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A generalization of charge symmetry, called “flavor symmetry,” is applied to the constituent-quark model to relate
the sum of magnetic moments of mirror pairs of baryons to quark moments. With only the added assumption that
the ratio of u- and d-quark moments is — 2, the general sum rule, u(Z*) 4+ (5% —u (2 7) — p(E ) = 2.640
nuclear magnetons, is established. Relativistic corrections are estimated to be less than 4%. Larger deviations from
the sum rule would indicate electromagnetic annihilation of highly correlated pairs in the quark sea.

The nonrelativistic constituent-quark model
has been surprisingly successful® in accounting
for some of the baryon magnetic moments. For
example, it was shown® by Bég, Lee, and Pais
that the ratio of neutron and proton magnetic
moments is obtained with remarkable precision
for the non-relativistic SU(6) model when the
ratio of up~ and down-quark moments is set equal
to the electric charge ratio. Also De Rijula,
Georgi, and Glashow® have pointed out that if
the strange-quark moment is reduced by the
ratio of quark masses, SU(6) yields excellent
agreement with the measured moment* of the
A, :

The purpose of this article is to establish some
quite general consequences of the nonrelativistic
constituent-quark model of baryons, in particular,
generalizations of the well-known mirror proper-
ties of nuclear magnetic moments.® The sum of
the magnetic moments of mirror nuclei (i.e.,
those obtained from one another by exchanging
neutrons and protons) depend only on the probabil-
ity distributions of orbital and spin angular mo-
menta in the approximation that both nuclei are
described by the same wave function, that is,
on the assumption of charge symmetry of the
nuclear Hamiltonian.

A similar result was obtained® in 1952 for the
sum of neutron and proton moments but, in this
case, it was used to determine the distribution
of pion angular momenta in the Fock wave func-
tion describing the pion field. The constituent--
quark model of the nucleon permits a similar
conclusion concerning the distribution of angular
momenta of quarks. For this model, charge
symmetry implies that the three-quark wave
function of the nucleon is unchanged when « and
d quarks are interchanged. A generalization of
charge symmetry, which I shall call “flavor sym-
metry” applies to the interchange of quark flavors
for any pair of baryons comprised of quarks
having only two flavors. Among the members

of the baryon octet, these include the =* and =°

(# and s quarks) and the = and =~ (d and s quarks),
and I shall show that flavor symmetry leads to
sum rules for the moments of these pairs.

The assumption of flavor symmetry is implicit
in other work® on this subject; this assumption
states that this sextet of baryons is described
by a single three-quark wave function. I shall
label operators and variables appearing in the
wave function by 1 and 2 for the two like quarks
and 3 for the odd quark. Undesignated flavors
will be denoted by o, 8, y. Then the magnetic-
moment operator for a baryon made up of two
quarks of flavor « and one of flavor B is

%0 = 11,28+ L)+ (g - 1)+ 1) ()

when it is assumed that p,, the intrinsic moment
of the quark, is the Dirac moment. The total-
baryon-spin operator is §, the total-orbital-
angular-momentum operator is f, and 53 and

’13 are the Pauli spin operator and orbital-angular-
momentum operator, respectively, of the odd
quark,

The assumption of flavor symmetry means that
the magnetic moments u(a?,B) or u(8?, @) of mir-
ror baryons, including two o and one 8 quark
or two 8 and one o quark, respectively, are ob-
tained by using the same wave function to cal-
culate the expectation values of M 38 oromge. It
is implicit in this assumption that the effect on
the wave function of differences in quark masses
is small.® The sum of the moments of mirror
baryons is then immediately found to be

pla?, B)+ u(B?, o) = (ko + 1g)2S,+ L), (2)

where the expectation value is taken with respect
to the common wave function.

The wave function of the three-quark system
having total angular momentum % may consist
of a linear combination of 2S, 2P, *P, and ‘D
states. Denoting the real” amplitudes of these
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states by their term symbols, one obtains
u(a?, B)+ 1(B?, o)

=(Ko* Pa)[l - 2Py +3(*Py - (4D)2] ,» (3)

where use has been made of the normalization
condition to eliminate the amplitude of the (pre-
sumably) dominant 2S state.®

From Eq. (3) the following mirror relations
follow immediately:

b@)+ p(n)=(p+ 1A, (4a)
B(Z7) + W(E®) = (ky+ B5)A (4b)
(E)+ B(ET) =(py+ 1A, ?4c)
and k )
A=[1-2CP;+3(*Py - (*D)]. (5)

The ambiguities associated with the different
configurations may be eliminated by taking ratios.
Thus the two general results

B(Z+ (E®) _ Byt b
p@)+uln)  pyt g

and

(6a)

p(Z)+ w(ET) _ pe+ by
L)+ () Byt kg

(6b)

depend only on the assumption that the baryons

are states of three quarks having flavor symmetry.

By means of these two equations measured
moments of the baryons could be used to calculate
the two ratios of quark moments u,/u,; and pg/L,.
It is also possible to eliminate pg by combining
the two equations to give the sum rule

(yt B H(Z)+ u(E®) = u(Z7) = m(ET)]

=(py = @)+ (@), (D)

The commonly made assumption® that i, and
K4 are in the ratios of the electric charges of
the # and d quarks

p‘u=—2“'d’ (8)

converts Eq. (7) into the particularly interesting
sum rule

(2 + p(E%) = u(Z7) = w(ET) =3[ p(p) + n(r)]. (9)

It should be noted that, since this sum rule is
actually a statement about ratios, it does not
contain assumptions about quark masses other
than that implicit in Eq. (8).

Insertion of the value

p(p)+ u(n)=0.880 (10)

(K, =nuclear magneton) into Eq. (9) leads to the
sum rule for hyperon moments

() + (2 = (Z7) - 1(E7)=2.640 . (11)

Available data® on the hyperon moments do not
at this time provide a significant test of this sum
rule because of the relatively large estimated
errors for most of them. However, it is likely
that more precise values will soon be forth-
coming.!® For the same reason, the use of Eq.
(6) along with Eq. (8) to obtain a significant meas-
ure of i/, must await the new measurements.

The generality of Egs. (7), (9), and (11), even
within the context of the three-quark, flavor-
symmetric model is marred by the effect of rela-
tivistic corrections. Such corrections may be
estimated in a manner similar to that used for
the triton magnetic moment.!* Their relative
importance can be expected to be considerably
smaller than the relativistic contributions to the
Hamiltonian (“hyperfine” splittings), which have
been estimated by De Rujula, Georgi, and Glashow®
(DGG) to be about 20%, because correction terms
in the magnetic-moment operators depending
only on a single quark will satisfy the mirror
relations and will therefore not modify the sum
rules, Eq. (7) ef seq. However, they do lead
to corrections in the moments of individual bary-
ons and to modification of the coefficient A, Eq.
(5). It follows that only the two-quark terms
arising from the insertion of electromagnetic
coupling'? into the DGG “two-body Coulombic
interaction” will lead to a change and all such
terms couple states of different orbital angular
momentum. Therefore their contribution to the
moments will be proportional to the (small) ampli-
tudes of the admixed P and D states.

On the assumption that these admixtures are
themselves generated by the hyperfine terms,
the relativistic corrections to the sum rules may
then be estimated to be about 4%. This is con-
sistent with the conclusion of DGG that deviations
of quark magnetic moments from the Dirac mo-
ment can be expected to arise only in second
order of the color coupling.

Within this limitation of about 4%, the extent
to which the sum rule, Eq. (11), is violated by
measured hyperon moments can be interpreted
as a measure of deviations from the constituent
three-quark model, that is, as a measure of the
quark sea. A relatively small amplitude for the

. quark sea may lead to rather large effects due

to electromagentic annihilation of correlated
quark pairs.

These effects may be illustrated by a model
in which the valence-quark state |¥,) of the three-
quark system is supplemented by a state inclu-
ding additional quark pairs. Thus the baryon
state is written as
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[ Yy=¥,)+ ¥, ), (12)

where 1¥,) is a state of three valence quarks
and an additional quark pair. In its simplest form,
¥, ) is a product of a core of valence quarks in
the state ¥, ) with a pair state. This form is
assumed because excitation of the core would
cost energy in amounts corresponding to the
splitting between SU (6) supermultiplets. States
¥, ) and ¥, ) may be described as Fock wave
functions in terms of a distribution of occupation
numbers.?

If the Dirac spinor field operator for a quark
of flavor f and electric charge g; is ¥ f(;:), the
magnetic-moment operator is

g s @D (13)

The magnetic moment is obtained by taking the
expectation value of 91, in the state I¥ ). Since
M, contains pair-annihilation terms, this expec-
tation value includes a cross term between |¥,)

and |¥,) as well as the usual contributions of
J

M(Olz, B) =% <‘l‘ aﬂrth deX(wl;lpl x E)x'l" qﬂ fd3x<ﬂ)-2;¢2 X ;{)z+ q-r fcpx(ajs;lps X §)3+ D "P aﬂ> .

It can easily be shown by means of an expansion
of the ¥, in spinor plane waves that each term
in Eq. (14) is inversely proportional to the quark
mass in the nonrelativistic limit. Therefore

w(a?,8) =¥ 11,0, + g0, + 1,05+ -+ 1 W),

(15)

where the O, are “universal” operators, i.e.,
independent of flavor in the nonrelativistic limit.
The terms in Eq. (15) of the form (¥,! 1,0, + p,
0,1¥,) are just those obtained by using Eq. (1)
plus the kinematical relativistic corrections.
The mirror property, now including the cross
terms between |¥,) and |¥,) due to pair annihil-
ation, obtained from Eq. (15) is

w(a®,B)+ p(B2, a) = (ko + Be)(A+ X, +X,)+ 20X, .(16)

It is now assumed that only up-, down-, and
strange-quark pairs need be considered. The
annihilation terms are given by

X, =2(,10,1¥,) (L))
and the coefficient A by Eq. (5). Contributions
proportional to (¥, ['¥,) have been neglected since
the overall probability for the occurrence of the
sea is assumed to be small.

The generalization of the important sum rule
Eq. (11) is immediate. By direct calculation from
Eq. (16) it is found to be
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the spin and orbital angular momenta of the core
and sea. It should be remarked incidentally that
the kinematical relativistic corrections to these
latter contributions are automatically included
when the moments are calculated from the oper-
ator Eq. (13).

1 assume that the total state | ¥ ) is flavor-
symmetric, that is, each member of the baryon
sextet is described by the same'® |¥) with appro-
priate permutations of flavors. Thus |¥) may
be expressed in terms of fixed occupation numbers
N,, N,, N,--+ for each flavor and the flavor
assignments among the states of type 1, 2, 3

- permuted. For example, the three-quark
core states have N, =2, N,=1 where, for the
proton, type 1 is a u quark, type 2 a d quark,
while for the neutron the roles are reversed.

With this understanding, the Dirac spinor field
operators are written ¥ ,(x), ¥,(X), etc., with
the types 1, 2, etc., to be assigned appropriate
flavors for each case in turn. Then the magnetic
moment for a member of the sextet takes the
form

(14)

f
B(Z7) + 1(=%) = w(27) = u(=)
=3[ p@)+ p(n) = 2(pg = 1)X,] . (18)

Thus deviations from Eq. (11) provide a measure
of the contribution from annihilation of the “third-
quark” pairs to the moment.

Some idea of the magnitude of this deviation
may be obtained by assuming that the deviation
of u(p)+ i(n) from its canonical value of unity
(ug==1py,, A=1) is due entirely to the contri-
butions of pair-annihilation terms. If it is also
assumed that X, =X, =X, =X, Eq. (16) yields

u(p)+ p)=1+2(pg— pgX (19)
and, from Eq. (10),
2y — B)X ==0.12. (20)

Thus the corresponding deviation of Eq. (18) from
the basic sum rule Eq. (11) is 12%. The possi-
bility that configuration mixing and relativistic
corrections are partly responsible for the dif-
ference p(p)+ p(n)—1 ,makes it appear likely that
this is an upper limit on the correction to Eq. (11).

If Eq. (20) is inserted into Eq. (18), the result
is the “canonical sum rule”

B(Z )+ B(E%) = w(Z7) = (E7)=31y, (21)

which is just what would be expected on the basis
of the simplest imaginable interpretation of the
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constituent-quark model.

Although the overall probability amplitude for
the state |1¥,) is expected to be small, it does
not place a bound on the X , So that a large val-
ue, as suggested by Eq. (20), is conceivable.
The X, are proportional to JBRKR)AK, —F) .
where K(k) is a kinematical factor and f(k,,k,)

‘is the normalized (two-particle) amplitude for

a quark pair of momenta El and Ez Large values
of the X, would indicate that quark pairs of equal
and opposite momenta are highly correlated or,
alternatively, that the pair is closely correlated
in configuration space.

Finally, a general sum rule following from
Eq. (16) is
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p(p)+ mr)+ u(S*) + B(E0) + p(Z7) + p(E)

=2(A+ X, + X, + X (1 + by + 1), (22)

which is of interest because of the proportionally
to the sum of the three-quark moments, a quan-
tity that vanishes in unbroken SU(3). Thus the
notion that SU(3) leads to the vanishing of the sum
of the six moments is quite general, including
configuration mixing and quark sea contributions.
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