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Perturbative quantum-chromodynamic predictions are given for the weak and electromagnetic elastic and
transition form factors of baryons at large momentum transfer Q. The leading (helicity-conserving) octet and
decuplet form factors can all be expressed as linear combinations of the proton and neutron magnetic form factors.
The predictions for the spin structure and relative normalization of the baryon form factors reflect the assumed
SU(2), X U(1) structure of the electromagnetic and weak currents, quark and gluon hard-scattering dynamics, and
the helicity-flavor symmetry of baryon wave functions at short distances. The results hold to all orders in , (Q?) and
to leading order in m/Q. We also discuss the special features of the contribution of the end-point x ~1 region to

baryon form factors.

1. INTRODUCTION

In this paper we show how the electroweak
elastic and inelastic form factors of baryons at
large momentum transfer can be used to system-
atically test the dynamics and symmetries of the
quark currents and hadronic wave functions at
short distances.

The predictions for the spin structure and rel-
ative magnitudes of the baryon form factors per-
taining to the electromagnetic, neutral, and
charged currents depend upon the assumed SU(2),
X U(1) structure! of these currents. They also
depend in detail upon the dynamics of hard-scat-.
tering processes involving quarks and gluons and
the basic helicity-flavor symmetry of baryon wave
functions at short distances.

As has been shown in Refs. 2—4, hadronic form
factors and other exclusive processes in quantum
chromodynamics are controlled at large momentum
transfer @ = (]¢2|)'/2 by two basic elements—the
hard-scattering amplitude T (x,, @) for the scat-
tering of the valence quarks from the initial to
final direction, and the hadronic distribution
amplitudes ¢(xi, Q), the probability amplitudes
for finding the valence quarks with longitudinal
momentum fractions x; at small transverse dis-
tance ~1/Q in each hadron. The forms of T and
¢ reflect the dynamical and symmetry proper-
ties of hadrons at the quark level. Detailed per-
turbative quantum-chromodynamic (QCD) pre-
dictions for the power-law and anomalous log-
arithmic behavior of meson and baryon form fac-
tors to leading order in as(Q"’) and m/Q are given
in Refs. 3 and 4.

The predictions for the electroweak baryon form
factors G(Q%) 4.5 which we discuss in this paper
are actually general consequences of QCD helicity
rules®* and spin-flavor symmetry. In particular,
form factors for any process in which the baryon
helicity is changed (2, #%;) or in which the initial
or final baryon has nonminimal helicity (|%,] >3)
are suppressed by factors of m/Q. The results
are all independent of the detailed form of the
hard-scattering amplitude T 4(x;, @) and thus hold
to all ovders in a,(Q%). Correction terms of order
m/Q will not be considered. We discuss the
special features of the contribution of the end-
point x ~1 region to the baryon factors in the
Appendix. The results apply for spacelike or
timelike values of @ sufficiently large such that
the predicted leading power-law behavior
Q*G(Q?) ~ const (modulo logarithms) is observed.®

An important feature of the perturbative QCD
predictions—again true to all orders in o (Q%)—
is that all of the helicity-conserving electroweak
form factors involving only nucleons can be
expressed as linear combinations of just two basic
form factors—G,(@? and G;(Q*)—corresponding
to amplitudes in which the current interacts with
a valence quark with helicity parallel or anti-
parallel to the helicity of the nucleon, respec-
tively. The coefficients are determined by the
corresponding SU(2), X U(1) quark charges.® Thus
the nucleon magnetic form factors G7%,(Q?) and
G*(Q?) are sufficient to predict the weak nucleon
form factors. The assumption of the standard
helicity-flavor symmetry for the baryon wave
functions at short distances then leads to the
specification of all the leading electroweak octet
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and decuplet form factors. The spatial wave
functions are assumed to be symmetrical with
respect to the quarks having the same helicity,

a feature which is preserved under perturbative
QCD evolution. As @*-«, the spatial wave func-
tion becomes totally symmetric,* ¢5(x,, Q)
~x,%,%, (InQ%/A%)7B, and thus the helicity-flavor
structure of the baryon states satisfies exact
SU(6) symmetry. The detailed results are given
in the next sections.

II. GENERAL RESULTS IN QCD

In perturbative QCD, the dominant contribution
to any weak or electromagnetic elastic or transi-
tion baryon form factor at large momentum trans-
fer has the general structure®*

6@)axr. o= [ [6] [ [a9105 0, 8)T406,,3,, @)

X ¢ (¢, @) [1+o (—Z)l)] @)

as Q%=—-g®—o, where Q =min(x, Q), [dx]

=13, ax, 8(1 Z} ;%,) and similarly for @, and
[dy] [The contrlbutlon to G(Q?) from the end-
point integration region where the struck quark
has light-cone momentum fraction x~1 is sup-
pressed at large @2 due to the QCD Sudakov form
factor.”® This contribution is analyzed separately
in the Appendix.] The quark distribution ampli-
tude ¢ 4(x,, Q) in Eq. (1) is the probability ampli-
tude for finding three valence quarks in baryon
A with fractions x, of the baryon’s longitudinal
momentum, and collinear up to scale @ (i.e.,
k,<Q)

¢A(x,.,Q)de(Q)'3/2f H—ﬁ% 16 362(;k”)

xd)A(x{,k“)- (2)

[The factor d"*/%(Q) is due to wave-function re-
normalization of the quarks.] The hard-scat-
tering amplitude Ty(x,,y,, @) is the amplitude for
the collinear quarks to scatter from the initial
to the final direction. This amplitude is defined
to be collinear irreducible in that collinear mass
singularities are removed by explicit subtractions.
By definition, the collinear singularities are all
absorbed into the distribution amplitudes ¢. Con-
sequently, all loop momenta are of order 2, ~ @,
and the quark and baryon masses are negligible
(giving corrections suppressed by m/Q). This
leads to three important consequences.*

(1) The hard-scattering amplitude T, falls as
1/Q* for @ large, up to logarithmic corrections
due to the ultraviolet structure of QCD. This fol-

lows simply from dimensional arguments® since
@, and not the quark or baryon masses, must
determine the scale of T, Since ¢(x,, Q) varies
only logarithmically with @, all the leading baryon
form factors fall essentially as 1/Q*.

(2) Quark helicity is conserved along each quark
line in T, since the quark-gluon vertices and the
electroweak vertices are all either vector or
axial-vector couplings and such couplings con-
serve quark helicity for massless quarks. Only
the components of the wave function having zero-
orbital angular momentum along the direction of
motion (i.e., L-P=0) contribute to (2) because
of the angular integrations. Thus the baryon
helicity equals the sum of quark helicities in Ty,
and hadronic helicity is conserved in all leading
form factors G(Q%),y«.p at large Q% i.e., hy,
=hg. Inparticular, form factors which change the
hadronic helicity, such as the Pauli form factor
F,(@?), are suppressed by factors of m/Q.

(3) Initial and final baryon helicities in
G(Q?) 4x*.  must be minimal (i.e., || = |hp|
=%) since the photon and weak bosons are vector
particles. This is obvious in the Breit frame
(p,=~Dp) where the change in hadronic angular
momentum along the direction of motion (i.e.,

AJ- _15A=hA+hB =2h,) must equal zero or one.

Nontrivial relations can be derived among the
various form factors from the helicity-flavor
structure of the wave functions and of the electro-
weak currents, without reference to the explicit
form of T,. The general distribution amplitude
for 2 =3 baryons having isospin (I, ;) has the
structure

VB oy (x, @)= [ [ |11 505 (x;, Q) + 1T , dA(x,, Q)]

+(1—2)+(3—2), (3)

where the superscript S (4) implies symmetry
(antisymmetry) under the exchange of particles
1 and 3. There is no antisymmetric state |II ),
for I=% baryons. Such a state can exist for I
=3 baryons. However, since we expect little
asymmetry in ground-state wave functions (without
heavy quarks) we shall ignore ¢4 relative to ¢5
for the I=% baryons. (Note that the standard
quark-model assumption that these baryon wave
functions are S-wave states also implies ¢4
=0.) This approximation becomes exact in the
limit @*~ since* (8=11-%n,)

Qz -20/98

220D (10

5(x,, Q)

in QCD. Thus we neglect ¢* for all @2 in both
I=% and I =% distribution amplitudes. The isospin
wave functions |II) ¢ for the baryons of interest
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here are given in Table I.

Each of the permutations in (3) contributes in-
coherently and equally since helicity is conserved
along each quark line in T,. Furthermore, it is
important to realize that there are then only two
dynamical amplitudes which determine each of the
leading form factors—corresponding to whether
the struck quark has the same helicity as the
baryon or opposite helicity. Consequently, a form
factor for AX*~B with h, =+3 (=hy) and with
X=v, W, or Z has the form

G (*)(Qz)AX*- B= elf“(AX* "B)GfB (Qz)
+el(AX* < B)GAE(Q?). 4)

Here the constants e, and e; are the sums of the
electroweak charges® carried by valence quarks
in the baryon with helicities parallel and anti-
parallel, respectively, to the baryon’s helicity.
They are determined solely by the flavor wave
functions |II,) of the baryons (A and B), as given
in Table I, and by the flavor-spin structure of the
electroweak currents:

e, = s(BUI)|Q(1)+Q(3) |AL)s,
;=5 (BUIL,) Q) |AUL)),,

where Q(1) is the electroweak charge operator
for quark 1, etc. The QCD dynamics is contained
in the form factors G2 and G2#5 where, for ex-
ample,

)

2 2 1
cam(@)= (23 SN [*lacarlo 305, @

XT,(x,,9,, ¢ (@)

X ,lx;, Q) (6)
is independent of the current (i.e., of X*).

Note that Eqgs. (4) and (5) are valid only because
helicity is conserved along each quark line. This
is a necessary consequence of a vector-gluon
theory. By way of contrast, consider a scalar-
gluon theory. In leading order, the helicity-con-
serving form factors have the general form

G® (@) =2 (AX*~B)G*5(Q? (scalar gluon),

where now the struck quark can only have parallel
helicity. Since helicity is exchanged between the
spectator quarks (in this order), &, is not the
same as e, in Egs. (4) and (5); additional per-
mutation operators appear in the definition of &,
analogous to Eq. (5). Furthermore, there are
helicity-nonconserving form factors, even in
leading order in 1/Q, for such a theory [e.g.,
y*p(3) ~ A(-$)], again in marked contrast with
QCD. Such differences reflect the gluon’s spin.
They allow us to experimentally distinguish a
vector theory, which conserves quark helicity,

TABLE 1. (1 < 3)-symmetric flavor wave functions
multiplying spin state | t+ 1) in Eq. (3).

- LI ) - ' Putra@)

| n)=(=|p) with u ~—d)

uWdB) +u@)dA) ., u(2)dE) +u@3)d(2)
ey 2V3

4 UDd@) +u@)d1)

2V3s

| =7y =(—| n) with  ~— s)
#(2)d(3) — u(3)d(2)
2

| p)

| 20y =—

s(1)

s(3)

| 40 =

s@) + d(1)u(2)2-d(2)u(1) s

@3)
[ A™) =u(1)u(@)u(3)
| A*y = J-%—g.[u(l)u(z)dw) +all permutations]

| A% = (| A*) with « ~— d)
| A7y =(| A**) with « — d)

1
0yo L ;
| Y0y ‘/.g[u(l)s(Z)d(S) +all permutations]
| Yy = ‘/__-lé-[d(l)s(Z)d(S) +all permutations]

from scalar- or tensor-gluon theories, which
flip quark helicities.

I1I. SPECIFIC PREDICTIONS

The distribution amplitudes ¢ g for protons and
neutrons are essentially identical, by isospin sym-
metry. Consequently, all electromagnetic-,
charged-, and neutral-current form factors in-
volving nucleors alone are uniquely determined
for large @ given only the two functions G ,(Q%)
and G;(Q®). The constants e,, e; determining these
various nucleonic form factors are given in Table
1L

TABLE II. Algebraic coefficients determining the
electroweak form factors of nucleons.

4+

AX*—~B ey e ey eq
Y —p 1 0 1 0
— 1 1 1 1
ny = ~F T -3 T
PW ™ —n . c
nW* —~p —3 §‘C 0
- 1 2
pZ0 —p —w - F-w 0
z0 w L_» Y 2 _z
net 3 T3 373 3

G (@) ax*ep =e[G(Q) +ef?6,(Q?)
|cl=|cosbs|=0.974 +0.003
w=sin%6,=0.22 +0.01
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The form factors G’ [Eq. (4)] are defined such
that the expectation value of the electroweak
current between nucleon states is

A Ip>=u(p')[n lfz—l‘— @)

+Y, —1—:21—5- G"’(QZ)]u(p)-

In general these form factors dominate as @2
=—(p’ - p)?—~ since only these currents con-
serve hadronic helicity in that limit. All other
form factors are suppressed by powers of m/Q.
Thus for electromagnetic interactions, G

=G is the usual magnetic form factor G,, and
from Table II we have

G G-
G%=G,, G"M=-"—3n'+ "?‘ .

The data'® for magnetic form factors (@< 1
GeV?) can be roughly parametrized as follows:

2.79
0.71 GeV?)?

()

G3(@") ~-1.46 63, @)~ 115w

and therefore
G, (@) ~G%(@%), G;(@%)~-1.05G%(Q%. (8)

These functions together with the algebraic con-
stants in Table II determine all the asymptotic
nucleon form factors. For example, the isovector
axial-vector charge form factor

FIYQY) = 1[G* (@) - G- (@)

prong 3c080,(-%G,-3G;)
is predicted to be =-0.48 G%,(Q?) if we use Eqgs.
(7) and (8). The measured value is =-0.44G%(Q%),
which agrees surprisingly well with theory given
the low Q% involved.

To the extent that flavor SU(3) is a good sym-
metry, the same functions G, and G; [Eq. (8)]
determine the strangeness-changing transition
form factors from nucleons to other members of
the nucleon octet. The algebraic constants
(e,, €;) determining these form factors follow from
the wave functions given in Table I. The constants
are given in Table III

Finally, the transition to particles in the J
=3 decuplet (4,...) can also be analyzed. Since
only helicity +3 baryons interact at large @7%, the
definition (6) of the form factor G*’ can be
retained for these transitions even though the
decuplet particles have spin §. Again, if SU(3)
is a good symmetry, all transition form factors
are specified by only two @%-dependent functions.

TABLE III. Algebraic coefficients determining the
strangeness-changing weak form factors of nucleons.

AX*—B el 2 ey es
- V2 1
W30 — —_—
? 0 3 ° 3va 0
PW — A0 0 0 &% 0
- - 2 i
AW —3 0 -Ls -3 0

| s|=|sin6c|=0.220 +0.003

Flavor-SU(6) symmetry implies that the distri-
bution amplitudes for the decuplet are the same

as for the octet. Consequently, the same functions
G, and G; from Eq. (8) will also approximately
determine the octet-decuplet form factors. The
algebraic constants relevant to these transitions
are given in Table IV.

IV. CONCLUSIONS

It is increasingly apparent that higher-order
corrections are very important in most QCD
processes. Thus it is imperative that we examine
those features of QCD which are valid to all
orders in @, In this paper, we have shown that
the large-Q? behavior of the electroweak form
factors of baryons provides a variety of just such
“all-orders” tests of QCD. The 1/Q* falloff,
helicity conservation, and the minimal-helicity
selection rule for form factors are all valid in
every order of QCD perturbation theory.

In Sec. III we presented a large number of non-

TABLE IV. Algebraic coefficients determining the
electroweak transition form factors of nucleons.

AX*—~B e e} e e;
+*
oy Ag 4z el Iz
ny — A 3 3 s 3
pW*“’AH’
2,1/2 2.\1/2
aw" — A" a% 0 —('5') 4 (g) Cc 0
- = Al
pw A § 5 Iz, Iz, o
aW* —A*? 3 K
0 . A*
P T Zaiw Zaon el
nZ0 — AV 3 3. 3.7 -3
“_.yo s _s
W Y 0 3 3 0
AW~ Y~ 0 %s -gs 0

2The coefficients should be multiplied by (—1) for these
processes.
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trivial relations among the different electroweak
form factors. Indeed all electroweak form factors
involving baryons in the lowest mass octet and
decuplet are essentially determined by only two
independent form factors [Eq. (8)], using the purely
algebraic constants tabulated in Tables II-1IV.
These relations are again valid to all orders in
a,, and critically test the spin of the gluon.

Finally, the properties described here not only
test QCD, but provide a potentially useful tool for
measuring the parameters determining the weak
interactions of quarks and leptons.
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APPENDIX

One can distinguish two distinct contributions
to baryon form factors at large momentum trans-
fer. The “hard-scattering” contribution is the
dominant perturbative QCD contribution which
arises from scattering of the three valence quarks
quarks—each carrying a non-negligible fraction
%, of the baryon’s momentum. This is the con-
tribution analyzed in Secs. II and III of this paper.
The other contribution arises from the end-point
x ~1 integration region corresponding to the ki-
nematic situation where the spectator quarks are
essentially stopped and only the struck quark is
forced to change direction.”'!! Contributions from
this region are related, by the Drell-Yan-West’
connection, to the x ~1 behavior of inelastic
structure functions. However, because the struck
quark is close to the mass shell for x ~1, this
end-point contribution to the baryon form factor
is suppressed by the usual Sudakov quark form
factor—corresponding to the probability ampli-

tude for a quark to scatter without gluon emis-
sion. (A detailed discussion is given in Refs. 4
and 12.) If one analyzes the QCD Sudakov form
factor in the leading-logarithm approximation,
the end-point contribution to hadron form factors
is suppressed asymptotically by a power of m/Q
relative to the hard-scattering contribution.?®

It is conceivable that the end-point ¥ ~1 con-
tribution could play an important phenomeno-
logical role at moderate @ in the baryon form
factor. There are certain features of this con-
tribution which distinguish it from the asymp-
totically dominant hard-scattering contributions.
We first note that perturbative QCD predicts that
the struck quark with x~1 has the same helicity
as the baryon.'® If we assume that the baryon
wave functions which describe structure functions
for x~1 are the SU(6) valence wave functions
given in Table I (with no asymmetric ¥, com-
ponent'* analogous to Eq. (3)], then perturbative
QCD predicts'® :

Gd/,(x)/Gu/p(x)“’si . (A1)
%=1

This prediction is in fact supported by recent
deep-inelastic lepton-scattering data at large

x'ls

Applying this helicity rule to the x~1 contri-

bution to the baryon form factors leads to the
prediction

G ®(Q%) ,x%. 5~ e:(AX*~B)G A3(Q*) (end point)

(A2)

in contrast to Eq. (4). In particular, if Eq. (A2)
is applicable, the proton to neutron ratio G7,/
G*, is predicted to be ~5 in contrast to the mea-
sured ratio (at low @) which is closer to —Z.

If both end-point and hard-scattering contri-
butions are phenomenologically important, then
the form of Eq. (4) holds with an extra contribu-
tion to G#5(Q®) due to the end-point contribution.
However, at large @, only the hard-scattering
contributions are predicted to survive.
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