having the same significance as the q of
previous sections. 'The space integral is over a
constant t" surface. It thus corresponds to the
type of integral used in the preceding sections.

The reference point of the particle is denoted
X"=X'(q') as a function of q'. For each value of
q' in the integrand of E[l. (11.2), we expand
G, »(x,x') about the point x"=X"(q') on the surface
of constant q'

G;»(x,x') = G,»(x,X')

+ (x' -X' )BG,»(x,X')/BX' + ~ ~ ~ . (11.4)

This is analogous to the expansions in E[ls. (2.19)-
(2.21). (Notice the partial derivative on G, ». This
is not the tensor expansion in the style of Ruse. ")

Putting (11.2) and (11.4) into (11.2), we may
write the latter as

A;(x)= (4w /c) dq'i dA' J»(x')G;»(x, X')

+ g dQ' J x' x' -X' —J x' x' -X'~ BG;q x,X' BX'

+ — dQ' J x' x' -X' +J x' x' -X' BG; x,X' BX' (11.5)

where df»' is as in E[l. (2.7).
The last integral in (11.5) is transformed in the usual way" using

J»(x' -X' )+J (x'» -X'») =J" [(x'» -X'»)(x' -X' )]+ [u'»(x' -X'") -u'"(x'» -X'»)]8 JO

Bx Q

2J0
+ 4 m(xq» X 4»)u" (11.6)

The terms proportional to J' arose because X"(q') responds to an x'G derivative. The first term on the
right in Eq. (11.6) integrates to zero when placed in (11.5). The rest gives

d;(x)=(4w/c) f dq (ll (q )G'(wX ')+w;xS" (q ')[q-',G;(xX')/WX, '",]'
+ [-,

'
(u "S™/u"-u'"8"'/u")+ u' S"/u "][BG„(x,X'}/BX'"]) (11.7)

'The terms proportional to & in the curly brackets
combine into J»(q'). The last term in the second
square bx'ackets gives a contribution to A, equal to

(qw/c) fdq (S /x' )dG;w/d'q'

= -(4w/c) fdq G, (x,X')d(Sw '/x )/dq'. (11.8)'
This term, combined with the first term of (11.7)
gives a factor p» as defined by E[l. (2.16).

With all this, E[1. (11.7) may be written

X(,.(x) (4w/c) f dq [p~(q =)G{xX')', , ,
'

+ J~(q')DG, (x,X')/DX'"].
(11.9}

In the last term, one finds at first J»BG;„/Bx'".
But it must be remembered that the k index on

G;»(x,X') goes only with the X' dependence so
that

J~(q')DG, »(x,X')/DX' =J»BG;»(x,X')/BX™

t

The last term is, however, zero by symmetry.
'Thus we can replace the partial derivative by the
covariant derivative in this term. But then we
have the expression in E{I.(11.9) completely in
tensor form.

This is as far as we take the discussion. Equa-
tion (11.9) shows how A; emerges as a function
of the p~ and J~. One must then evaluate, A, (x)
at X'(q) in the manner of Dirac or DeWitt and
Brehme, a calculation we do not include here.

XH. SUMMARY

In this paper we have endowed a tracless par-
ticle with comoving internal currents and sought
to find a consistent set of equations determining
the propagation of the pole and dipole moments
through space-time. The results were written in
Eels. (9.1)-(9.10). The problem of electromag-
netic radiation reaction was considered for the
purpose of writing such corrections in terms of
the same moments as appear in the rest of the
problem.

The resulting equations are quite formidable
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and the methods used in Ref. 2 to elicit some
simple properties of a traceless particle do not
seem to be useful here, except in the limiting
case where a charge exists but no electric or
magnetic moments, i.e. , where 8'»= 0. For then
Eqs. (9.2)-(9.4) have the same form as without
charge. Thus all the conclusions of Ref. 2 can be
applied here directly. In particular, if a4 0 then
the trajectories are null geodesics and a is a
constant. And if a= 0, and the particle is not a
pole particle, then there exist "C-frames" in
which X' is the center of energy. If the energy in
the C-frames is not zero, or equivalently if p ~ S
4 0, then with a=0 the trajectories are again null
geode sics.

If there are dipolar moments J'», however, then
the equations (9.1)-(9.4) become far more diffi-
cult. 'The first and most important question is,
what axe the J'»'? The equations do not tell us
anything about them. As discussed in Sec. VII,
this lack of information may be regarded as equiv-
alent to a lack of an equation of state, which is
always necessary to complete the definition of a
general relativistic system. In the present prob-
lem if the equation of state is contained entirely
within T'», then one does not need to supplement
the basic equation T".,= 0. However, when charge
is added, with an explicit vector J' that lies out-
side of T'», then an equation of state connecting
J' with T'» becomes a necessity for a determinate
problem.

If we adopt, as is customary for massive parti-
cles,

to solve Eq. (12.3), taking into account all these
difficulties. We have not succeeded in doing this.
If Eq. (12.1) is not suitable, then one must find
some other way of handling J'».

In any case, Eqs. (9.1}-(9.4) are the basic equa-
tions of propagation for a traceless particle with
dipolar electromagnetic moments and Eq. (12.3)
is a consequence of (12.1) if aW. O.

APPENDIX A; TENSOR PROPERTIES

'The procedure here rests on the arguments in
Ref. 3 and we shall refer to that article for most
of the basic equations. The transformation equa-
tion for the quantities M"' and M" are the same
as Eqs. (4.3} and (4.4) of Ref. 3. If, as in Ref. 1,
Appendix A, we use

L', = Sx'/Sx",
= s'x'/ex "ex"

ab

(A1)

(A2)
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GSl » (12.1}

as some approximate moment of an equation of
state, then we expect, by comparing Eqs. (2.9),
(2.11), (2.13), and (2.14) and to preserve q-re-
versal symmetry, a form such as

we have for Eqs. (4.3) and (4.4) of Ref. 3,
M"'= L' I." (L' — 'Lo / ')M "'

a b c c~
M' = L' L M" —(L' L" + L' L )M'"a b ac b a bc

+ (dldq)L', L,L',M'"'/u

(A3)

(A4)

G G~o (12.2)

In Appendix B we show that (12.1) leads, for a
4 0, to the trajectory equation

Du'/Dq = GE'~u (12.3)

If a= 0, however, we have found no simple equa. -
tion.

Even if we accept (12.3}, there are still formi-
dable obstacles to getting explicit solutions. First
among these is radiation reaction, which is con-
tained implicitly in E'». The electromagnetic mo-
ment effect in the radiation reaction is extremely
complicated. Second, an external electromagnetic
field must be regarded as helping to curve the
space. 'Thus taking the electromagnetic field into
account is another very difficult (and separate)
problem. A test of Eq. (12.1) would need somehow

We need the corresponding transformations for
the electromagnetic barred quantities. 'They have
the same form as the quantities in (A3) and (A4)
except for J' having one index instead of the two
that appear on T'». Thus a slight modification of
Eqs. (A3) and (A4) is all that is needed. It can be
verified by calculation that

M~' =L' (L~, -u'L', /u')M", ,

M' = L', M" L'„M'"+ (d/d-q)L', L M" /u

(A5)

(A6)

We can now derive the transformation equations
of the tensors in the problem. First from (A3) we
can construct the transformation of S'» as defined
in (2.13), with the M'"' on the right replaced by
what Eq. (4.1) gives. Using the fact that
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we find eventually that

g&» J& J» greb
b

(AV)

(A8)

which proves that 8" transforms as a tensor.
However, for momentum we get an electromag-

netic contribution. We start with Eq. (A4). For
the M'~ in the first term on the right we use what
Eq. (3.2)—in primes —gives. By use of the equa-
tions just preceding Eq. (4.V) of Ref. 3, we get

M*'/u'+ r',. u'S "/u'= L*.[m "0/uf 0
jk

+ rr+ uibszeo/uso]
bc

+L ~Lo+' M' c/uo (A9)

The quantity on the left would transform as a ten-
sor if it were not for the last term on the right.
To deal with this last term, notice from (A5) that

F' M"=L* L,' ~" M' dL* L-o ~" M"'/uo
» ig b- c N

(A10}

where it was assumed that E' transforms as a
tensor. The last term of (A10) is, except for
the factor e~, the same as the last term of Eq.
(A9). If we could get rid of this factor, we could
just add Eqs. (A9) and (A10) and obtain a quantity
transforming as a tensor.

The simplest method for eliminating the factor
u is to define a z actor m' such that

the last term of Eq. (A9) and the method is basi-
ealiy still to use Eq. (A10}. If we substitute Eq.
(4.4) for M~~ on the left and the right, and anti-
cipate that J ~ is a tensor (see Eq. (A22) below:
The proof does not depend on anything we do
here}, then (A10) reduces to

j'i PIO f/ 0 L( Eto geo i / lo
c

L' -L E" M' 'u~/uc (A14)

J&» $'&» + g)f » (A17)

We need first to know how S'» transforms. If,
for simplicity, we define

(using L~~u" =ui in the first term on the right).
Cancel the factor u~.

Add now (A9) and (A14) divided by ui. We get

(A15)

where P' is given by Eq. (2.15}and does not de-
pend on so;. So as far as vector transformation
properties go, we can use either p' or P'.

Equations (A8) and either (A12) or (A15) give
the transformation properties of basically non-
electromagnetic tensors. As for the basically
electromagnetic tensors, we first consider J'».
If we define

Dik (uksf0 uigko)/uo

(All) L i L» g pf3b
a (A18)

(A12)

Other than that this must be satisfied, so„ is per-
fectly general at this point. Multiply Eq. (A10)
by co~ and add to Eq. .(A9). The result is

~i Li ~pa

yik Li Lkgrsb (A19)

then Eq. (A5) used in the definition of S'~ in (2.12)
yields using (4.4)

S'~= W'~ —(u W'0-u'W~ )/2uo+ —V'~ (A20)

where

p* = (M*'+ r' „u'S")/u'+ E*,Mi'wi. (A13)

Next we need D'~ To get this. use (A5) with S'0

from (2.12). We get then, using (4.4),

'The quantity p' so defined, for gg„arbitrary ex-
cept as restricted by Eq. (All}, transforms as a
tensor according to Eq. (A12).

It turns out (see Sec. X) that this xv' is the coun-
terpart of a vector used in the theory of massive
particles, so that the p' in Eq. (A13} is useful in
comparing our results with other work. For
traceless particles, we cannot in general use the
expression in Eq. (10.5) since the denominator
may be zero. However, we can always find a zv'

to satisfy (All). For example, suppose in some
system of coordinates, u' = (1,1,0, 0). Then we
can choose co' = (1,0, 0, 0) in this system.

But it wouM be desirable to have a theory which
did not rely on the addition of this arbitrary vec-
tor zo'. In fact, this can be accomplished without
much trouble. The problem is still to get rid of

D' =(u W' -u'W )/2u +—V' (A21)

Thus we see that neither S'» nor D'» by them-
selves transform as tensors. But their sum does:

ikS+iDh ~i%+ yik Li Lk (Sgsl+Dgah) (A22)

P =L P' (A23)

where p is defined as in Eq. (2.16}.
Finally we wish to show that Mo/uo transforms

as a scalar. This is easily done by rewriting Eq.
(2.16) using (4.5),

This establishes the tensor property of J'».
Next we must find a corresponding vector prop-
erty of an electromagnetic "momentum", p~ as
defined in Eq. (2.16). To do this, start with Eq.
(A6}. In this, the M' in the last term is evaluated
using Eq. (4.4). The result is
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p'= eu', (A24)

where e means M'/u'. Now since p' and u' trans-
form as tensors, Eg. (A24) shows that e must
transform as a scalar.

S' u = -2au' -au'+E "J „u' -p'u~u .
Here we have introduced the notation

(82)

u =u GE gN

u =u; -GEi u~

for convenience.
Multiply (81) by u; and sum,

APPENDIX B. REDUCTION OF THE EQUATIONS

In this appendix we assume Eq. (12.1) and also
that at 0, and shall derive Eq. (12.3) and a number
of other consequences.

To start we need Eg. (9.4)

S up= -au i

and its q derivative (denoted by overdots) which,
after use of (9.2) and (9.3), can be written

where b is some scalar function. (Notice that the
same argument does not work for u' and u', since
u'u; cannot in general be proved to be equal to
zero. )

Equation (89) is the trajectory equation for gen-
eral q. Just as with geodesics, it is always pos-
sible to find speciaL parameters q' for which the
term in b in (89) does not appear. We shall not
go through the argument: it is unaltered in detail
from the usual proof. The result is then that

u' = 0, i.e. , Du'/Dq = GE', u~, (810)

when these special parameters are used.
[It is interesting to notice that when the trans-

formation q = q(q') to the special parameter q' is
made, the factor G becomes Gdq/dq'. This rein-
forces the observation in Eq. (12.2), since Gdq/dq'
=G,(dx'/dq)(dq/dq') =G,dx'/dq'. That is, the form
in (12.2) is preserved under such a transforma-
tion. ]

The result in (810) enables. a number of other
results to be proved. First of all, if (89) is sub-
stituted into (82), we get

0= -au'u; . (84}

Here is where we make use of the assumption that
a0. For with it we get

&

Eking

mrf
'

This substituted into (9.3) gives

~'u. =a =-'E. i'
(811)

(812)

u'u; =0,
whence

u'u; =0,
which leads with (83) also to

u'u; = 0.

(85)

(86)

Now multiply (82) by u; and sum. The left-hand
side goes out. If Eqs. (85) and (87) are used, we
get

u'ui = 0. (88)

It is generally true for any two vectors a', b',
that if a'a,. = ai b,. = b' b; = 0, then ai is para. llel to
O'. The proof is contained in Appendix A of Ref. 2,
but it is simple to repeat. Go into a local tetrad
in which a' =a'(1, 1,0, 0). Assume b' =(b', 5', b', b').
The equation a'b,. = 0 then gives the result that b'
= b'. Finally, the equation b'b,. = 0 gives then

P'u; = pE;~~'il

Now from (810) we get, after using (9.2),

E"u. =GE-„P' = gGS' E.i

'To get this we used the fact that

(813)

(814)

Thus in general, a is not a constant and P'u,. is
not zero. P'ui being zero is what we might wish
to reserve for the name "massless", since
&Ei~J'~ has the significance of the dipolar energy.
(That is, in an electric E~ and magnetic 8 field,
it is q ~ K+ m ~ B, where q is the electric and m
the magnetic moment. )

However, , a further calculation shows that the
solutions break up into two branches, one of which
is massless by this definition. To see this, notice
that in Eq. (9.1) the second term on the right may
be written —,'E, "~~ upon use of the Maxwell equa-
tions E&,~ , = 0. Then. , multiplying (9.1) by u;, we
get

(y') + (5') = 0
ShmS 0ffS (815)

which means that b'=b'=0. Thus a' =constb' in
this tetrad. But this is a tensor equation and
therefore must be true in all systems.

In our case, we see from Eqs. (85), (87), and

(88) that u' and u' obey all these orthogonality
properties. 'Therefore they must be parallel

which is true since S~ S ' is symmetric in ik.
Equations (812)-(814) yield the following result.

Take D/Dq of (812) and subtract from this the
sum of (813) and (814):

GEia S*o=0. (816}
u' = bu' (89) If we use (811) this may be written
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Ga =0. (817)

This tells us then that there are two branches
to the solutions,

To prove (819), take d/dq of S;,S" and use Eq.
(9.2) and in the result use Eqs. (9.3), (9.4}, (811),
and (815). To prove (820), take d/dq of S ~, »S'»,
use (821) and (9.2). One needs also the equation

branch A: G = const,

branch B a = const .
(818) S~;u' =Hu

where

(822}

It is not impossible that both G and a could be
constant simultaneously.

Branch B is what we might call the massless
branch, for the dipolar energy E'kJ,

k would be
zero as well as P'u, . Another feature of the mass-
less branch is that a is a constant, and can be set
as small as desired. Vfe can anticipate that this
branch merges continuously onto the a= 0 solu-
tions, although we have not solved that case yet.

'The last thing we do here is show generally for
both branches that

H= -S*»eu /ue (823)

S~ S' =5 aH,fk k (824)

which itself can be proved from the definition of
S* and (9.4). Another relation needed in the
proof of (820) is

E' S' S~ =0
k (825)

is the helicity associated with velocity. Equation
(822) can be obtained from Eq. (9.4) using

K= S;kS'k+ 2a'= const,

L = S",,S"/a= const,

(819)

. (820)

which follows from (824).
'The two constants E and L are related, as can

be seen from the determinantal equation resulting
from (9.4):

where s4+ Ls2S St» 1 (Sl»S 4 )2 0 (826)

S )k=ge)kmnS (821)

For branch B we see that S,.k S'k and S ~, k
S'k are

separately constants of the motion. S Sfk+ 2g2 2H'2
&k (827)

In fact it can be shown that K is twice the helicity
squared,
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