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The pole-dipole equations derived in a previous paper for massless particles (whose defining relation is that the
energy-momentum tensor has zero trace) are examined. If the reference point X describing the motion is not
somewhere on the disk perpendicular to the three-velocity through the energy center, then X' describes a null
geodesic with no assumptions. The property that X' is the particle's energy center in some local reference frame
(called a C-frame) is shown to be a constant of the motion. If the energy of the particle in the C-frames is not zero,
then the trajectory is again a null geodesic. The conditions on the curvature needed to have the momentum parallel
to the four-velocity are determined. Helicity properties are also discussed.

Dfp /Dq=& e

DS' /Dq =p'u -P"u', (1 2)

where u' =dX'/dq, q being a parameter along the
curve. This form of the equations survives even
if the curve happens to be a null geodesic, a pos-
sibility if the particle is massless.

In Ref. 1 we considered the corresponding mo-
ments of the equation T'; =0, and found

p'u, . =da/dq, (1.3)

S ug =-au (1.4)

where a is a scalar function of q.
Equations (1.1) and (1.2) are the same as for

massive particles, but Eqs. (1.3) and (1.4) are
not. For massive particles one can choose q =s,
the path length, and has u'u; =1 and P'P~ = m',
which are candidates for replacing Eq. (1.3). As
for Eq. (1.4), Mathisson' had in fact suggested
this equation, with a=0, for the purpose of spec-

I. INTRODUCTION

In a previous paper, ' the pole-dipole equations
for a particle whose energy-momentum tensor
T" satisfies T' .„=0and T'& = 0 were derived by
the method of Papapetrou. ' Particles satisfying
T'; =0 we called massless, but of course strictly
speaking they are traceless particles. We shall
use these words interchangeably, but traceless is
the accurate one, in case any confusion about the
words arises.

In the procedure of Papapetrou, a reference
point X' of the particle is chosen about which to
form moments of T'". From these, certain com-
binations of the moments were shown by Papa-
petrou to transform as tensors, namely a mo-
mentum vector P' and a spin tensor S". Then the
moments of T'".

I, =0 yield

ifying X' as the center of energy in the rest sys-
tem. However, later authors4 found difficulties
with this definition, and suggested S'"P, =0 as
preferable. In any case, for massive particles,
Eq. (1.4) with a =0 or its alternative was chosen
as appropriate, whereas for traceless particles,
both Eqs. (1.3) and (1.4) follow directly from
T $=0.

Weyssenhoff and Raabe' long ago considered
massless particles from the pole-dipole approach
in flat space, and Mashhoon' recently considered
the problem in general spaces. Duval and Fl.iche'
derived Eqs. (1.3) and (1.4) independently of Ref. 1
by a completely different method.

In Ref. 1 it was argued that if u'u; W 0, then a
must be zero; and if the trajectories are null
geodesics, then a could be chosen to be zero as
an initial condition. (The case u u; =0 but the
trajectory not a geodesic was not considered. )
We therefore suggested that a =0 was always
appropriate.

We did not see our way to proving generally
that the trajectories mere null geodesics, and
contemplated the possibility that they were not.
In flat space the solution could be obtained ex-
actly. We had to assume that p ~ 8 w0 (using the
notation of Sec. II below) however, to obtain null-
geodesic trajectories. And even with this, we
had to make a further assumption (that S" is
bounded in time) to show that p' is parallel to u'.
Thus even in flat space, traceless particles could
be conceived (if say p ~ 8 =0) that did not neces-
sarily follow null geodesi, cs. Other special cases
were treated in Ref. 1.

The argument in Ref. 7 went rather differently.
In that paper, two properties of S'" were assumed
to begin with: dets'~ =0 and TrS'(0. From these
it mas proved that a =0. Then it was argued that
p ~ 8 had to be nonzero, whence the trajectories
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S 2=M2(x -X ),
where

(1.6}

had to be null geodesics generally, not just in
flat space.

The purpose of the present paper is to reex-
amine the consequences of Eqs. (1.1}-(1.4}, and
to analyze the conditions that enter the solutions.
Thus although we can set a=0, we do not have to,
and Sec. III examines general properties val. id '

for a4 0. It is proved there that null geodesics
ensue u/ithout any assumPtions at all, if a S 0,
and further that da/dq =0 so that Eq. (1.3) becomes

P'u] -—0 (1.5}

general. ly.
In Sec. III, the consequences of assuming a 4 0

are examined in detail. , and in Sec. IV the con-
sequences of a =0 are examined. The mathemat-
ical. consequences derived do not rely on adopting
a particular interpretation of the moments, etc.
However, in order to make the results clearer
from a, physical point of view, we shall frequently
describe them in terms of the extended-particle
picture, that is, in terms of an energy center x~
and the particie structure. Foll.owing Papapetrou,
we can always imagine letting the size of the
particle become arbitrarily smal. l.

The energy center appears in writing out S '
from Eq. (2.14) below, where a, P, etc. are space
indices:

in the coordinates used. It is this type of appeal
to an extended-particle picture that we shal. t. use
to make the significance of some of our results
clearer.

For massless particles there is in general no
invariant definition of a center of energy. How-
ever, in Sec. IV, we show that the conditions of
Ref. 7 [repeated in Eq. (4.1) in a different nota-
tion] and a =0 are the necessary and sufficient
conditions for the existence of (an infinite number
of) frames, caBed C-frames, in which X is the
energy center (or mathematicaily, in which
R =0}.

Further, if (and only if) a C-frame exists initial-
ly will C-frames exist at every point of the tra-
jectory. The succession of C-frames is the
closest the theory of traeeless particles comes
to a comoving "rest" frame. (Of course, the
traceless particle is not at rest in a C-frame. )
The condition p S 4 0 is shown to be equival. ent to
the assertion that the particle's mechanical en-
ergy P in the C-frame is not zero.

In Sec. V ~e consider under what conditions P'
can be paral. lel to u'.

Another exactly solvable problem is that of
constant curvature. The solution is written
down in Sec. VI and compared to'. the flat-space
solution.

In Sec. VII we discuss the resul. ts and in par-
ticular the relation of Moiler's theorem' to the
massless case.

r" -g '"d'x,

x' = (M'}'fx'1'"(—(, }'~'d'x (1.8)

II. NOTATION

In this section we list the notation used. The
antisymmetric spin tensor S' splits into two
pieces:

x~ is the energy center of the system considered
and S =0 means that X' is at the energy center
(unless of course M2= 0).

Thus for example, from Eq. (1.4), it follows that
in a local tetrad in which the object is instanta-
neously traveling in the x direction,

S.=(S„S„S,) =c '(S",S" S"}
fto (foal R2 ft3} (Slo S20 S2(})

(2.1)

(2.2)

In the local tetrad at a point in spaeetime, these
form ordinary space vectors, and dot and cross
products are defined in the usual way. Next

S" =-au*/u, S" =S""u"/u, S' =S'"u"/u .
(1.9) where

Stk & fkmnS g—g8 tutti y (2.3)

The mathematical significance of a =0 is from
this equation that S"'=0. In terms of the notation
of Sec. II below, this means that the component
of R (=S 0) along the space direction of motion
must be zero, R being the border column of S'k.
The extended-particle interpretation of this is
much more illuminating. S* = 0 means from (1.6)
that the component of X -x~ along the direction
of motion is zero. That is, X' lies on a disk per-
pendicular to u that goes through the energy center

e ( g}1/2g e&2 2
( g) 1/2e12}}W

2.4

(2.5)

H~=u Sk
k (2.6)

where the c are the alternating symbols.
Helicity vectors are defined from momentum

and velocity:
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The components of H are

Ho = -c(-g)'j'u™8

H = (-g)'j'[u'cS + (u x R) ].
The quantities

(2.7)

S' u; =au" (3.1)

S"u; =p'u] u'+ 2au'+au".

Multiply (3.1) by u» and sum

(3.2)

and its q derivative (we use dots to denote D/Dq)

Ij = -b, /uo, H = Ho/-uo (2.8) au"u, =0. (3.3)

8 + 8j» cbj( )i/2R&8 (2.10a)

If Eq. (1.4) is multiplied by S,*„and Eq. (2.10a)
used in the result, we get

S]*~S~ =5~iaH

c( g}'j'R -S u„=aH„.
(2.10b)

(2.11)

Equations (2.10b) and (2.11)are true whether or
not a =0; but if a 4 0 then they show that

a = scalar,

H =-Hu, a 0.
(2.12}

(2.13)

So B is null and parallel to u .
Finally we recall the definitions of S' and p'

in the development of Ref. 1:

y&0
"g= const

—(jj -X )T'0](-g)"d'x, (2.14)

P' = Jf 7"(-g)"d'x+ I",.„8"uj/u'. (2.15)
t= const

III. GENERAL RESULTS

In this section we develop the consequences of
Eqs. (1.1}-(1.4) for general a. We show for
a0 that

(a} the trajectories are null. geodesics,
(b) a is a constant of the motion,
(c) H is parallel transported, DH /Dq =0, for

q such that Du /Dq = 0, and H is a constant of the
motion.

For general a we show that
(d) X=S;»8' =2(c'8' —R') and L =S;*,S'"

=-4c(-g)'+8 S are constants of the motion.

And for a=0 we show that
(e) bj is parallel to u; or zero.
The proof of these statements all start from

Eq. (1.4),

are called helicity scalars; they will be shown to
be scalars later.

General relations that can be verified by direct
expansion are

(-g) det(8' ) = —(S;*S' ) = (-g)(R 8 )

(2.9)

Multiply Eq. (3.2) by jj» and sum

(u,u')p»u» + 2a u»j'j»+ a u'u» = 0. (3.4)

For a =0 these equations tell us nothing since
P»ic» =O, follows from P u» =0 and Eq. (1.1). How-
ever, for a 0 0, Eq. (3.3) tells us that u» is null,
u»u» =0, whence u»u» =0. Then from Eq. (3.4),
u'u~ =0. These last three equations prove that
Ne trajectory is a null I,eodesic, i.e., that k
=bu" where b is a scalar (see Appendix A). We
have thus uncovered our most important point.

If u =bu is used in Eq. (3.2), then we have that
a =0. Thus a is a constant of the motion.

Next take S„*„of(3.1) and use (2.10b). For a =0
we get no information, but for a 4 0

S~u =Hu, a 4 0. (3.5)

0

The left-hand side is —,'e~& &S' u" which is zero
by Eq. (1.2). Thus Eq. (3.6) gives

H=0, a4 0. (3.'1)

That is, 8 is a constant of the motion.
From (2.13) we get

8 =-Hu, at 0. (3.8)

Thus for the special parameter q such that u =0,
it follows that H =0, i.e., B is parallel. trans-
ported.

Thus we have established statements (a), (b),
and (c) at the head of this section.

To prove (d), just take the implied derivatives

E =28&»S» =4P'u»8;» =-4aP'u; =-4ab =0.
To prove that I is a constant, just take D/Dq of
(2.10) and use the fact that b =0 and H =0. In fact,
from Eq. (2.10) it follows that S;*»S' is parallel
transported.

Relationships between the constants of motion
can be obtained from the determinantal equations
associated with (1.4) and (3.5):

'a'+a'(c'82-R') —(-g}c'(R ~ S)' =0,
O'-H'(c'S'-R') —(-g)c'(R ~ 8)'=0 «0.

(3 9)

(3.10)

Thus H plays the same role for S* that a plays for
S [compare (3.5) with (3.1)].

Take now D/Dq of (3.5) using jj» = bu»:

S~u" =Hu, a 4 0. (3.6)
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Subtraction gives

a' =H' —c'S'+g', q 4 0. (3.11}

The quantities S' and B' are not separately con-
stants of the motion, by any arguments that we
have found.

Finally we multiply' Eqs. (3.1) and (3.2) by
ez~ u . Using

iaaf g ~fgi
e)Ann e ~conj v (3.12)

we get

H„u& -H&u„=S&*„u u

H„A~ -H~u„= -S„)u~u -S„*)u~

If we multiply by ez, p and sum we get

h„u, —h&u„= -aS&*„,

m a
h„uz -h&u„=-ae&„~P u

(3.13)

(3.14)

(3.15)

(3.16)

For a 4 0, the right-hand sides of Eqs. (3.13)
and (3.14}are zero, and we recover Eqs. (2.13)
and (4.8). However, we do not get the same type
of relationship for k„ from Eqs. (4.15) and (4.16),
since the right-hand sides there are not neces-
sarily zero.

However, for a =0, the right-hand sides of
(3.15) and (3.16}are zero, whence

h =-hu, a =0. (3.1V)

Thus for a=0, k is parallel tou . This is state-
ment (e) at the head of this section.

IV. A = 0 AND THE CENTER-OF-ENERGY MOTION

In the previous section, the properties of the
a 4 0 points were discussed. In this section we

consider the a =0 points. From (2.11) these will

be characterized by

L =-4c(-g)"8 ~ S= 0. (4 1)

The other constant of the motion has three pos-

sibilitiess:

(4.2a)

(4.2b)

Z=G. (4.2c}

The discussion can then be separated into three
cases: L =0, E& 0, L= 0, E &0, and L =0, E =0.

In Ref. 7, the-relations L=O, E&0were as-
sumed as properties of S'~, and from them it was
proved that a=0. Once a=0, it was argued there
that

(4.3)

had to be true, and that this led to null geodesics.

Having assumed a =0 to begin with in this dis-
cussion, we shall show that L=G, E&0 implies
the existence of frames in which R =0, not simply
a =0, and therefore in which X' is the energy
center. We consider the other two cases also,
and list the results as a set of theorems, fol-
lowed by a list of proofs.

(f) L=0, E&0 are the necessary and sufficient
conditions for the existence of rest frames of
inertia, called C-frames, in which 8 =0. In
such frames S ~~u, unless u=0. Also in such
frames if P04 0 (the mechanical energy not zero)
then there exists an energy center in them, and
X is at the center.

(f') L =0, JI &0 leads to a contradiction, and can-
not therefore be satisfied.

(f") L = 0, E =0 correspond to a pole particle.
We present however only a plausibility argument,
depending on the assumption that u' is a physical
velocity, not spacelike.

(g) If (and only if) a C-frame exists initially
will a C-frame exist at every point of the tra-
jectory. If an object is a pole particle at one
point, by (f"), then it is a pole particle at all
points of the trajectory.

(h} In a C-frame, Po is the mechanical energy,
and on physical grounds is taken not to be zero. '
The condition P 0 in the C-frame is the neces-
sary and sufficient condition for Eq. (4.3). The
proof assumes uo g G.

(i) If p S a 0, or equivalently p' e 0 in the C-
frame, then the trajectories satisfying (4.2a) are
null geodesics; conversely, if the trajectory is a
null geodesic, then p S4 0 everywhere on the
trajectory if p S W 0 initially. If, however,

p S = 0 (or Po = 0), then~ the trajectory need not
be a null geodesic.

(j) H is a constant of the motion, H„ is parallel
to u, and H is parallel transported along the
trajectory if u is.
We shall now prove these assertions.

Proof of (f). The proof here will be made by
analogy with the corresponding problem in the
relativistic theory of electromagnetism, in which
the field tensor E' contains the electric field E
as border elements and the magnetic field B as
interior elements in the same way that S' con-
tains R and cSo. It is well known" in electro-
magnetism that E 8 =0 and E'-B'&0 are the
necessary and sufficient conditions for the exis-
tence of reference frames in which K =0. In our
case, if L = 0, E& 0 are satisfied at some point
P of the trajectory, then since E and L are sca-
lars, they are satisfied in a rest frame of inertia.
Thus by considering I orentz boosts to other rest
frames of inertia, we can make the same argu-
ment as is made in electromagnetism, to find that
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Note that if R =cS, then e becomes c. So Eq.
(4.2a) must remain an inequality. Further, from
{1.9) it follows in this C-frame where R = 0 that
u is parallel to S.

And finally, if P' =MD =J T'0 is not zero in the
C-frame, then Eq. (1.8) defines the energy cen-
ter in that frame, and R =0 and Eq. (1.6) show
that X is at that center.

The proof of (f'}goes the same way. The same
theorem in electromagnetism' says that E -8 =0
and E'-S'& 0 are the necessary and sufficient
conditions for the existence of frames in which
B =0. So by analogy, if I =0, E&0, then there
exist frames in which S =0. But then Eq, (1.4)
says that R =0 in such a frame, which contradicts
the premise E&0.

There is now the one other possibility men-
tioned in (f"), namely E. =L=O, i.e., S R=0 and
cS =g. Clearly the special case cS =& = 0 belongs
to this class of solutions, and this case is the
pole particle with X' the center of energy. We
shall make a plausibility argument that cS =& t 0
also corresponds to a pole particle, but with X'
not the center of energy.

To do this we show that S has the structure of an
orbital angular momentum viewed from X, and
also that in flat space as a special ease, S rela-
tive to the energy center, S~, is zero.

To show the first of these things, we go to an
arbitrary rest system of-inertia in which there-
fore M' =p' =f T'0. Equation (1.4) for a =0 then
can be written

R =cUxS (U =u/u =d r/dct) .

We shall assume that u' is a physical velocity,
not spacelike. Equation (4.4) is compatible then
with cS =R only if U=1 and R, U, and S are mu-
tually orthogonal. Then crossing U into (4.4)
gives

S=R x U'/c =(Xc-3C) x M U/c. (4.5)

This has the structure of an orbital angular mo-
mentum, seen from X', since x~-X is the radius
vector from X to x~, the energy center, since
Mo/c' can be interpreted in this equation as a
mass concentrated at x~, and since cU has the
significance of a velocity, the only well-defined
velocity in the problem characteristic of the par-
ticle. In this sense S may be interpreted as an
orbital effect.

R =0 in some frame. The velocity of transforma-
tion is

v =R XS/S

To show that relative to the center of energy,
the spin is zero in flat space, we go back to Kq.
(2.14) and srite x' -Zl' as x' -xc+xc -K'. Then

S = Sc+R X M/M (4.6)

Dot this by S, use P' =M' in the rest system, re-
order the dot cross product, and use p ~ U =Po
from (1.5) to find S ~ Sc =0. Then dot (4.6) by R
to find R ~ Sc =0 [since R.S =0 from (4.4)]. Thus
if cS =R, then we have found that S is Parallel
to U. If we now dot (4.6) into M, we get

M~8=M S {4.V)

This is a general. relation in the rest system of
inertia. In flat space where p (i.e., M) is parallel
to U [and hence from (4.5}perpendicular to S],
the left-hand side is zero. Thus in flat space

S~=O. (4.8)

p'u'u; =0. (4.9)

Using from (h) that Po—"0 is unphysicaie we get

u'u; =0, (4.10)

k'u; =O. (4.11)

To prove that S~ =0 in curved spaces directly, we
would have to prove that M is parallel. to U gen-
erally, but we have not been able to do this.

This completes the plausibility argument. To
sum up: if.cS =R, then (1) the special case cS
=R = 0 corresponds to a pole particle viewed from
the center of energy, (2) the structure of (4.5) is
that of an orbital angular momentum, and (3}at
least in the case of flat space, S~ =0. For these
reasons we suggest that cS =R generally refers
to a pole particle.

Proof of (g). A and I are constants of the
motion.

Proof of (h). From Eq. (2.15) in a rest frame
of inertia, P' =M' = J T". Thus P' in a C-frame
corresponds to the mechanical energy.

Now if h & 0, then by Eq. (4.10) below, u' is
null and must have a space part. In a C-frame,
this space part u must be parallel to S according
to (f), so that p ~ S w 0 is equivalent to p. u 4 0.
But by (1.5) this means Pouo x 0. Thus tt x 0 im-
plies P' 0.

On the other hand, if P 4 0 and uo 4 0 in a C-
frame (the latter meaning that the particle pro-
ceeds into the future in this system), then P u' w 0
and by (1.5) p ~ u & 0. But in a C-frame, u is paral-
l.el to S by (f), so that P' e 0 has led to It -p ~ S

p u40
Proof of (i). Consider Eq. (3.2) in a C-frame

with k=0 and a =0:
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A~ ug =0. (4.12)

Since by assumption of (4.2) at least one compo-
nent of h is not zero, it follows that u is null.
Then Eqs. (3.15) and (3.16) show that S is parallel
to u' giving null geodesics.

These arguments show that if P' or p S are not
zero along the trajectory, then the trajectory is
a null geodesic. We now show that if the tra-
jectory is a nul. l geodesic, then p S and P' can-
not be zero, provided they are not zero initially.

If the trajectory is a null. geodesic then

Equation (4.10) is valid in all frames since u u;
is a scalar.

Now u' is parallel. to I' since now the right-hand
sides of Eqs. (3.14) and (3.13) are zero, and hence
both are proportional to H', which cannot be
zero. It cannot be zero since it would mean in a
C-frame that both R and S are zero [apply Eq.
(2.V) to a C-framej. That is, the particle is a
pole particle. But the particle cannot become a
pole particle according to theorem (g}. Thus H"
cannot be zero. And u' is parallel to u', whence
the trajectory is a (null) geodesic.

The argument in Ref. V used Eq. (4.2). Multiply
Eq. (3.2}by S~ and sum over k:

which can be integrated
a

dq/dq'=Eexp (e-b)dq .
L 0

(4.20)

H=O, (4.21)

which says that H is a constant of the motion.
Next, Eq. (3.13) gives

H = -Hu (4.22)

Notice that dq/dq' is always positive (negative)
if the constant I' is positive (negative). Thus if
we start at 0 with q' positive (negative), it will
never change sign, go through a zero, or approach
infinity over a finite segment of the trajectory
(since we assume that e and 5 remain finite every-
where). Thus q is a monotonic function of q'.

Thus with q' defined by (4.20), the right-hand
side of Eq. (4.16) is zero and h' is a constant of
the motion. Since h =h'u0, this means that if k is
not zero initially and if the trajectory is a null.

geodesic, then h will remain nonzero throughout
the trajectory.

Proof of (I). Once the trajectories are null
geodesics, direct differentiation of H =-S~p /uo

gives

ui =bug
y (4.13)

H = -Hu (4.23)

h] ——eh), (4.14)
Equations (4.9) and (4.10) exhibit the rest of as-
sertion (j).

where 5 and e are scalars. Equation (4.13) cor-
responds to the definition of a null geodesic, and
Eq. (4.14) follows from differentiating (3.15) and
subtracting (3.16). Of course, 5 and/or ecould.
be zero, but we assume that they do not diverge
on the trajectory.

Consider now

d(-h)/dq =D(h, /u, )/Dq = (e —h)ho/uo. (4.15)

d(-h')/dq' = (e' —5')h', (4.16)

where

We wish to show that a parameter q'(q) can be de-
fined for which the corresponding h' =h, /u,'=hdq/
dq' satisfies dh'/dq' =0. If we compute dh'/dq'
and use (4.15}we get

V. ISpi PARALLEL TO

Perhaps the most interesting question after
whether or not the trajectory is a null geodesic

is whether or not P~ is parallel. to u'. Mashhoon
emphasized that P' is an effective or canonical
momentum and as such need not be parallel to u'.
Nevertheless, a massless particle is quite spec-
cial, and one. can ask whether or not p' is parallel
to u' anyway. .

In flat space (Ref. 1) and in constant curvature
space (Sec. VI below), it turns out that p' may be
parallel to u and will be if initial conditions are
chosen appropriately. In flat space, if this is not
done then S will in fact diverge.

It is interesting to note that P' is parallel to u'
in flat space for still another reason. In flat
space only the first term of Eq. (2.15}remains,
and also

e' = e dq/dq',

5' = 5 dq/dq'+ (d'q ldq'2)dq'/dq .

Setting e'=b' we get

(4.1V)

(4.18)

S 0 = -p'(X —xc) (5.1)

from Eg. (2.14). Take D/Dq of this, denoting
d&c/dq by u,'.

&q/dq" = (e —&)(dqldq')', (4.19) S 0 po(u™o—u ) (5.2}
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since P =pin flat space. Compare this with Eq.
(1.2): we get

rection of the particle, then (5.8) may be written
in the form of (1.9):

p /p'=uc/u'. (5.3) Z"0=-n Z- =Z'" Z"=Z'" (5.10}

Now u'=uc both being equal to dct/dq. Further,
in flat space x~ is a fixed point of the particle,
whence uc cannot be spacelike. But from (5.3) P'
is parallel to u~, so P is not spacelike. But u'
is already known to be null. Therefore, from
Appendix A it follows that P' is parallel to u'.

This argument cannot be applied to the C-frame
of Sec. IV since one cannot allow u~ to be not
spacelike in general, since x~ need not be a fixed
point of the particle.

I et us now suppose that

(5.4)

in general spaces, where m is a scalar, and see
if it leads to contradictions. Vfe al.so assume
null-geodesic trajectories so that

u' =bu'. (5.5)

Thus

P =~Q (5.6)

where n =-m —mb. Notice that if P' is parallel,
to u', Eq. (1.5) shows that both are null. From
this it follows that the path is a null geodesic
without further ado.

It can now be seen that Eq. (5.5) determines u';
Eq. (1.4) determines three of the S' 's in terms of
the other three, u' and a [see, for example,
Eq. (1.9)]; Eq. (1.2) tells us that the S'" are pa-
rallel transported, whence the remaining three
S are determined from initial conditions; and
one of the three independent equations in
(1.1) gives n in terms of S'", u, and R'~„„,
once Eq. (5.6) is used. Thus everything is de-
termined without use of two of the equations in
(1.1}. For consistency, these remaining equa-
tions must be satisfied automatically with these
solutions.

If we define

The first of these defines n: the other two must
be satisfied with the solutions for S'~ already ob-
tained from the other equations. If we go into a
C-frame at the point P, in which S"=S"=S"'=0,
then the last two equations of (5.10}become

(Rzpzz+ Rzzyz) = 0 q

S'*(R„„+R „)=0.

(5.11)

(5.12)

VI. CONSTANT CURVATURE

In Ref. 1 the flat-space case was solved com-
pletely. %e here set down the solution for the
metric of constant curvature (de Sitter):

ds' = c'dt ' —e' '(dx'+dy'+dz') (6.1)

(where w is the square root of the curvature con-
stant) for which the Hiemann tensor is

2Rim~ =u' (g&zkzm-g~Wzn) ~ (6.2)

%'e shall. not go through the details of the solu-
tion, but we write down the answer in order to
show that some of the flat-space features cannot
be generalized.

The four-velocity gives

Now S"' cannot be zero in this frame, otherwise
S'" is the zero tensor at P, which we reject as un-
physical. (S" is a constant of the motion in any
case, since H is. ) Thus the circular brackets
must be zero if the pole-dipole equations are to
be consistent with P' parallel. to u'. Thus Eq.
(5.11}and (5.12}are necessary conditions for p'
to be parallel. to u'. They are not, however, suf-
ficient conditions. One can (as in flat space)
choose initial conditions to thwart this. But if
Eqs. (5.11) and (5.12) are satisfied, then there is
the option available for p' to be parallel to u'.

Zilt ~liA Smft
Sttt

then Eq. (1.1) becomes

(5.7)
&O=constx e ~',

u /u'=A e "', g(A )'=1

(6.3)

(6.4)

Z Qg =~@ (5.8)
where theA are constants. The four-momentum
comes out

which has the same form as Eq. (1.4). Consis-
tency can therefore be assured if, say,

P'=ass +Be "',

S t Ztttft Zi g jtttt 0 (5.9) p =BA" e ' '+B e ', gA B =atu (6.6)

Or if we adopt a system of coordinates at some
point P of the trajectory that has x the space di- where the B are constants. Next
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S«0 (-xB«2~«) e-«t+-jy«&-2«&

(6.7)

and finally,

gA G =aA -au 'B

We see from Eqs. (6.4) and (6.6) that in general
u' is not parallel to p'. In the flat-space case,
this was also true, but S there diverged unless
p was in fact parallel to u', which could be ar-
rived at by a choice of constants. But in the con-
stant-curvature case, S ' does not diverge, even
if projected onto a local tetrad. There is no in-
consistency in taking the limit zo =0 since in this
limit Eq. (6.7) shows that S"0-zv '(B +5 )
—t(B + 2E'). Thus, to take the limit we need
B +E =0, and then to avoid the divergence we
must have B +2E =0, which makes B =E =0
and therefore P' parallel to u .

But if m 0, there is no divergence that re-
quires P' to be parallel to u'. However, if P is
paral1. el to u' initially, then it is so always.
From the above equations the general condition
thatP /P'=u /u' is

(6.9)

8 +E e '=0 and a =0. (6.10)

Thus if S =Oat t=0, I =-8, whenceS 'is
not zero at other points of the trajectory in gen-
eral. S '= 0 means that X"=Xc. Thus if X =Xc
initially, it does not necessarily foll.ow that X

Xc afterwar d
However, if both P is parallel to u' and S ' =0

initially, then from Eqs. (6.9) and (6.10) we have

E =B =a=0. (6.11)

This is a relation among constants which, if sat-
isfied initially, will obviously be satisfied always.

By the same token, if S =0 at some point t of
the trajectory, then it foll, ows that

cance of the basic pole-dipole equations (1.1)-
(1.4) of a massless particle. The most directly
provable consequence was that if a 4 0, the tra-
jectories are null geodesic s (Sec. III). If, how-
ever, a =0, then certain additional assumptions.
had to be made (Sec. IV) to prove the null geo-
desics. The assumptions were physically quite
plausible (P' + 0 in a frame in which X' is the
center of energy, or p ~ S 0 0), but nevertheless
they had to be made.

One could argue, however, that the at 0 solu-
tions should carry over also for the a =0 points.
The reasoning could be simply mathematical,
that the solutions ought to be continuous functions
of a. Or it could be physical, that the massless
object in a pole-dipole approximation should move
rigidly, and the path obtained for one point should
be the path for neighboring points. Thus the mo-
tion of points for vanishingly small a shouM be
the same as for a =0 points. (The physical and
mathematical arguments are essentially the
same. ) If one does not accept such arguments,
then the calculations in Sec. IV can be made.

For massless particles with spin, in any given
coordinate system, one does not isolate the ener-
gy center and follow its motion. What can be done
is to ensure that at the initial point there exists a
frame (called a C-frame) in which the point X'
under discussion is the energy center. Then it
was shown in Sec. IV that there exists a C-frame
for X' at every point of the trajectory, as X and
the particle move through four-space according to
the pole-dipole equations. If X' is the energy
center in some system at the start, then one could
contemplate a coordinate system, built up from
the string of C-frames, in which X' remains al-
ways the energy center.

Moiler' showed that there is no unique energy
center for spinning massive particles. In fact,
the energy centers occupy a disk of radius
cSO/E, perpendicular to the spin So in the rest
system (denoted by subscript 0). For massless
just as for massive particles, there are many
points that correspond to energy centers in var-
ious reference frames.

Instead of going into the rest frame, the best
we can do for massless particles is to go into
a C-frame, denoted by primes. If we go from
primes to unprimes (in which the energy center
is X') by the velocity v, then"

From this it follows that P will be parallel to
u', and S 0=0 always. R =-E(X'-X)=-v x S'/(I -v'/c')' (7.1)

VII. DISCUSSION

In this paper, we have gone into some of the
mathematical consequences and physical signifi-

where X' is the energy center in the primed C-
frame. E is the energy of the particle in the un-
primes. If we transform E as the fourth com-
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ponent of a four-vector under Lorentz boosts
between rest systems of inertia, then
E= (E' -p' v)/(1 --v'/ c')' ', and (7.1) becomes

IvxS'
E'-p' v

(7.2)

Now either p' is parallel to S' or it is not. If
it is parallel, then we can choose v to span all
directions perpendicular to S', and all values up
to v =c. Then X'-X will cover a disk of radius
cS'/E', which is just Moiler's result.

If, however, p' is not parallel to S', Eg. (7.2)
tells us that the range of X'-X values is not
circularly symmetric. In the direction perpen-
dicular to both S' and p', the range of X'-X
goes up to cS'/E'. But in other directions it will
not go this far, or it will go farther. Thus a
modified form of Moiler's theorem is possible
for massless particles.

Finally, we come to the physically interesting
question: In a given reference frame in a par-
ticular space, how does the center of mass Xc
of the massless object

movers

Up to now what
we have considered is how the point X' moves.
But X is not a body-fixed point of the particle in
general; it is only a reference point. By the
arguments of Sec. IV, it is a point (if a =0) that
is the-energy center in some reference frame, but
not necessarily the observer frame.

The solution for Xc can be obtained directly
from Eq. (1.6), with X' known from the geodesic
equation, S' known from. the solution of the
pole-dipole equations, and M' known in terms of
other quantities from Eq. (2.15) with i =0. This
is a complicated procedure, and about all one can
say in general is that there is no reason why Xc
must travel along a null geodesic, before taking
the limit, if we do, of the point particle.

For constant curvature, Sec. VI, we have the
compl. ete solution. We have verified from the
procedure of the preceding paragraph that the
motion for X~ may be along a null geodesic if the
constants of integration (i.e., the initial condi-

tions) are chosen appropriately. But if the initial
conditions are not so chosen, then the path will
not be a null g,eodesic. Thus as far as the pole-
dipole equations are concerned in this special case,
the motion of Xc can be either a geodesic or not.
Gf course, there might be some physical reasons
why initially the constants must satisfy certain

relations, but these reasons are beyond the pole-
dipole formulation if they exist at all.

A more easily answered question: Does X~
perform a trajectory that is the same as that of a
particular X''P To answer this, all one needs to
do is add S'0=0 to the pole-dipole equations, and
see if a contradiction results. %e have done this
for the exterior Schwarzschild metric, and found
that S"=0 is in fact not general. ly consistent with
the pole-dipole equations. Thus an observer at
rest in the gravitational fieM of the sun for ex-
ample need not in general see the energy center
of a pulse of light describe the trajectory of one
of the solutions X' of the pole-dipole equations.
Xc will stick close to X' (since both are "inside"
the particle), but need not follow the same path.
In the point-particle limit, however, they must
of course coincide.
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where k is a scalar.
To prove this, go into'a local orthogonal tetrad

and let x be the space direction of m so that
m' =m'(1, f, 0, 0), where f& 1. Then m'n, = 0
reads

m (n -yn") =0, (A3)

i.e., n =fn", since mo cannot be zero if m' is
timelike or null. But then n'n& ~0 reads

This can be satisfied only be setting n' =n'=0
and f= 1, which proves the assertion.
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APPENDIX A

We wish to prove here that two vectors which
are not spacelike can be orthogonal only if both
are null and parall. el to each other. That is,
if m' and n' satisfy
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