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8' and Z' decays into quarks plus a photon or a gluon
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We study the decays W~qy, W~qg, Z'~qy, and Z'~qg within a unified approach. Several interesting

properties such as asymmetries in the decay spectra, vanishing Dalitz plots, etc., are found in W~qy and traced to
the presence of a W-y- W coupling as given by gauge theories. We derive and compare differential and total decay
rates for processes with and without such a triple-boson coupling which in general acts as a suppression factor.
Three-jet decays W—+qqg and Z —+qqg, not suppressed by such a coupling, have appreciable branching ratios. The
possibility of studying more exotic three-jet decays such as Z'egg is discussed briefly.

I. INTRODUCTION

It is expected that in the next decade several
high-energy machines which are now under con-
struction or serious study will begin operating at
energies sufficient to produce the weak intermedi-
ate vector bosons 8" and Z'. Their discovery will
fulfill early predictions, ' while the measurement of
their masses and production cross sections will
serve as further tests of the standard Weinberg-
Salam model. ' More critical tests of the model, iri

pg.rticular the search for the triboson couplings,
can be studied' in pair production or associated
production like 8'+R', W~ZO, and W~y.

Assuming that a rich source of intermediate vec-
tor bosons is found in the not too distant future, we
may turn towards the study of specific decay proc-
esses which will yield more information than the
basic W-q-q and Z -q-q couplings. In this paper,
we present the differential and the total decay rates
for

(i) W-q+q+y,

(ii) W- q+q+g,

(iii) Z'-q+q+y,
and

(iv) Z'- q+ q+ g.
We refer to these processes as "three-jet decays
of the W and the Z"' and borrow the terminology
commonly used in describing three-jet- events' in
e'e; instead of the decay of a massive virtual
photon, we are studying the decay of a massive
real W or Z' into quarks, antiquarks, and gluons
or photons.

Our calculations are based on the standard
Weinberg-Salam model and quantum chromody-
namics. Within this framework we find the inter-
esting result that in the limit of massless quarks
all four amplitudes can be expressed as a univer-
sal factor (later to be called the Abelian ampli-

tude) times a second factor which depends on the
reaction and which contains the coupling constants,
etc. Of course, it is no surprise that reactions
(ii), (iii), and (iv) are all simply related because
they all proceed by similar Feynman diagrams
(Fig. l), but it is surprising that W- qqy, Fig. 2,
can also be expressed in a similar fashion. In this
case, we find that the second factor is nontrivial
and, in fact, it contains a zero along a certain line
in the Dalitz plot. The existence of such a zero
seems to require a triboson coupling since nothing
similar happens in (ii, , (iii), or (iv) where the tri-
boson coupling is absent.

In the next section we write down the amplitude
for (i) and discuss its factorization properties.
The doubly differential decay rate is then calcu-
lated and Dalitz plots presented for the example
of W —duy. After two integrations the total decay
rate is obtained. In Sec. III we consider W - qqg,
and in Sec. IV we treat Z'- qqy and Z'-qqg. Con-
clusions and comparisons among the four different
processes are given in Sec. V. In Appendix A we
briefly show that in the case of spin-0 quarks the
Abelian amplitude is different but the second fac-
tor, and hence the position of the zero, is the
same as in the case of the standard spin-&- quarks.
In Appendix B we give the results for a more gen-
eral W-y-W coupling.

II. W-+ Q;Q)

In Fig. 2 we show the Feynman diagrams and the
particle momenta for the decay W- q&q&y. We have
in mind, for example, S' - day, though we make

FIG. 1. Feynman diagrams for Zo —qqg and TV—qqg.
Similar diagrams contribute to Z qqy.
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FIG. 2. Feynman diagrams for W—qqp showing the
particle momenta.

the following generalization: let the charge of the
W, q„and q& be Q, Q, , and Q;, respectively, with

Q = Q,. + Q~ from (electric) charge conservation,
e.g. , -1= -3 —3. Since we drop all quark mass-
es, this will allow us to apply our results immedi-
ately to 8' -ev, y., plus we shall find that the am-
plitude has an interesting dependence on Q and Q, .
Other generalizations are also possible and will be,
pointed out as we go along.

Figure 2 gives the following amplitude:

(2)

sit= e",s~u(q, ) Q, Y„r.(1 -y, ) +Q, (1 +Y,) Y,

+, .', y„), —,[2)„g„q+(h —2) )qg„„+((t -2h)„gs&]Iv(q) .Q(1 Y)

I

One can easily check that this amplitude is gauge invariant (BR-0 if e -k ) provided that Q=Q,.+Q&. We
have used the following definitions: l, = P —q, = &+ q» l, =P —q, = k+ q„and h =P —k = q, + q, .

Dropping the quark masses m, and m„and using k„e ~& =P&eg =u (q, )g, = P,v(q, ) = 0, Eq. (1) reduces to
~8

It= "
",~,'u(q, ) Q,Y„—„Y„+Q,Y, —. Y„-k (p„Y, Pg„, +k-.r„) (1 r, )~(q,-).

The remaining algebraic steps are tedious but straightforward. The result is'

-ieg k q „, 1 1SR= ~ (); —()
&

'
~iE "s(a,) r,

&
r, —r&x„)((, y)~(q)—. , ,'P 1 2

(3)

The factorization referred to in the Introduction
is clearly exhibited in Eq. (3). The Abelian factor
ls

1 1
Y])

y
Yv Yv

)f Y])
2

the same factor which occurs, for example, inS'- qqy, and represents the sum of the two ampli-
tudes for the emission of a, photon from a, quark and
an antiquark of equal charge, as in Fig. 1. We re-
peat that Eq. (3) is valid, however, for arbitrary
charges Q, Q, , and Qz satisfying charge conserva-
tion (we eliminated Q& using Q&=Q —Q;). All the
remaining reactions (ii), (iii), 'and (iv) will con-
tain only this Abelian factor. It is interesting that
the addition of the triboson (in this case W-Y —W)
coupling modifies the Abelian amplitude by a non-
trivial multiplicative factor [Q,. -Q(k ~ qx)/k P].
Furthermore, as we shall see, this factor vanish-
es in the physical region when k ~ q, /k P = Q;/Q.

'This factorization property is destroyed if one
uses a triboson coupling different from the stand-
ard gauge-theory coupling. In an earlier work'
this coupling was generalized in the traditional way
of introducing' a magnetic moment parameter g.

he differential cross section for yq- W'q', cal-
culated for arbitrary g, was found to factorize for
the case &=1, its gauge-theory value. More re-
cently the production cross section for q;q,.- 8"y
was calculated with arbitrary & and reported' to

I

have a zero in the differential cross section. We
can now trace these results to the factorization of
the amplitude as discussed above, and point out
that the condition for the zero k ~ q, /k p =Q;/Q
sets no requirements on the spins of the particles.
In fact, we show in Appendix A that the same fac-
tor is obtained for spin-0 quarks also.

The details of the remaining steps need not be
given: we square the amplitude %, average over
initial and sum over final helicities, and sum over
the quark colors [for simplicity we dropped the
color indices in Eqs. (1)-(3)]. Denoting the result
by (~3R~ '), we have for the doubly differential de-

-cay rate

d2t' w2

dE,dE, 2M~(2]()'

where E, and E, are the energies of the quark and
antiquark, respectively, in the 8' rest frame.
Switching to two dimensionless variables

x = 1 —2E2/M~

and

y = 1 —2E~/M~,

we find

d'I' c(g'M~ x (x —1)'+ (y —1)'
dX dg 32'll X + g Xg
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where n = e'/4n and g is the weak charge which
satisfies

g= 2M)(7(M2Gp) . = 8/sine)(7 (7)

E-0
M

1 9 .8 .7 .6 .5 4 .3 .2 .1 0
I I I 'I I I I 0

in the Weinberg-Salam model. ' The corresponding
decay into two quarks only has a width

F(li/
—

)
Z w E )(/

~*'~& =
16~

=
2~m '

which we use for normalization and write

1 d'I' o. x '(x —1)'+ (y —1)'
r, dx dy 2~ ' x+y xy

(9)

—.6

Ed
1

IYI W

« ~x~ 1-2«,
«~y~1-x -«.

(10)

From Eq. (9) we see that within the physical re-
gion the decay rate vanishes along a line given by

y= —-1x= —' x

which reduces to y = 2x for W - duy. Note that for~- e v,y, the zero occurs at the edge of the phase
space, y =0. From Eq. (11) it is clear that the
zero will be in the physical region if and only if the
condition Q/Q, &1 is satisfied, or, equivalently, if
Q, and Q& have the same sign.

In Fig. 3 we show the Dalitz plot for W —duy.
This has been done by breaking the phase space in
the x-y plane into small squares of size 0.05
XO. 05 and integrating Eq. (9) numerically over
each square. The number of points assigned is
proportional to the contribution of this integral
over each square. In the same figure we also

As a check of our calculation we have compared
Eq. (9) with the cross section for q;q&- W y in the
case &=1. The result for arbitrary & is given in
Appendix B.

While x and y range between 0 and 1, we will
require that each particle carry a minimum energy
E „=«M~, with «a small number 0~ «& 3. The
phase space then becomes"

I 1
0 .1 .2,3 .4 .5 .6,7 .8 .9 1

X

FIG. 3. Dalitz plot for W --dug with the cutoff
e = 0.1. The axes are labeled by x andy or, equivalently,
by E„- and E„normalized to their maximum value 2 M~.
Also shown the line y =2x along which the doubly differ-
ential decay rate vanishes identically.

show the line, Eq. (11), along which the decay
rate vanishes. We find that around that line the
decay rate remains so small as to contribute less
than a point per square area, which we leave
blank. The sum of all such fractional points from
that region comes up to about 4 out of a total of 200
points used in Fig. 3.

More quantiatively, we plot (1/1,)d'I'/dx dy as a
function of x for two values of y in Fig. 4, and as a
function of y for two values of x in Fig. 5. Note
that the asymmetry between x and y, which can be
seen by comparing Fig. 4 with Fig. 5, is due to the
fact that the charge of the W is split in an asym-
metric way; in other words, the energies of the
quark and antiquark are different because their
charges are different. Only for Q,.= Q,.= Q/2 would
the two distributions be identical Isee Eq. (9)].

After one integration we obtain the singly differ-
ential decay distributions dl"/dx or dI'/dy. We find

Q,.2 (y —2+ 2/y) ln —(1+ 3/y)(1 —y —2e)/2
1' Q 2 1 —y —«

l"0 dy 2g

I

—QQ, 4(y+ 1/y) ln —3(1+1/y)(1 —y —2E) + 2Q'(1+ 2y+ 1/y) ln—
I y+ « y+«

57+55/7+ +(7 —55)(1+5)/(7 -5) I.
9'(1 -y —2~) 4y2

2(y+ ~) 1 —«
(12)

One can show that to obtain 1/1 dI'/dx all that is needed is to let y -x and Q,. -Q,. in the above expression:
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1 dr 1 dr
dx go d$ g g

(14)

These two distribution functions are shown in Fig. 6. The asymmetry between the x and y distributions is
quite striking, meaning there is a large difference between the energies of the d and u in 5"- du@, with d,
on the average, carrying more energy than the u. As we will see in the next section, there is no such
asymmetry for 8'- d@g, also shown in Fig. 6.

Finally, a second integration gives the total decay rate 1 as a function of Q, Q„and &:

I'/I', =—(q,.'+Q, ') ln' —— = +-,'(1 —2&) ln --- —7('/5+4(5+3')(1 —3g)+2 Li,
27,' - 1 —g 1 —2g 1 —f

+- (( —)&)(—", —e')+2q'((+a)'1n(

As a check, we note that the above expression vanishes as it should if we set q= —,. The branching ratios
I'/I', for W -dug and W - eP,y are shown in Fig. 7 as a function of the cutoff parameter q.

Our discussion of the radiative decays of 5'bosons is now complete. As we shall see in the next two
sections, the remaining decays (ii)-(iv) can be obtained in a, rather straightforward manner from the re-
sults derived in this section.

In the absence of a 5'-g-W coupling only two diagrams, shown in Fig. 1, contribute to the decay
8'-q, .q.~. The decay amplitude is

(15)

where we have included all color indices. Compar-
ing with Eq. (3), we see that apart from the color
matrix T' the replacement Q -0 and eQ, -g, will
take us from the photon case to the gluon case.
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FIG. 4. The doubly differential decay rate d I"/dxdy
for S" dug and W —dug as a function of x for y = 0.2
andy = 0.3, normalized to I'0= I"(8' du). To de-
scribe Zo —gag, e+t. y, ugly, and ddt the upper curves
must be multiplied by 1, 4 3 and &&, respectively (see
text). For gluons the curves must be multiplied by the
additional factor a~/n = 25,
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.5 ~6 .7

FIG. 5. Same as Pig. 4 with x and y interchanged.
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FIG. 7. The branching ratios for 8' dug, S' es~y,
and 8' dug as a function of the cutoff c. The upper
curve, which must be multiplied by e,/o. = 25 for decays
with gluons, also describes Z decays —see caption under
Fig. 6.

FIG. 6. The differential decay rates dI'/dx and dl/dy
for W' dug and & dug, normalized to Ip= I'PV

du). For Z qqg, e+e y, un', and ddt multiply the
upper curve by 1, 4 3 and &&, respectively. The
gluon curves must be multiplied by o.,/& =25. The cut-
off ~ = 01.

dependent of x and y. Then we find

jr.
" 4n, 7l'ln' — + —,'(1 —2g) ln ———

I", Sg 1 —q 1 —2q 6

+ —,'(5+ 3&)(l —3e)+ 2 Li, ——— . (18)

1 d'I' 2o., (x —1)'+ (y —1)'
I o CfX GP 3'l7 Xg

(16)

The presence of T' means that the color sum over
the final states gives a factor 4 instead of 3.
Therefore [see Eq. (9)].

To compare with earlier work, we expand &he

above expression for small q:

~[ln'& —-',
! I.n&!+ —' —m'/6

3m

+e!in'!+2q+ O(e'). .. ], (19)
where n, is the strong running coupling constant.
This expression agrees with the result of Bizzo"
a,nd, except for an overall constant, is identical to
the jet-energy distribution' " in e+e -3 jets based
on e'e qqg. It is reasonable, and consistent
with recent experimental data, ' to take

127t

(33 —2f) in(M~'/&')

which is about 0.18 for f=6, M~ = 80 GeV/c', and
A = 0.5 GeV/c'. We will later use this value for
numerical results, but we point out that all we
need to calculate the branching ratio is the as-
sumption, as of course made in e+e- 3 jets, that
ot,, is a function of only the c.m. energy and is in-

which agrees with the result obtained' " in e'e
~ qqg

We will not go into the detailed rewriting of the
doubly differential decay rate in terms of thrust,
spherocity, etc. (see, e.g., Ref. 11). Obviously,
one can apply the full ma"hinery of three-jet events
to S'- qqg and Z -qqg. Our interest is to com-
pare the Abelian and the non-Abelian amplitudes;
for this purpose we have included in Figs. 4—7

several curves describing W- dug.
Two observations concerning these curves need

to be made: First, the symmetry between quarks
a.nd antiquarks is apparent for decays with gluons
—see Eq. (16). Second, even after taking out the
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factor n, /o. -25 as has been done in Figs. 4—7, the
results for the gluon case remain larger than the
photon case, apparently because the factor [Q,
—Qx/(x+ y) P suppresses the photon mode, a sup-
pression which persists even after integrating
over x and y.

IV. Z ~Q;Q;y AND Z ~Q;Q;G

These decays differ from 5" decays in only two

aspects: the charge of the Z' is zero (hence, we
set Q= 0), and the basic coupling of the Z' to the

q,.q,. is different. We wrote' g/24Ãy, (1 —y, ) for the

q, -W-q, . vertex, where g is given by Eq. (7). For
q,.-Z -q„we use the vertex

2'~'~,l G„y„(a' —b'q, ) .
In the standard model g"=g'=g'= ~ —z sin'0~, g
=g =g = —2+ g Sln 0~, g =g" =g'= —z+2»»&,
and b"= b = b = —b = —b' = —b' = —b~ -- —b = 2 . For
neutrinos, g"= b"= —,. The decay width into two
fermions is given by

(20)

for leptons and

1 o 1r(z'-I I-~)=, r(z'- q, q, r)

3 Q I'(Z -qqg).
4 n, I'go

(24)

V. CONCLUSIONS

In our study of the decay processes (i) to (iv),
clearly the first one is the most interesting and
exhibits the strange behavior of vanishing along a
line in the Dalitz plot (Fig. 3). By crossing we can
make a connection with the production amplitude

The factors —,', —,', and —,', quoted in the figure cap-
tions are obtained from Eqs. (22) and (24).

As an example of a purely leptonic process
which illustrates the difference between the Abelian
and non-Abelian amplitudes, in Fig. 8 we plot
(1/I', ) dr/dy, essentially the energy distribution
of the electrons, for the two decays 5" -e v,y and
Zo-e e'y. Clearly, the electron in 5'decay has a
rather flat energy distribution, while in Z' decay
it is peaked towards larger energies, i.e., small
y. This behavior is explained by noticing that in
the doubly differential decay rate the only differ-
ence between W-ev, y and Z -e e'y is the factor
y'/(x+y)' which smooths out the y distribution
and, in addition, suppresses 8'-ev, y, as seen in

Fig. 8, relative to Z' -e e'y.

r, = r(z'- q, q,. ) = " (a, '+ b ').6~M ~3
(21)

10

for quarks, the difference being a factor of 3 due
to color.

As in previous sections we will normalize the
three-body decay widths to I'o. Once this is done,
all the dependence on the boson-fermion coupling
drops out" and we can relate the two ratios
(r/I', )(W) and (I'/I', )(Z') in a simple fashion.
Furthermore, since the two Z' decays (iii) and

(iv) involve only the Abelian amplitude as defined
earlier (see Fig. 1), we can relate them either to
W-qqp with Q = 0 or, equivalently, to W-qqg.

We start with Z'-q, .q,.g. In terms of I"(W-qqg),
I',(W-qq), and I'(Z'-qq) which are given in Eqs.
(18), (8), and (21), respectively, we can write

10
—2

1 o 1I'(Z'- qqg)= I (W-qqg)I'z' (22)

[where r~o= I'(Zo-qq), r~= r(W-qq)] an equality
which holds for the single- and double-differential
decay rates also.

For the decays involving a photon we have

1 o . 1r(z'-q, q. y)= r(w-q, .q,.~)I'o '' I'
Q=O

Also

10 4
I I

0 .1

I I I I I I

.2 .3 .4 .5 .6 .7 .8
v

FIG. 8. The differential decay rates dF/dy for
Z' e e+~y and 8' —ev y normalized to I"(Z'0 —e e+) and0

I'(W ev~), respectively, with the cutoff e= 0.1. These
curves are obtained from Eq. g2) with Q = 0, Q;=-1 for
Z decay, and @=@;=-1 for 8" decay.
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2Ey
g+g =~ ~

W

(25)

and similarly for the gluon. The zero occurs not
at a unique value of E~ but for a whole range given
by

for q,.q,. -W y where it was found' that (do/d cos6)
(q,.q,. -W y) vanishes at cos8= —(1 —2Q,./Q). Again,
the position of this zero angle and the slope of
the zero line" in W -q, q&y [see Eq. (11)]depend
on the ratio of quark to k' charges, Q, /Q. As we
discussed in Sec. II, the vanishing of the ampli-
tudes can be traced to the factorization property
of the full amplitude which is the sum of the three
Feynman diagrams in Fig. 2. Factorization seems
to require a triboson coupling as given by non-
Abelia. n gauge theories (Yang-Mills coupling with
v= 1). Such a factorization was obtained' earlier
in the photoproduction of S' bosons off quarks, but
the implications were not explored. More recent-
ly, the factorization of certain scattering ampli-
tudes in non-Abelian gauge theories, and the pres-
ence of zeros in the angular distributions were
discussed" in a more general approach with differ-
ent groups —for example, there is a factorization
(but no zero) in qq-gg, where again the trigluon
coupling is responsible for the factorization.

In the case of processes (i) and (iii), it should
be noted that we are not doing radiative correct-
ions to the two-body decays, which would, of
course, require virtual photon corrections along
with soft-photon emission. These corrections have
been done"; we require the detection of the photon
to identify the three-body-decay process. We
chose x and y as our independent variables, but,
of course, the photon energy is given by

weak interactions and, of course, to higher ener-
gies.

The advantage of looking at W' decays over a.s-
sociated production' or photoproduction' is that one
may study the decays of the 5' bosons independently
of how they are produced. In particular, LEP may
be a good source, via e'e -5"'+', while pp and

pp machines may be too messy ' to allow detailed
study of rare decay modes such as W -qqy with a
branching ratio of 0.1 to 0.01 percent depending on
e (see Fig. 7). Clearly, a very rich source of
weak bosons is needed for such studies.

Z' factories are expected to be an even richer
source of weak neutral bosons and it may be dis-
appointing that the decays (iii) and (iv) are not as
exciting because no triboson coupling is involved.
One can, nevertheless, do interesting three-jet
physics beyond the confirmation of our present
ideas and the extension mentioned above for Z'
—qqg. If onecandistinguishgluonjets, then Z'
factories have the advantage of studying the decay

(27)

which proceeds through theFeynman diagrams
shown in Fig. 9 (the two-gluon mode Z'-gg vanish-
es). The branching ratio is of order e,'-0.6%, not

too small for a Z' factory. Calculations are in

progress for the gag, yyy, and ggy decay modes of
the Z', and will be reported elsewhere, "
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&„=—(M~/2 —E,-) =—(M~/2- E ) . (26)
APPENDIX A: SPIN-0 QUARKS

Experimentally, the detection of such a. zero re-
quires distinguishing a quark jet from an antiquark
jet for the purpose of identifying x and y (one may,
of course, turn this argument around). If no dis-
tinction is made, then we need to fold the x and y
distributions. In that case, it is easy to see that
no zeros are present unless Q, = Q,

We discussed the rest of the processes (ii)-(iv)
briefly because we could obtain them with little
effort from (i). Our purpose was to compare and
contrast processes with and without the triboson
coupling. We conclude that, (ii)-(iv) have smooth x
and y distributions, as can be seen from Figs.
4-6. While process (i) can be used to measure the
magnetic moment of the W' through its parameter
~, as we are advocating here, measuring (ii) and

(iv) would confirm our present ideas about three-
jet events in e'e collisions and extend them to the

A, y. (q, )y',.(q,): —feQ,.(q, + q, ), ,

W.e( (qi) e,'(q2): —fG(qi+ q.). ,

W,A„y,.y,'.: ieG(q,. q,.)g„„.

(Al)

(A.2)

(A3)

There are now four Feynman diagrams —the
three shown in Fig. 2, plus a contact or seagull
term given by (AB). The amplitude is

+ permutations

FlG. 9. Feynman diagrams for the decay Z~ ggg.

To see if the factorization of the 5"-qqy ampli-
tude still holds if the quarks ha.d spin=0, we cal-
culate this decay amplitude using scalar electro-
weak interactions. The vertices are
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Slt(spin= 0 quarks) = —ieaq'„»a~ —,(2q, + &)»(p —2q, )„+—2(2q2+ ")»(2q& -P),
1 2

+„. ~ ~ I2P»(qi-q2). -(P+~) (qi-q. h». -2(n-q2)»(qi+q. ).l
W

—(i)( —i),)q..I,
which is, of course, gauge invariant since Q = Q, + Q~.

After some algebra, we find

pq(spin= 0 qnsrks) =4(eG (p, —i)
'

(q, „q,.ll, '+q, „q,„/),'eq„.lq)e„"e" .
u-p

(A4)

(A5)

Comparing (A5) with Eq. (3), we see that the same factor Q, —Q(k. q, )/(k. p) can be pulled out of the full
amplitude, which implies that the zero will occur at the same place irrespective of the spin of the quarks.

APPENDIX B: ARBITRARY x

Implicit in all our calculations so far is the as-
sumption that the 5"-y-W coupling is given by gauge
theories. This vertex enters in the last Feynman
diagram of Fig. 2, and the results are substantially
altered if we use a different coupling, which we do
following the standard technique of using a magnet-
ic-moment parameter e (see Ref. 7), in terms of
which the magnetic moment p~ of the g boson is
given by

(1+ ~) . (al

In gauge theories «= 1 (or, since g= 1+ «, g = 2).
For arbitrary v, we must add terms proportional
to (1 —z) in the W-y-W vertex, which changes the
contribution of the last diagram in Fig. 2.

To use the decay 5'-qqy or 8'-eve as a means
of measuring p. ~, it is helpful to know the doubly
differential decay rate d'I'/dx dy for arbitrary «.
We find

1 d'I' n
I 0 dXdy 2)T

x ' (x —1)'+ (y —1)'
@+g Sy

+ (1 —z)Q Q,. —Q X+/ g+ X

+
—

[4xp e (x' + r*)(( - x - p ) )
I

(1 —«)'Q'
8x+y '

(sz)

which should be compared with E(l. (9). It is clear
that the additional terms spoil the zero which is
present when &=1, its gauge-theory value.
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