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Scalar field in the early Universe: Coherent-state representation

and thermal density matrix
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A coherent-state representation valid even near the singularity is constructed for each mode of a quantized scalar
field in a classical spatially homogeneous anisotropic background cosmology. The stress-energy tensor expectation
values are computed in a coherent state and shown to be classical except for zero-point-energy terms. The self-

consistent problem of a quantized scalar field in a changing background metric is discussed. The scalar field can also

be described by a density matrix rather than a pure state. The density matrix is then used to determine expectation
values. The density matrix need not be a thermal distribution although such a choice is reasonable in a realistic

model. Temperature estimates are made using dimensional analysis.

I. INTRODUCTION

Recent advances in grand unified theories of ~

strong, weak, and electromagnetic interactions
have hinted that it may be possible to correlate
observational data with quantum processes in the
early Universe. This has caused increasing in-
terest in the study of quantum field theory in
curved spacetime. ' In this paper we consider a
minimally coupled quantized massive scalar
field in a prescribed classical background cosmo-
logical spacetime. The behavior of the classical
scalar field near the cosmological singularity&'
is best follow'ed quantum mechanically by con-
structing an (over) complete set of coherent states
for each mode of the scalar field." The coherent
states are parametrized by initial conditions for
the scalar field, These states become the usual
minimum-uncertainty wave packets if (and only i&)

the time scale for the evolution of the background
spacetime is much greater than the periods of
oscillation of the modes of the scalar field. '

The coherent-state representation can be re-
lated to the N representation& ' so that expectation
values may be easily calculated. The scalar-
field stress-energy tensor expectation values can
be computed in a coherent state. ' These expec-
tation values are shown to split into a classical
term and an (intinite) vacuum fluctuation term.
If the vacuum term can be regularized, "it is
shown that it is possible to set up the self-consis-
tent problem of a quantized scalar field in a
changing classical cosmology ix

Observations of the cosmic microwave back-
ground indicate that the Universe is highly iso-
tropic. This high degree of isotropy may be
either a consequence of very special initial condi-
tions" or an inevitable result of dissipative pro-
cesses in an. originally chaotic Universe. ' Ideally,
the latter scenario would not require one to spe-
cify initial conditions for the Universe.

Hawking has proposed" a way to avoid the re-
quirement to specify the initial conditions pgp Qgp
for each mode. The quantum state of the scalar
field near the initial singularity is inaccessible
to an observer at the present time just as the
state of the quantized scalar field inside a black-
hole event horizon is inaccessible to an observer
at infinity. " Hawking's suggestion is that this
ignorance of the actual state of the quantized field
is best expressed by taking a random superposi-
ton of all allowed states in the inaccessible re-
gion." It is assumed that all phase information
is lost so that the system can no longer be des-
cribed by a pure quantum-mechanical state. It
is possible, however, to construct a density
matrix from which expectation values may be cal-
culated. '

In this paper, we impose this "randomicity prin-
ciple"" by superposing the coherent states in a
random manner. Phase information is lost so
that the scalar field is described by a density
matrix rather than a pure state. The expected
number of quanta at late times is the remaining free
par ameter for each mode. The density matrix may
be used to compute interesting expectation values.

The distribution of average particle number
need not be thermal although interactions (ne-
glected in this analysis) make such a choice
reasonable. If a thermal distribution is imposed,
the remaining free parameter —the temperature
corresponding to a chosen time or cosmological
scale factor' —can be fixed by dimensional analy-
sis. A comparison with an alternative calculation
which leads to a thermal distribution" is made.

The classical scalar field and its stress-energy
tensor are introduced in Sec. II. The N represen-
tation is reviewed in Sec. III and the coherent-
state representation introduced in Sec. IV. The
stress-energy tensor expectation values are cal-
culated in Sec. V and the self-consistent problem
discussed in Sec. VI. The thermal density matrix
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is introduced in Sec. VII. An analysis to fix re-
maining free parameters is given in Sec. VIII. A
summary is given in Sec. IX.

II. SCALAR FIELD IN CURVED SPACETIME

For convenience we consider a background
cosmological metric which is spatially homogen-
eous, possibly anisotropic, and topologically
three-torus or Euclidean. The general form for
such a metric is ()t=c=1)

modes of expressions (6) and (7). Substitution
of the expansion (3}in Eqs. (6) and (V} and
(2v)-' ' fd'x applied to the result yields the spa-
tially averaged components

~o0=32 3 ~
~ d

+~'g (~)'4~ fdqa
'

32

ds'= -di'+g a, '(i)(dx')'.

In this background, a minimally coupled scalar
field of mass m satisfying'0

(g v„v„-m')y{x)=0 (2)

where Z-„extends over both even- and odd-parity
modes.

III. THEW REI RESENTATION"

can be expanded in odd- and even-parity modes~:

Q(x) = (2v) ~~2+ [q1(T) cosk x+q ~(&) sink x],
(3)

where Z„ is a sum over discrete modes in the
three-torus model and fd'k in Euclidean topology.
V„ is the covariant derivative and p =0, 1, 2, 3. g""
is the reciprocal metric. Transformation to a
new time coordinate defined by g' 'd&=dt for
g'i' =a,a2a, yields as an equation for the mode
amplitude ql (Ref. 4)

The scalar field (3) may be quantized mode by
mode by defining

(lo)

and imposing the usual canonical commutation
relations. A complete set of orthonormal states
~nl) can be constructed to be eigenstates of a
formal number operator

N&-=A~A. ,

q' +(o (v'}q-„=o,
dt

where

(4a)

(4b)

(12)

q;, p~= -i8/8q; are now operators. The c-number
complex function Pi(T) is a solution to the classi-
cal equation (4) such that

The stress-energy tensor for a scalar field is'0 dP- d
p- " -p- —p*=i ~" d& "d& (13)

T„„=8„$8„$-2 g„„(g™y8@8~/ +m Q )

for 8„=8/sr~. For the metric (1), this yields for
the diagonal componentss (using v as time coor-
dinate}

(8 2 1

It is easily shown by differentiating Eq. (]2) and
using Eq. (4a) with q; and pf and Eq. (10) that
dA~/d&=0. To completely fix the representation
a boundary condition must be imposed on p-(v).
In most models there exists a regime ~ =~~~ de-
fined by the WEB condition

and (for i = 1,2, 3) 60~ && OP~
~ d(d~

d& (14)

in which we can require

a& +m
y g a~

Bi.nce the background metric is spatially homo-
geneous, we may require the quantum state of the
system to be also spatially homogeneous. ' Thus
we need consider only the spatially homogeneous

(15a)

Iim ' (~) = i&uP-(r) .dP-„

A more rigorous treatment of this type of %KB
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boundary condition has been given by Parker and
Fulling. ' If the scalar field is not massless
(m &0) or the topology is T', it is possible to
choose 7„~ so that Eqs. (15) are valid for all
modes. If inequality (14}is valid, the formal
creation and annihilation operators can be inter-
preted to be physical particle operators. Thus
the state In1& behaves as a harmonic-oscillator
state containing n-„quanta when 7 = ~~~. Fo'r
7'& 7~~, the interpretation of n~ as a particle
number cannot'be made. Thus we shall always
interpret (n~& to be the expected number of quanta
which will be present in some state when 7 =~„~.

The vacuum I0) is the state annihilated by A-„

for all modes k. In this representation, the basis
states are then

(18)

for II-„a generalized product over modes and

In-„&= (n-„~) ' ' (At)"BIO&.

The choice IO& as the vacuum is somewhat arbi-
. trary since no unique decomposition into positive-

and negative-frequency modes is possible if the
WKB condition (14) is violated. (See Hefs. 4 and
8 for discussion of this point. )

IV. COHERENT-STATE REPRESENTATION

As an alternative to the N representation, we

can construct an (over) complete normalized set
I

X~& of coherent states for each mode. ' This
representation will be useful because it can be
constructed to closely follow the classical be-
havior at all times. Coherent states are defined
to be eigenstates of the formal annihilation opera-
tor:

(ls)

where X-„' is a time-independent complex number
and A; 1s defined by Eq. (12). If the mass of the
scalar field is nonzero" or the topology T' the
representations are related by'

I
&1&=g (na~) "'&-."'e~(-I &-.I'~2} ln-. & (»a}

og,=o

The coherent states satisfy a completeness rela-
tion

culated using Eqs. (12), (13), (18), and (19a). In
particular,

(~, Iq-„I ~-„&= 2 ae(P;x1*),

&~; (P, ~
~;) = 2 ss(„~;"),

(x-„Iq I~-„&=2Ite(p-„*'~-„')+
I
p-„I'(2I y

I +I),

(20)

(21)

(22)

&z-„Ip-„'I ~-„)=2 Re I ~ + " (2I ~-„I'+I),

(23)

and

&x-„IÃII x1&=
I
x-„I'. (24)

&p;= Idp1/dr
I (25b)

I

From Eqs. (15), we see that the
I

X"„& are mini-
mum-uncertainty wave packets" &' when &= ~„~.
The form of Eqs. (25) also shows that quantum ef-
fects measured by &p-„, &q-„are vacuum expecta-
tion values independent of ~~.

To completely fix the coherent-state representa-
tion, we require (&-„Iq-„I &-„& to be the real solution
to the classical Eq. (4) characterized by the two
arbitrary constants pro, qgo This will yield ~-„as
a function of P"„o,q-„,. The boundary condition (15)
selects the appropriate exact complex solution
P-„(7) to the classical equation (4).

As a typical example, we consider a cosmolo-
gical model with a vanishing proper volume
singularity at 7~. In a model of this type, we
expect Eq. (4b) to imply that

lim u&-„(~) = 0 .
1 «1$

(28)

In this case, the classical mode amplitude near
7~ can be written as

11111qI~ (7) = qlo+pIO T .
7 «fg

(27)

The general form for p-„(7) as 7-Ys with the
Wronskian (13) may be expressed as

It is also interesting to evaluate the uncertain-
q -=(&q-'& —&q;&')" ', p- -=(&p-') —&p-&')" '

in the coherent states. We find

(25a}

I xI& (xI Id xg = 1, (19b)

where d'X-„= (d Reh~) (d 1mk.-„)=
I A1 Id I X1I d8 over the

complex X~ plane where 6) is the phase of X~. The
states

I
A.-„& are normalized to unity but not ortho-

gonal. The set X-„=0 for all k corresponds to the
vacuum

I
0&. Expectation values are easily cal-

limP (r) =e*' b+—-(c+i)7
2b

(28)

since Eq. (13}reduces the two arbitrary complex
constants of the general solution to Eq. (4) to
three real parameters. The form of Eq. (28) was
chosen. to automatically have the correct%ron-
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Reh.-= ~o (c sina+cosa)-p- bsina
k, 2b » (2ea)

skian. The parameters a, b, c are then identi-
fied when the limit as 7 —&~ of the solution of
Eq. (4) with the correct Wronskian is taken. 'Ihus
the real numbers a, b, c are known mode-depen-
dent parameters. of the exact solutions to Eq. (4)
and define the particular solution to the classical
equation which satisfies the "positive-frequency"
condition (15a) in the WEB limit. The coherent-
state parameter ~-„can now be obtained by using
Eqs. (2V) and (28), respectively, in the left- and
right-hand sides of Eq. (20). We find

~0

Imk-„= '0 (-sina+c cosa) -p-„,b cosa. (28b)

2

g, lx-„I~i&= ", (c'+I)+ p„'f2-p-„q-„, c. (so)

The coherent-state representation presents a
natural method for relating %KB behavior to
singularity parameters. The procedure to obtain
X-„as a function of p»„p Qgp may be repeated for any
dependence of &o~(&) or q-"(r) as r- &s rather than
Eqs. (26) and (27).

From Eq. (24), this yields as the number of quanta
in the state

I A~& in the limit & —&„~ (Ref. 21)

V. COHERENT-STATE STRESS-ENERGY TENSOR
EXPECTATION VALUES

(31)

and

32"'

+(2I&al'+» „„" +I"!g-~1'Ilp;I' .

Expressions (22) and (23) may be used with Eqs. (8) and (9) to obtain" (XilT~MI X~& and (X-„IT~«l X-„&, where
T~, T,",. are the kth mode pieces of Tpp and T, -, . We find

32~'g()1II'lolls&=2R ';*' Id,
' +~1'(r»-.' +(21~el'+» „," +~ (~)lpal

Ih, d&

+ CVg
7'

Isa

and anisotropic pressure

z„-=(olT,*lo&

(33)

(34)

From the uncertainties &q-„, 4p-„given by Eq.
(25), it is clear that only the vacuum terms in the
expectation values (22) and (23) do not appear in
(q-„) or (pi& for coherent states. Since (q~& and
thus (p1& have been constructed to follow the clas-
sical behavior of the field amplitude and T„'„con-
tains only terms of the form P-„2 or q-„' [see Eqs.
(8) and (9)j, only the zero-point-energy terms in
(T„"„&in a coherent state cannot be obtained by
treating T1 as a classical quantity. As is well
known, "the vacuum expectation values are the
vacuum energy density

p, -=-(ol T;I 0&

(35)

for

P=PO+P' y Pq=P)p+Pg (38)

pc& ~ I
Re~ Q+~ ~

I

+co-mp-~
1 ~/ dP&'

I«'& ~i

+ /~.-/'( „' +~ [p;/)II

the classical energy density and

(37)

~l Re ~a'
I

'
I

+I '. -~-„'Ip-„'

tion values are finite if w4 r~. Only the vacuum
expectation values must be regularized. Thus we
may express the stress-energy tensor expecta-
tion values in any coherent state

The X-„, or equivalently p-„„q», may be chosen so
that the classical stress-energy tensor expecta-
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the classical anisotropi. c pressure. The term
classical is used because in fact Eqs. (3V) and
(38) are equivalent to

p" = ~.0= -(V'0'»

I' =a, 2T„=(T,.'),
(39a)

(39b)

where T~, T,, are from Eqs. (8) and (9) with q-,

interpreted to be the classical solution to Eq. (4).
[Indices are raised and lowered with the met-
ric (1).] That is—if rather than a quantized
scalar field, we treated the classical scalar
field, defined X-„and P~ as we have before, and
used Eqs. (20) and (21) with the expectation values
replaced by classical variables q„-,p„- to express
q-„,p2in terms of A2 and p2, then T~„ from Eqs. (8)
and (9) considered to be a classical quantity could
be written in terms of ~-„and P~. This procedure
would yield expressions (3V)-(39). This almost
classical behavior of &T"

& is special to coherent
states and is due to the presence of only vacuum
terms in the uncertainties given by Eq. (25).

VI. REMARKS ON THE SELF-CONSISTENT PROBLEM

If we can assume that the scalar field is in a co-
herent state, the self-consistent problem —inclu-
sion. of the effect of the scalar fieM on the classi-
cal background cosmology (1}—can be formulated.
We must solve~~ (using the conventions of Ref. 23
with & =1}

where G„„=B„-& g B is the Einstein tensor
formed from the metric (1) and I(Ak]& is a coherent
state. In terms of the original time coordinate
(overdot=d/dt) Eqs. (40) become"

tions1-„„q« for the classical energy density and
anisotropic pressure is chosen conveniently, a
self-consistent solution may be obtained by solv-
ing Eqs. (4), (39), and (41)-(43) with the pre-
scribed po~, I'o" as a function of the background
metric. " Performance of this calculation for
various backgrounds and choices of classical
scalar fields will be left to a later paper.

We note that to use a scalar field in a coherent
state to calculate quantum effects leading to
singularity avoidance' may yieM ambiguous re-
sults. This is due to the fact that the energy con-
ditions required by the singularity theorems are
violated by a classical scalar field of mass m if
the Universe scale factor is smaller than the
Compton. wavelength associated with the mass m. 27

VII. CONSTRUCTION OF THE DENSITY MATRIX
AND EXPECTATION VALUES

To avoid specification of P«, q-„, or equivalently
X-„, we recognize that any state of the scalar field
may be constructed by superposing the

I
&2&. Since

the actual X- values required at the singularity
are not known, we may assume a Gaussian dis-
tribution of &-„values. We may assume thai the
state of the system is

d2x; o. (z;) I
z-„&.

According to the "randomicity principle, " how-
ever, phase information for the amplitude o'(X-„)
cannot be determined. Thus only

I
o (A2) I' may be

specified. This allows construction of a density
matrix

(45a)

aa Qa d a1 2 + 1 2 + 2 2 8+(pcI+preg)
Q1Q2 Q1Q3 Q2Q3

(41) where we have assumed that the random-phase
approximation replaces

0 0 ~ 4 0 ~

— ' — ' — ' ' =8v(I'"+I-2)1 10
Q2 Q3 Q2Q~

with permuted expressions for the 2 and 3 compon-
ents. The stress-energy terms p", I';'are [see.
Eq. (39}]from Eqs. (8) and (9) with q-„classical
and pa~, I'«~ are suitably regularized expressions
obtained from Eqs. (33) and (34). The condition
that v &T"„&=0 imposes the additional requirement
that

p+Q (~,-) 'd,-(p+I',.) = 0.
j 2:1

The regularized vacuum expectation values have
been catalogued for several interesting back-
ground cosmologies. ' If the set of initial condi-

de- ", d2q&o. +(z,')e(x;) Ix;&g I

The diagonal matrix elements of the density ma-
trix are

I
o'(x2) I'Ix2&&A.-„I for each value x2. We

then require a Gaussian I

Io, (~ )I e-I&2i l(nz&
ir &n-„&

where &n2& is the expected value of &;A-,.' [In
quantum optics, the density matrix (45) can arise
when an oscillator is excited by incoherent
sources. '] Since from Sec. IV the

I Ag) have unit



SCALAR FIELD IN THE EARLY UNIVERSE: 1255

norm, Eqs. (45) imply that

I &; Id I &1 I I &(&x)I'+a I &.&&a I &I& =1

The coherent state for the scalar field is the
product over modes of the coherent state for
each mode. We assume the modes to be noninter-
acting so that the density matrix for the field is
just the product of the density matrices for each
mode. ' Thus we find for the scalar field a den-
sity matrix

)

p
l k

exp
g y

.
y 46

where

lengths smaller than the Hubble radius. ' In such
a regime (say for r=r„~) we require the WKB
limit Eqs. (15) for P;. Now evaluate Eqs. (50) and

(51) in the WKB limit so that &n~& can have its
usual interpretation. We find

and

lim &T~&=, ((n;&+-,')(u-„
16m g

(52)

(53)

Using the definition (4b) for (()- and the metric (1),
it is clear that the trace of &T~„& is formally zero
for a massless scalar field. Of course, regulari-
zation of the vacuum stress-energy term may
yield a trace anomaly. 3

The density matrix (46) may be used to evaluate
expectation values through'

&A&=trpb,

where &&& is the expectation value of any opera-
tor A. . If it is convenient, the mode k portion of

p from Eq. (45) may be used to find &&~&. It is
easy to show that

&Ng& = trP-„At%-„= &ni)

so that the formulation is consistent. Using the
density matrix as in Eq. (4V) for the stress-ten-
sor expectation values yields

(T„'„)= tr T,"„p-„

=
[ d'~;l(z(~i)l'+-„IT,"„l~-„&, (49)

(T~g=, (2&ni&+1) " + ~i'(~) I p~l' (50)

(T'„)=~2', (2(m;)+()I

2k 2
+ ', (;-ra ( )[();('}.T2 k

(51)

We have previously argued that the interpreta-
tion of &n~& as a particle number is valid only in
a WKB regime defined by (()i 'd&o-„/d««u~. This
condition will be valid for mode proper wave-

where
I
()'(&-„)I' is given by Eq. (45b) and the co-

herent-state expectation values are to be found

from Eqs. (31) and (32). Since d'xi= IX-„Id
I X~ldgi

for xi= labile'~l, the terms in braces in expecta-
tions (31) and (32) do not contribute to the expecta-
tion value (49). Since (X~IN~lx-„&= I&-„I' and trpb=1,
we find easily that

'Thermodynamical considerations may be invoked
to prescribe (ni&.

For an anisotropically expanding Universe con-
taining only noninteracting scalar quanta, there
is no reason to assume that the system is in
thermal equilibrium. " In a realistic model, how-

ever, other fields and interactions are present
so that a temperature should be definable. In

fact, inclusion of "back reaction" of the field
quanta on the metric' may argue for thermaliza-
tion as well as isotropization. Let us attempt to
define a reason. able thermal distribution. A
similar analysis has been given by Parker (Ref.
17).

First assume that only the "classical" (n;& par-
ticipates in the thermal distribution since the
zero-point-energy (vacuum) contribution is deter-
mined uniquely and separately by regularization.
Let us further assume that a self-consistent cal-
culation has been performed" leading in the WEB
regime to a background metric which is isotropic:
a, =a, =a, =a. With these assumptions, the energy
density (54) becomes

, Z &n-„&, +m'
2 &2&r a

(55)

where k Z, ,k,.~. Now let us consider the temp-
erature to be sufficiently high that the quanta are
relativistic so m may be neglected. Then

VIII. A THERMAL DISTRIBUTION

Let us rewrite Eq. (52) using the definition (4b)
for &-„. I'et us further define the energy density
& to be 2-„&(-T', )) where Z-„is either a sum over
discrete modes for T' topology or fdk for E~

topology. Thus

e=, I g ((n-&+ —')I ', +m . (54)
, 16K g ~ II, ) g Q~
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&n;)= (e'~" -1) '

for a temperature (in energy units)

(55)

XI. DISCUSSION

An overcomplete set of coherent states can be
constructed for each mode of a scalar field in a
background anisotropic cosmology. In the WEB
regime, ~= ~„~, these states become minimum-
uncertainty wave packets. '

The coherent-state representation be comes
useful when a particular complex eigenvalue X-„

is associated with parameters P-„„q»„,of the clas-
sical solution for the mode amplitude. The ex-
pectation values of q-„,P-„ in the coherent states
are just the classical solutions. Quantum effects
appear only in zero-point-energy terms. In a
self-consistent "back-reaction" calculation, as-
sumption of a coherent state for the scalar field
allows the stress-energy tensor expectation

T =T,a, /a. (57)

We may interpret k/a to be the proper wave num-
ber for the mode k. This yields (n-„) which is
time independent although the energy density (55)
does decrease during the expansion (as a ' for
the relativistic limit and as a for the nonrela-
tivistic limit).

We have now reduced the specification of the
scalar field to the parameter T,a, . In the standard
cosmological models, "one associates the Planck
temperature T»=—(c%/G)'~' with the Planck time
t~, —= (GS/c')'~~. If we then choose T, =T», k/a,
becomes the proper wave number for the mode k
at the Planck time. From Eq. (58) we see that
this also implies the association of the observed
present blackbody temperature with the present
proper wave number. '

values to be treated as a superposition of classi-
cal and regularized vacuum terms.

By starting with the coherent-state representa-
tion one can naturally incorporate our ignorance
of the state of a quantized field near the cosmolo-
gical singularity. Invoking a randomicity princi-
ple leads to a density matrix (rather than pure
state) for the quantized field. The density ma-
trix used is the same as that for a scalar field
excited by incoherent sources. '

The density matrix need not be a thermal dis-
tribution, although arguments with regarded to
neglected interactions and back reaction suggest
that such a distribution might not be unreasonable.
In this regard, we cite a calculation by Parker"
in which a thermal distribution is obtained by
evaluating (n-„) at late times for a scalar field
initially in the vacuum state in a universe whose
scale factor smoothly approaches a constant
rather than a singularity. (The initial vacuum
state is of course defined in such a model. ) The
resultant thermal distribution is quite general
for models of this class." The temperature
parameter (analogous to T, a,) depends on the con-
stant approached by the scale factor." Such be-
havior by the scale factor might be reasonable in
cosmological models which exhibit a bounce.
Calculations indicate that (in a closed universe)
such a bounce could occur for a model containing
a scalar field of mass m when the cosmological
scale factor is on the order of the Compton
wavelength 1/m. '
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