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Slowly rotating bodies with arbitrary charge in general relativity
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The Einstein-Maxwell equations are solved for a slowly rotating body with arbitrary charge. The solution is

apphed to a thin, rotating, charged shell. The angular momentum, gyromagnetic ratio, and other quantities of
physical interest are computed. In particular, whenever the charge is less than the mass (but not necessarily small)
the gyromagnetic ratio approaches 2 as the shell radius approaches the horizon. Under these conditions the
rotational velocity of the inertial frames inside the shell approaches the rotational velocity of the shell. %%en the
charge is greater than the mass there is no horizon and the gyromagnetic ratio can exceed 2. Furthermore, an

example is given in which the inertial frames within the shell rotate in a direction opposite that of the shell.

I. INTRODUCTION

It is well known that the classical Maxwell equa-
tions can be generalized to include the effects of
curved space-time. When this is done one finds
electromagnetic behavior which differs from that
expected from flat-space-time calculations. The
introduction of rotation brings with it yet another
possibility, this being the influence of rotation
on the inertial frames and on the electromagnetic
field.

In an effort to address these questions, the sta-
tionary, axially symmetric' metric"

dg2= / dt2+/md/2+( 2de

+ B'(dy —ddt}'

has been studied. Here A, B, C, E, and ~~ are
functions only of the va, riables x and 8. In the
asymptotically flat regions of large x, x and 8
are the usual spherical coordinates. For a dis-
cussion of symmetries and their implications, see
Ref. 3. The metric contains the angular velocity
of the inertial frames 4 explicitly. 'This angular
velocity is measured. relative to observers in the
inertial frames of the asymptotically flat space-
time at infinity. '

For the uncharged case Brill and Cohen ' found
the metric of this form [Eq. (1)] for siow rotation
(to first order in 0). Cohen then used these re-
sults to solve Maxwell's equations for this geo-

metry in the sa,me approximation. "Hence an ex-
terior solution was obtained to the equations
which result when terms quadratic in the charge
and rotational velocity in the Einstein-Maxwell
equations are neglected. This solution was used
to analyze slowly rotating thin shells of arbitrary
mass and small charge. "' Cohen, 'Tiomno, and
Vfald calculated the gyromagnetic ratio of such a
thin shell.

In this paper we work with slow rotation; that
is, we ignore terms quadratic in the angular ve-
locity, but now admit arbitrary charge. 'The ex-
terior solution is found and applied to the thin-
shell model. We calculate the gyromagnetic ratio
and angular momentum of such a configuration
with arbitrarily large charge.

II. EINSTEIN FIELD EQUATIONS

We use exterior calculus to derive the equations
which determine the Einstein tensor for Eg. (i}.
A Cartan frame appropriate for our calculations
is uP=Adt, ~'=Bdh, uP=Cde, &u'=E(dy -Ddt).
These forms are the basis dual to the orthonormal
vector basis. The components of the Einstein
tensor are determined by

BmT~"= G~"
7

where the T"" and 6""are the components of the
stress-energy tensor and Einstein tensor relative
to the orthonormal basis. One finds that the non-
trivial field equations can be written as

-SmT = (BC) '[(C„lB)„+(B,IC) + E-'(CZ„/B)„+@-'(BZ,jC) ]+ [@g /(2AB}]2+ [Eg,y(2AC)]2
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-81TT =y(BCE ) [[CE'0„/(AB)]„+[BE 0 /(Ac)] 'I,

-8~T12= (AC ) 1[(A„/B),-A,C„/(BC)]+ (CE) '[(E„/B),-E,C„/(BC)] —[E2a„a, ~(2A2BC)],

811T"= [EA /(2AB)]' —[Ea /(2AC)]'+ (CB'E) 'E C + (AB'E) 'AQ + (AB'C) 'Cg
+ (CE) '(E3/C)3+ (AC) '(AO/C)3+ (AC'E) 'AOE3,

811T22= [En /(2AC) ]2 - [En „/(2AB)]2+ (BC'E) 'E~ + (ABC') 'A+

+ (AC'E) 'AOEO+ (AB) '(A„/B)„+ (BE) '(E,/B)„+ (AB'E) 'AQ„,
8wT33= (ABC) '(CA„/B)„+ (ABC) '(BAO/C)2+ (BC) '(C„/B)„+ (BC) '(B3/C)3

-3[EA,/(2AB)]2 —3[EGO/(2AC)]2 .

These equations were first derived by Brill and
Cohen and reported in a different form in Ref. 3
In these equations a, subscript, x or 8, denotes
partial differentiation. Generally, there are
mechanical and electromagnetic contributions to
the stress-energy tensor.

We first infer the mechanical contributions for
an axially symmetric distribution of matter which
is observed to rotate with a constant angular ve-
locity & about the z axis. All parts of the object
rotate with the same angular velocity, i.e. , the
rotation is rigid. Let our first view be that of
observers with respect to whom the object does
not rotate. Let (r, 8, y, t ) be coordinates used by
these observers. Then we ma.y conclude that the
local inertial frames are spanned by a Cartan
frame ~ =Adt, (d'=B&, co2=Cd8, u'=Ed'. For
if the +"'s represent a local Cartan frame, then
the Lorentz transformation

y2(p+ j2t33) yg31 ygg32 y2g(~+ t33)

~gt23

tll t12

t21 t22

y2g(p+ t33) yt31 yt32 y2(t33+ g2p}

The electromagnetic contribution to the stress-
energy tensor is well known. ' Relative to the or-
thonormal basis, the electric and magnetic vec-
tors are written as

frames. Hence we may infer

Tmet:h mech g v '

In the rest frame of the rotator T"=p, T~ = 0,
and T'~= t", where p is the mass density and t"
is the three-dimensional stress tensor. We con-
clude,

(00 y(g(g3+ 000)

O13= y(&u3+ gOP)

with

g = E(01—0)/A,

(] g2) 1/2

establishes the connection between the Cartan

(2)
E=e ++e +e
8=k' +h +h1 2 3'

Then,

4w T",,„=-,'(E'+ H'),

411T'~~,„=2(E'+H2)5'J —e'e~ —jg'I1~.

III. MAXWELL EQUATIONS

(NCU

fOR INLY C HARGE D

ERICAL SHELL

To write Maxwell's equations in curved space
we express the electromagnetic-field tensor and
the electric current vector as differential forms,
In Cartan's notation' the field tensor is

f= 'f &0 "A&u"-
where

r
0 -e -e -e1 2 3

FIG. 1. Orientation of Cartan's moving orthonormal
frames ~„relative to the uniformly charged shell which
rotates with angular velocity u.

(f„.) = 0 jg3 A)2

e' -h' 0 h'

e' h2 -h' 0
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In the rest frame of our rotator the current four-
vector is simply

I=p 40

where p, is the local charge density. Using (2) we
obtain

I =p)' +pffft
or, in the dual representation,

I =-pp'co + p yg4)

This dual representation leads to succinct state-
ments of Mmavell's equations using the de Bham
operators d and 5." The homogeneous equations
are

=0

from which we obtain

(AC e,)„-(ABe, )~ -BCE[h,(Q(]/C )+ h, (Q,/B)) = 0,
(AEe, )„=0,
(AEe, )~ = 0,
(BEh,),+ (CEh, ),= 0.

'The remaining four equations are

5f= «d«f= 4wI,

which gives

(ACh, )„-(ABh, )~+ BCE[e,(Q(]/C )+ e,(Q„/B)]
= 4mp, p&ABC,

(Aeh, ),= 0,
(AEhs)e = 0,
(CEe,)„+(BEe,), =+ 4w p,yBCE .

IV. FORMULATION AND SOLUTION

In this section we find an exterior solution to
these Einstein-Mmovell field equations to first
order in the angular velocity, but with an arbi-
trarily large charge. The solution generalizes the
slow-rotation limit of the Kerr-Newmann" exter-

~ior solution. We work with the metric [Eq. (1)]
(Ref. 3) in isotropic form, "'0

ds2= -y~c

+ g'[dr' + r'd 8'+ r' sin'e(dq) -' Q dt)'],
where V and P are functions only of r. Suitable
forms for the electric and magnetic field vectors
are4

E = e(dl, IJ = n cos 8l+ p sine2
where e, p, and n are functions only of y.

The equations determining the solution follow
from the previous sections and are obtained when
terms quadratic in the angular velocities are ne-
glected. The nontrivial equations are

r+2
8w[p„+ (1/8w)e']= (-l)(r4' ) ' r, " + 4' (r(rq/')„], —1

lm & l

r+2 2 r42)
8 [wt"-(1/8 )we' ]=(r '4) ' —," -1 +2(rV+') ', " V„,

Isa

Bw[t e()/8w)e']="()'«') 'I(v, /«*), +(r«*) ', V(r@' „
le

8w[r~'V-'(~ -Q)(p„+ P')+ (1/4w)ep]= (-1)
2 ~. ,

~e

[(r4')'e J„=4w p,r'4',
p=--.'( ~') [(.~')' I„
[r+'Vp J„+V+'n+ (r+')'eQ„= 4w p, (~ —Q)r'+'.

(3)

(7)

(8)

(8) ,

Everything said for 0'he remainder of this section
pertains to the regions exterior to the charge and

mass distribution.
From Eq. (7), we have,

e = /(q+r')'
Equations (3)-(5) are now satisfied by

4"= (1+ (wr ')' - (q/2r)

(10)

V+'= (1+o(r ')(1 —ar ')+ (q/2r)'.
When there is no rotation (Q=0), Eqs. (11) repre-

sent a spherically symmetric solution to the Ein-
stein-Maxwell field equations, the Heissner-Nord-
str5m metric in isotropic form, which is asymp-
totically flat, and asymptotically becomes the
Minkowski metric expressed in spherical coordi-
nates. The metric describes the space-time ge-
ometry around a spherically symmetric charged
body centered at the origin of the coordinates.
The constant 2n is the mass as seen by observers
at xnfznity.
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Use of Eg.-(8) in Eg. (6) produces where

(12)
A+20„=,), [2q(r +')'n -X,],F r+R 4

where X~ is a constant of integration.
Using Eqs. (8) and (12) to eliminate p and Q„ in

Eq. (9), we get

——
@,[(r+')'n]„+nV@"

l
1+ @„,l= qX, ,), . (13)

F

When
l q l

4 m the general solution of this ~nation
is (see the Appendix)

n = 'X, q p'/(6n) + X,(l —12pn'p'+ 16$'n'p')

+ X, 16[)'u'P'- nP/4- (1+ 2P)/(24)')]

+ b '(1 —12$'u'P'+ 16/'n'P') 1$ip-p,
&

(14)

p, = (25'n) '(1+ b),

P, =(2$'n) '(1-b),

p=(r+') '.
When

I q l
m, we have

(r+')'n = qX, /(6n)+ X,r'[1+ (6n/r)]

+ X,(l+ (3u/r)+ [18m /2(5 r)J+ [8u /(Sr~)]j.
(15)

Integration of Eq. (12) yields Q. For lql 4m,

0= 0,+ -,'XjP(1 —PuP) —2qX,P(1 —4)*n'P'+ 4$'u'P')

p p, -
-2qX, l45' 'p' 2p'—--:5 '(I+-'5')p]+ (4 b) '(4up —165'n'p'+165' 'p' l) I l-

(p paig- (16)

for lql=m,

(r+')'(0 —Ao) = ~Xor[l+ (u/r)] —2qX,r'[1+ (6u/r)+ (8u'/rm)+ (4u'/r~)]

—(q/2)X/1+ [12n/(5r)]+ [8n'/(5r')$. (17)

V. THIN SHELL; BOUNDARY CONDITIONS

In this section we use our results to study a par-
ticular model. The configuration considered is
that of a massive, charged rotating shell of coor-
dinate radius r, . 'The shell rotates rigidly about
the z axis with an angular velocity ~. The distri-
bution of matter is specified by

p =Kb(r r,), p, =o-b(r-r, ),

1= g y -yo (u'~~2m(d'

From Eg. (7) we conclude that regularity at the
origin requires

e=o for x&xo.

Integration of Eq. (7) across the shell identifies
the constant q as the total charge:

O'RO ACO A40
t = const

We conclude from Eqs. (3)-(5) that 4 and V are
continuous across the shell. This is shown as
follows: Eg. (3) yields

-2wre'T" = (r+)„,.

We use Eqs. (3) and (4) in Eg. (5) to obtain the
relation

8vrV@'(T"'+ ,'r"+ ,'7'") = (re-)—
But if E is a function such that E„„-5(r r,), -
then E is continuous at r, . Hence V and 4 are
continuous across the shell. Regularity at the or-
igin implies V and 4 are constant in the interior.
Therefore,

@'=(1+ur, ')' —(q/2r, )'

V+' = (1+ur, ')(1 —ur, ')

+ (q/2ro)' for r ~ ro .



SLOWLY ROTATING BODIES WITH ARBITRARY CHARGE IN. . .
'I

1239

K= 2u(1+ ur, ') q—'/(2r, ),
t"= 0 t"=t '=Sb(r -r )

S = u'(r, V,) '(1 —k')

= u'(r, V,) '(1 —q'm ') .

(18)

Equations (6), (8), and (9) may now be solved
for n, p, and W. We find

Integration of Eqs. (3)-(5) across the shell deter-
mines the mass density and the remaining compon-
ents of the stress supporting the shell:

2rp = -(r'n)„ for r & r, .

Regularity at the origin requires 0 Qp n=-p
gp o

Asymptotic flatness at infinity, .together with
the stipulation that the observers at infinity be
in an inertial frame, require 0 to vanish at large

Also, the magnetic fields vanish at infinity.
From the solutions of the previous section, we
obtain

Q= Q, + Q, /rs,

n=n, +n, /r',

n(r) = X~P'/(6u)+ X,(R(r),

where

(19)

1-2& 1+ b l
eI(r) 3 u-~(I ]2)-2 2up+ 4u2p2 (~)t2(I+ 2p)u&p'+ (2b) '(I -12$'u'p'+ 16$'u'p') ln

(1 b) ~

R(r) = P'[1+ O(P)] (r ~),-
Q(r) =-'Xp'(1 —]'up)+ 2qX,8(r), (20)

where

8(r) =~-'(1- g') ' p —2up' &(I+-'$')u'p'+-', g'(I+ 2(')u'P'

(4ub) '(4up —16$'u'p'+ 16$'u'P' —1.) In~ 1

f'I 2uP(l+ b—)

(r,4',')'Q, = 3 (Xr,4', ' —g'u)+ 2q(r,4',')'X,8, ,

(r,4,')'n, = qX, /(6u)+ (r,4', ')'X,dt, ,

Xo(rPo' ——,
' $'u) —2q (r,ko')'X, (R

(21)

(22)

= 4(r,+,')'(r, v,+,') '(K+ S)(u& —Q,), (23)

All that remains is to satisfy the junction con-
ditions of Eqs. (6) and (9). In what follows we as-
sume that p is a regular distribution —it is not a
5 function or a derivative of a 5 function. Then
Eqs. (6), (8), and (9) imply that Q and n are con-
tinuous across the shell.

Integration of Eqs. (6) and (9) gives

Q„i„"'=-4(K+S)(&u —Qo)(rPO) ',
[(r%')'n]„~„'= -2q(r p,o')'(r, 'V,k,') '(~ —Q,),

where x and r, denote the limit as we approach
x0.from below and above, respectively. A sub-
script indicates that the functions are to be eval-
uated at x=r0.

From these conditions we obtain the following
equations:

X,= FqXO/(12u),

where
(-1)P„'(3K+4S)

(a,[2K(K+ S)+ qm]+ V,(K+S~ )

(25}

12a.(K+ S)&a& =X,fp, [(K+S)+ —VQ]

+ q'6:[2(K+ S)80 —
& ,V]6]t. (27)

Equations (21) and (22} now give Qo and n,
To obtain the expression for the gyromagnetic

ratio of the shell, we introduce the total angular
momentum of the shell:

g y 03~1~~2 A ~3

X,(r,k, ')'[2(r,4', ')8,, -8,,']
-qX,/(6u) —2(r,vp, ')-&(r,@,2)4&,

= -2q(rP. ')'(r.V.@.') '(~ —Q,) . (24)

Here S' is the derivative of R with respect to p
We conclude,
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Insertion of .

T"= g(p + t")+ (4s) 'ep sine

establishes the connection between our constants
and the angular momentum to first order in the
angular momentum. Substituting for e and using
Ea (8),

J = 2m~ sin'8de (4m) " (r,+,')'V, '(~ —& )(&+S)
p 40

--,'q dr[(re')'n]„
t'p

;(rp, ')—'V (~ —n, )(Z+ S)+.'q(r, w, '-}'n, .

Using Etl. (23) to eliminate the term in (tc —0,)
and Etl. (22) to eliminate the term in n, we find

&(r) = —.ln 'G2n/(r4")]+ [4n'/(r+')']+ lnv},
while Eg. (26) becomes

16&'(3 —e)V„
3(2 —a)kc(2&[1 —a(2+ e)]+ Ve@',' inVe}

The resulting gyromagnetic ratio is displayed in
Fig. 2. As the shell radius approaches its Sch-
warzschild radius (a -1), g-2 the same values
as for a Dirac particle. As the shell radius be-
comes large, g-1 the value to be expected when
relativistic effects are negligible. '

Note finally from Eqs. (18) that S-~ as V,- 0.
So when $ «1 and the radius of the shell approach-
es the Schwarzschild radius, we find that

S-~, A, - tc, g- 2, J-m(r, 4', ')'~ .

6J= Xp.

Therefore, by Etl. (25),

(28)
We show next in what way these findings are not
unglue to the & «1 condition.

B. The Horizon radius

From Etl. (11),

n=(2+%) P' qJ /m for (r ~).
From this we identify the g factor of the shell
[defined as 2 p, (qJ'/m) ', where it is the magnetic
dipole moment]:

g=2+F.

VI. REDUCTION IN SPECIAL CASKS

In this section we take a closer look at our re-
sults in some special cases. Throughout the sec-
tion we restrict our analysis to configurations
for which V ~ 0 and E& 0.

A. g W 1 {g = iq[/m)

When («1 and V~ 0, our present results re-
duce to those obtained by-Cohen, Tiomno, and
Wald. ' One obtains from Etls. (20), (21), (2'f),
and (28) Q(r) = 2J/(r4')', where

m(rod'0 ) &o

V4'=(1+ nr ')(1-nr ')+ (q/2r)'=1-n'b'r ',
where b = (1 —$'}'~'. We note that for all $ & 1, we
have t/' 0 when Kp Q5 'the horizon radius
conclude from Eqs. (18) that as the radius of the
shell approaches the horizon radius,

(r -nb), S-~.
We see from Etl. (26} that as S-~,

(-1)4P.'
2KAO+ V@0

Calculating Rp' and noting that

1-2n8(1+b)" 1-nbr '
ln —

' = ln
1 - 2n P(l —b)„1+n br '

PQ2 2

=ln
(1+nbr ')'

Gyromagnetic Ratio
V.S
Radial Coordinate with

] qi/m+& i

Here & = exp ' and for V& 0, 0 & E & 1. When & =1,
V= (1 —e)(l+ a) '=0. Then

J=M(rP, ')'&o

g 2

Qp= (d .
So when r, -n (the Schwarzschild radius of the
shell) inertial observers at the surface of the
shell see no rotation of the shell.

From Eels. (19),

I0—I

2

(r /m)

FIG. 2. Gyromagnetic ratio g vs radius for small
charge to ma-ss -ratio $ = iqi/m« l. As the shell radius
approaches the gravitational radius, g 2. All charge
and mass are concentrated in the shell.

10
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we obtain the expression

(-1)4P„'V,

ye+ (V(p~+ Ve y2) ln
5 ~)aj1+ O,'by0 '

All. the y,. 's are well behaved at ra= nb and y, (nb)
0 0. Since lim~ 0V lnV= 0, we have the result
that F 0 as x0 +b.

We find in a similar way from Eqs. (21) and (27)
that as V, —0,

i2e - 3 Xp 3(1 - $2n p ) 0

Gyromaonatic Ratio
VS
Radial Coordinate with

i q I/mal

(r0/m )

l0

'2, - 12nu&(rP, ')'.
Using Etl. (28) and observing that

2m(1 —&'nP, ), , = (r,4', ')„.
we conclude that J-m(re+, ')~ and 0,- w when

y, —nb.
So whenever the charge-to-mass ratio of the

shell is less than 1 and the shell radius approaches
the horizon radius, we have

Q, -(o, Z-m(r, +,')'tc, and g-2.

e. g=1

When lql -m, Etls. (19) and (20) supply the
desired expressions for 8 and 8. However, these
functions are obtained more easily from Egs.
(15) and (17) by applying the boundary conditions
at infinity, while keeping in mind the definition
of 8 as established by Eq. (20). In either case,

dt(r) = (r+') '(I+ (8n /r)+[18n'/(5r')]+[8n'/(5r')]]

FIG. 3. Gyromagnetic ratio g vs radius for charge-to-
mass ratio $ = iqi/m = l. As the shell radius approaches
the gravitational radius, g 2. The shell surface area
is given by 4xRD, where Ra=rod'0 . In this case Ra= ro2 2

~m.

be obtained from Etl. (21}:

2+-.+. &
co 0 ~ 0

D. ]&1
Our reduction in this case follows from the con-

ditions $» 1 and f6~ 0. With $» 1 it follows that

Xo- '0 m- q'/(2r, ) or r,/I ql - Iql/(2m)" '
'Therefore,

l
q

l
/r, «1 and m /r «1 .

We fxnd then that

(R(r) = (1/r')[1+ O(m/r)]

and

a(r) = --,'(r@') 4/i+ [12n/(5r)]+ [Sn'/(5r')]}.

When lq l

is set equal to m, our constants reduce
to a simple form. From Etls. (18),

K=m and S=O.

Etluations (26) and (27) are used to determine X,
=6J and F.

5 = (-1)(1+4g+ 6e'+ ~s' ') ',
m (r,4'„')'~

lay 4 ~

0

Again e=nz0 ', but here the conditions K» 0 and
V» 0 give rise to no restrictions and 0&(&.
The resulting gyromagnetic ratio is shown in Fig.
3. Again g-2 for the smallest permissible radius
and g-1 as x-~.

The dependence of the rotation of the inertial
frames on the rotation of the massive body can

g(r) = [-1/(4r')][1+ O(m/r)] .

With the above functions we get simply

n(r) =gqJ/( rm' )

,'q'r, r '(v --', - ', r,r—')&u. — (29)

g = 6v/(6v —5),
J= [2/(3g)]mr, a(u = 3 qaro(u(v --',},
0,/&u =-,' (Sv —4)/(v'&') = —'q'r, '(v —34) .

Our constants also have a simple form. To ex-
press them we define v by r, -=vq'/(2m), where
K» O~v» 1. We obtain
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In the range 1- v - -', , we have 0,- 0. This be-
havior derives from the influence of the negative
elastic stress on the inertial frames. It is inter-
esting that within the shell the inertial frames ro-
tate in a direction opposite to that of the shell.

The gyromagnetic ratio is shown in Fig. 4.
Again we find the expected asymptotic approach
to the nonrelativistic value of 1 for large shell
radii. Note that here the value of g may exceed
2. In the limit that the local mass density van-
ishes (v= 1), the g factor for the shell approaches
6. The ascent toward the value of 6 rises sharply
in the range 1 ~ v ~ -', , the range where 0, & 0.

For the electron and proton, g» l. It is inter-
esting that for the electron and proton values of
charge and mass we obtain

g, = 2.002

and

g~= 5.586,

if the corresponding shell radii are, respectively,

r, = 2.346 x 10 ' cm

same order as the electromagnetic perturbation.
Hence, both perturbations must be determined
simultaneously. Such a case was treated in this
communication.

When the charge-to-mass ratio of the rotating
body is less than one (tq~/m&1) and the shell
radius approaches the event horizon, the gyro-
magnetic ratio g approaches two (g- 2) and the
angular velocity of inertial frames 0 approaches
that of the shell. Our result is valid for all values
of ~q ~/m&1, finite as well as small. In fact, for

q
~

/m = 1, the same upper limit (g- 2) results.
For

~
q

~

/'m «1, our result is in agreement with
previous results. ')

The region ~q ~

/m» 1 is of interest, since all
charged particles known in nature satisfy this
condition. In this region, there is no event hor-
izon and the gyromagnetic ratio g can exceed two.
In fact, values of g up to 6 can be obtained from
our general relativistic model with charge and
mass concentrated together in a single shell
(1«g«6). Furthermore, for some models the
angular velocity of inertial frames within the shell
can vanish or even become retrograde.

x~= 7.789 x 10 "cm .

VII. CONCLUSIONS

Although charged particles found in nature have
(qI/m»1, this case is not normally treated in
the context of the Einstein-Mmrwell equations.
This is because in solving such problems diffi-
culties arise. Among these: The large background
electric field gives rise to a stress-energy tensor
which is linear in electromagnetic perturbations.
'This gives a gravitational perturbation of the
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APPENDIX: SOLUTION OF EQUATION (13)

Herein we describe briefly how the solution to
Eq. (13) may be found:

-- —,[(r~')'n]„+nV~'
~
I+, , ~

= qz,

(13)

Expanding the derivative, one finds

—[(r4")'n]„=2nv+'[1 —q'/(r+') ']

+ 2n„(r+ rv%')+ r'V+'n, ,
Equation 13 becomes

2

r*V+'n, „+2n„(r+ rv'+') —6nv@'

q 0.(r+2)4 '

FIG. 4. Gyromagnetic ratio g vs radial parameter v

=2mrq for large charge-to-mass ratio, $ = [q)/m» l.
Note that g can exceed 2.

Multiplying this equation by (r4")' and noting

[rsv+2(r+2)2] 2r(r+2)2+ 2r2V2@4(r+2)

we get

[r'(r4")'V4"n„]„-6nv4'q' = -2qX, +» .
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The particular solution is given by

ln verifying this, observe that

r*(V4')'= (r4')* —4n(r&') ~ q'.
This leaves the homogeneous equation. To

pursue it, make the substitution

Then

[r'(r4')'V4'A]B„„
+ (2r'(r+')'Ve'A„+ [r'(re')'Ve']„A}B„

+{[r '(r@')'V4"A„]„—GAVEL"q'}B = 0.
Multiplying this equation by A, one obtains

[r'(r+')'V4"A'B„]„+AB([r'(r4')'V esA„]„

—GAVEL"q'}= 0.
With the selection A = 1 —12$'nap'+ 16)'n'p', we
reduce the equation to

[r'(re')'Vqi'A'B„]„= 0 .
'The first integral is immediate and the second
may be done by partial fractions.

The Killing vectors associated with stationarity and
axial symmetry are 6/6t and Blowy, respectively The.
forms dual to these are -A dt EG(dy——Qd't) and
E2(gy —Qdt).
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