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Duality for heavy-quark systems
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We give a proof of the duality relation (ob.„.d) (cr„) for nonrelativistic potential models, using Feynman
propagators. There are important and calculable corrections to the duality relation, both for smooth long-range
potentials and for singular short-range potentials. We illustrate the corrections for the exactly solvable harmonic-
oscillator, linear, and Hulthen potentials.

I. INTRODUCTION

The spectrum of hadrons in the process e'e-
hadrons is characterized in the g and T regions
by a few narrow states and a continuum containing
resonance structure. Duality is supposed to
relate an appropriate average of this highly
structured physical cross section to the smooth
cross section for quark pair production, e'e -qq,
as calculated 1n perturbatlve quantum chromody-
namics (@CD}.' ~ This idea has been used by a
number of authors' ' to relate the g and T data
to @CD cross sections, to estimate leptonic
widths, and to determine quark masses. Duality
is usually implemented by averaging the cross
sections using reasonable smearing functions,
or by comparing energy moments. For example,
the moments method was used recently to obtain
values of the heavy-quark masses with very small
statistical errors, m, =1.45+0.05 GeV (Refs.
8 and 9) and m~=4. 58+0.08 GeV.'

The statistical precision with which the heavy-
quark masses can (apparently) be determined
made us curious to know how well the duality re-
lations work, and to see if there was a systematic
procedure for calculating corrections. We have
examined this problem in the context of potential
scattering, since potential models provide a very
successful description of the P and T bound
states. ~ Several authors have previously
given JWKB (Refs. 14-16}or Thomas-Fermi"
derivations of a duality relation between averaged
cross sections. This relation has been checked
numerically" "and seems to work well when the
free and bound qq cross sections are averaged
locally or smeared with Gaussians, except near
the qq threshold. However, the accuracy of the
moments method had not previously been checked
and existing derivations of duality did not provide
a method for estimating corrections.

We have constructed a new proof of the duality
relations for both nonsingular and singular po-
tentials. In Sec. II we give the background to the
duality problem. Qur derivation of duality for

nonsingular potentials is given in Sec. III A and
discussed in Sec. III B. The derivation is based
on an argument mentioned briefly by Bell and
Pasupathy, "and shows clearly the conditions
under which the duality relations hold. It also
allows us to calculate the corrections to those
relations. This is illustrated for the linear and
oscillator potentials in Secs. IV A and IV B.

The duality relations must be modified for
singular potentials~ "or potentials which vary
rapidly near the origin, by including the effects
of the short-range interaction on the "free" qq
cross section. This is discussed in Sec. III C
and is illustrated for the Coulomb-plus-1. inear
potential. of QCD in Sec. IV C. The derivations
of the duality relations suggested to us an exten-
sion of duality to general transition rates, which
we give in Sec. III D.

II. BACKGROUND

The annihilation reaction e'e-- hadrons pro-
ceeds through a virtual photon state which couples
to a qq pair, e'e —z —qq —hadrons. At low en-
ergies (the g and T regions for cc and bb, re-
spectively) the qq forms a series of bound 'S,
states. Above the threshold for production of
mesons containing the heavy quark q, the gq
states appear as broad resonances which merge
at high energies into a smooth continuum. The
continuum cross section is well described by the
production of a "free" qq pair followed by frag-
mentation of the q and q into the observed had-
rons."

The "free" cross section for e'e —qq is given
relativistically for quarks of mass m, with three
colors by

o„„=6ve'e, '~(1 —%')/ W', (1)

where Wis the total energy and e= (1 —4m, /W )'~

is the velocity of either quark in the center-of-
mass system. The corresponding nonrelativistic
expression is

o„„=6vo.'e,avI ge(0)
~

/Wn,
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where (j)s(F ) is the qq wave function for energy
E = W- 2m, , and F) = (E/m, )~ j~. With conventional
plane-wave normalization,

~ gs(0) ~'=1 for non-
interacting particles. We will use the nonrela-
tivistic expressions throughout this paper. These
are expected to be valid for the heavy-quark
systems in most of the bound-state and reson-
ance region. '~'~

Single-channel potential models describe the
production of hadrons in e'e annihilation as pro-
ceeding through the formation of qq bound states
in a confining potential, followed by the decay of
these states. The cross section for e'e- —bo~nd
states is given by

v.. .=g 5v25(W —M„)r„(e'e-)/W',

' where I„=2m, +E„ is the mass of the nth qq
bound state, E„ is its nonrelativistic excitation
energy, and I'„(e'8-) is its leptonic width. The
leptonic width is given in terms of the square of
the bound qq wave function at the origin by the van
Royen-Weisskopf formula, " '

r„(e e )=-4''e, '~ y„(0)~'/m, '

(F„.„„=+24v'(r'e,'m
~
(j„(0)

~

'5(E —E„)/W' .
(5)

Duality requires that the cross sections (2) and

(3) be equal when suitably averaged over energy,
that is,

(el'(&))lq- Z(r&' 'e,*)r„(e e-)4(d —4) = +44'l&t(&))I'~ 4(d —4„)) .
8 n

[Note that3e, (v~ gs(0) ~ ) is just the average of the
nonrelativistic ratio R, =(F(e'e - h dar on)/s((eF'e
—p')(( ) for a single quark flavor. ] Our objectives
in Sec. III are to establish this relation and a
procedure fear calculating corrections to it.

III. DERIVATION OF THE DUALITY RELATION

Our derivation of the duality relation uses the
Feynman propagator K(r', r, f). For bound states,

K(r' r t)=Q(j (r')e "'"' -sP*(r)

' and

(F„„=12FF'()('e,'m, K2,(0,0, E)/W'

(F„,„„=12FF'(F'e,'m, 'K(0, 0, E)/W',
where (with )F now inserted explicitly)

d3 g E m (4 /1)yo(1"-1)
(2v)F)' m, j

tt, (r', Ftt)= J dt e,

"«"*&t&,(F',Ft),
~ 00

e (( / )) ) FF(F' ) t-5 (re r)
and

= (m2()/2Fra')e" '""""
a (10)

where („and E„are the wave functions and ener-
gies for the Hamiltonian B. We first show that
the energy-averaged cross sections are related
by a Fourier transform to the short-time behavior
of K. We then relate the short-time propagator
K for a confining potential V(r'), regular at the
origin, to the free propagator K, . We find that
K =K, plus correction terms which are nonneg-
ligibl. e for the potential used to fit the cc and bb
systems. We discuss the correction terms, then
generalize our proof to the case of singular po-
tentials. We end the section with a statement
of duality for general transition rates.

A. Nonsingular potentials

The cross sections for e'e- annihilation into free
or bound qq systems are given in Eqs. (2) and (5).
These cross sections can be expressed in terms
of the Fourier transforms of the free propagator
K,(r', r, t) and the propagator K(r', r, t) for the
confining potential by

t&(F'FZ}=I dt e&,'&"
, & 'f"t(r , r,t)'

~ 40

=2(F8'+5(E—E„)p„(r')g(r) .

Since duality relates the energy averages ((F„, ,)
to (o„„),we wish to relate appropriate energy
averages of K and Rp.

We average R by convoluting with a smooth
function f(E'- E), and define

(R(E)) = Jf dE'f(E' -E)K(0,0,E') . (l2)

From Eq. (11), we see that (K(E)) is given by

(tt(d)) = J. dt e«'"& '.&t(00&), ,
~ OO

x dE' E'-E e "~""~ ~"

df e('~"'s'K(0, 0, t)f (t/ff) .
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If f(E'-E) is a broad, smooth function with a
width &, then we expect f (t/5) to be a narrow
function with a width f -If/&, and we will only
need the short-time behavior of the propagators
to calculate the energy averages. The free pro-
pagator Ko(0, 0, f) for a &&&q system with a reduced
mass the /2 is

Our strategy is to relate E to +p for short times.
From Eq. (7) we express the propagator as

If(r r t) ds~ s- «/&) &)).& s.(it/h &H&~&
(2&/@)'

(i /& )y.p'

where

(16)
2

8(r ) =-—V" + V(r ) =8, + V(; ) .
mq

We assume that V(r') is spherically symmetric
and can be expanded in a Taylor series near
r' =0, a restriction we will remove later, and
choose the energy scale so that V(0) =0. This
assumption allows us to expand the factor

e- &it/ &i/(r'& e(& / &g.&" in Eq (15)

(i /h )f/' (i /h )y,1" (i/h)(g+ V)t fe(i /& )V g -(i /h )(Hp+P') P (i /h )Pp/1 (i/h )P,1"]e

=e "/" "s+"&i(1—~(t/Ii) [8 V]+ ~i(f/Ii)'( [8 V] V]+[8 [8 V]])+ ~ je"/"'~'
) (17)

where E=p'/m, . The coefficient functions in the power series in t/5 all involve derivatives of V(&").
When this series is substituted into Eq. (14), the first termfgives the free propagator Zo(r, r, f) multi-
plied by e "/" &~("&. We group the rest of the terms by powers of t/Ii-1/&, set r' and r equal to zero,
and find that to order (t/5)', with V(0) =0,

t3 @4, (tz(o, o, f) = f~, (o, o, f) 1+- — ~'v(0) -—
~

— —[~v(0)]'+——,v'v'v(0)+o~ —
I . (16)6 )i m, 12&A m, 60k m, (I i

We have therefore shown that for suitable potentials V(r) and for sufficiently small times f,

z(o, o, t) ™Ic,(o, o, f), ,

which implies from Eq. (13) that

(Z(E)) =(Z, (E)) .
This gives the simple duality rel.ation

(2o)

from Eqs. (6) and (9).

B. Discussion and interpretation

Assuming that the derivatives of V(r) are finite at the origin, we can estimate the corrections to (R(E)),

g(z))= f d e~'«~)'x&o, o, ~)J&~/))

(&C& ' e-' , ~ tt ' @2
=(Z, (E)) + dt e" /" &~'K,(0,0, t)f (t/5) — — V'V(0) ——

~

— ['7V(0)]'
6 8 m, 12 I@ m,

+ ~2~2+ 0 + g (22)

Upon integration each factor of f/I' is replaced by
I/&, and the corrections can be made arbitrarily

small by choosing f(E' —E) broad enough [f(f/K)
narrow enough], e.g. , a Gaussian. For example,
for a harmonic oscillator, V(w)=~~ m co'r, only
the VIV(0) term is nonzero, and the correction
is of order (h«&/&)' which is small for & large

compared with the oscil1.ator energy spacing.
For a potential which varies as r with k large,

all low-order correction terms vanish. (The
larger the power of r, the more closely the po-
tential approximates a square well. This ex-
plains the success of the duality relations for
square wells noted by Novikov et al.") The
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physical interpretation of this result is that a
qq pair produced as a localized wave packet at
r =0 does not "feel" the co@fining potential, and
moves nearly freely over some range of r. This
range, and therefore the time during which a qq
bound wave packet acts like a free qq system, is
determined by the potential. The flatter the
potential near x=0, the better the uncorrected
duality relation holds.

For k &2, notably for the linear potential, the
method of Eq. (22) does not give a useful estimate
of the correction terms, since V'V(r) diverges
as r —0. Even for large k, the series in Eqs.
(18) and (22} are only asymptotic, and we can
only calculate a finite number of correction terms.

More physically, for k small, a localized low-
energy wave packet is affected by the confining
potential even near r =0. This changes the duality
relations near the threshold for free qq produc-
tion. (The importance of the potential relative to
the kinetic energy for k small is shown for the
bound states by the virial theorem, (V) = (2/k}(T)
for V(K: r'. ) At energies well above threshold,
the qq wave function is insensitive to the potential
for x small, and the usual relations hold.

In these cases, it is necessary either to evatuate
K(0,0, f) more carefully for small f, e.g. , as a
Feynman path integral, to use a different method
to compare g(E)) with (K,(E)), e.g. , the Euler-
Maclaurin summation formula, 22 or to treat the
short-range part of the potential separately.

We will not discuss the path-integral method
here except to observe that the correction terms
in Eq. (22) can be identified with terms in the
path integral. For example, the V'V(0) term
results from the change in normalization of
K(0, 0, f) due to fluctuations about the classical
path for a quadratic potential. The [V'(0)]2 term
is of order I/k and is exactly the classical action
for a linear potential. This term results from
expansion of the semiclassical. approximation to
the path integral, E-e" "' «.

The Euler-Maclaurin summation formula22 gives
I

an alternate way of comparing the averages of
K, (O, O, E) with K(0, 0, E) [given by Eqs. (10) and

(11)],

m 3/2
(K (E})— f(Et E) ~~ (23)

(24)

We use the Euler-Maclaurin formula to convert
the sum in Eq. (24) to an integral which can be
compared with Eq. (23), plus a remainder. We
will illustrate this technique in Sec. IV for the
linear potential.

C. Short-range corrections

If V(r) is not analytic or is singular at r =0,
the expansion used to obtain Eq. (22) fails.
However, we can get a duality relation by split-
ting the potential into a short-range nonconfining
part Vs and a long-range confining part VI, , an-
anlytic at r =0. We replace K,(r', r, f) by a pro-
pagator K~(r', r, t) constructed from the exact
free solutions gs to the Schrodinger equation for
the Hamiltonian

82a, (I[.")= V"+ V, (r'),
me

tt, (r', r, t} (trK) 'f=rt *tt t (r')r- "t"' 't".(r),
(26)

where E =pm/m, . If there are bound states in the
potential Vs, their contribution must be added
to Eq. (26); see, e.g. , Eq. (7).

The propagator for the full Hamiltonian H(r')
=Bz(r') + V~(x') can be expressed in terms of
the functions g~ as

(26)

K(, f) d sP[ -((/)})H[ r')ty (Pt)] y (P) .
(2vl)' (27)

It is clear that K(r', r, f) can be approximated by
K~(r', r, t) for f small. We can obtain the correc-
tions for finite t by expanding the exponential
operator using the identity

e«/ Hs+Pg t7I, e-( / }(E+Vl.&tfe / V'I, te- / HS+V'I te«/ st],i},e e L e

1 [K V I+ ' ' ' }t'Sy I E

When this expansion is substituted in Eq. (27), we find that

2

K( r, t}= rt"' ""rI1——
(
— [K (r'), V (r')]+ }K (P, r, tl .r

(26)

(29)

This equation expresses K(r', r, t) in terms of (Kr, r, t) and a series of corrections which depend on deriv-
atives of V~. When this expression is substituted in Eq. (13), we obtain a modified duality relation,
(K(E)) = (Kz[E —V~(0)]) plus corrections, which reduces to Eq. (22) for V~ =0, [Note that V~(0) need not
vanish. ]
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D. Duality for general transition rates

An interesting corollary to our proof of duality
for e'e cross sections is a more general duality
relation for transition rates involving any short-
range operator A(r)e ' (k=1). The transition
rate I' from an initial state (i), to the bound state

g„ is

1(E)=2EQ[(y„~a~ q,) )'a(E -E„) . (30)

«(E)) = «.(E)) (33)

for short-range operators A(r), where I', (E)
is the decay rate to free states. Again, the cor-
rection terms must be estimated as discussed
above.

It is easy to show that I" can be expressed in
terms of the Fourier transform of the propagator
K(r', r, E) given in Eq. (11),

r(E)= Jd'r'f d'r r),"(r')r('(r')rr(r', rE)r((r, )r)(p),
(31)

We define an energy-averaged transition rate

(I'(@)=-f d2' f(Z' —E)I'(8') . (32)

The technique we used to derive Eq. (18) for
K(0, 0, f) can be used to express K(r', r, f) in terms
of K,(r', r, t) for r', r, and f all smaH. Then for
narrow functions f(t), (K(r', r, E))= (K,(r', r, E)),
and it follows that

widths for qq resonances. Two methods are
used. In one method, f(E'- E) is chosen to be
a smooth, broad function (e.g. , a Gaussian or
I orentzian curve) and the smeared data are
compared to QCD cross sections. " In the other
method, several moments of the experimental
and QCD cross sections, usually restricted to
some finite-energy range, are compared. ' ' '

In this section we discuss the accuracy of these
methods using the results of Sec. III applied to
the (exactly solvable) linear and quadratic poten-
tials. We conclude that the uncorrected moments
method is not reliable for high moments, either
positive or negative. On the other hand, Gaussian
smearing works well, except near the qq thresh-
old, provided the width of the Gaussian is com-
parable to the spacing between resonances. Both
methods work very well when corrections are in-
cluded. We conclude the section with an example of
short-range corrections, using the exactly solva-
ble Hulthdn potential. The results are applicable
to the Coulomb-plus-linear potential.

A. Corrected Gaussian smearing

Our first illustration of the duality relations is
for the harmonic-oscillator problem with V(r)
=~2 m, 222r2 (the reduced mass of the qq system
is m, /2). We use a Gaussian for the smearing
function f(E' —E), so f(t/I) is also Gaussian,

f (E' E)=—1 ~ 2 2e-(E'-E) /2S
(27/~')' "

IV. APPLICATIONS

As noted earlier, duality is used to compare
QCD cross sections with experimental data, to
determine quark masses, and to predict leptonic

f (f/@) = e-'

In this case, Eqs. (10), (11), and (22) give the
results

(34)

(K(E)),„„,= 27/)I g ~
)i„(0)I'e-'E-E. ' '"

3/2
Plq
27Th 2

m '"' 1 t '
( / )(E 22(g /2(( r( 1 + (g )2 ~

4v~(if+2). 4 X

foo

dEr ~ps e-(E-Er) /2E 1 + ) 1 (38)

m 3/2
(E)) ~(( dEr ~gr e-(E E')2/2r)r2-

2' S 0
(37)

In evaluating the expression for K(E)„,„,„we have
used the observation that the corrections in
powers of (t/If) can be written in terms of deri-
vatives of the exponential iEt/h with respect to E.

We give numerical results for the harmonic-
oscillator duality relation in Table I. We have
used m, =m =-1.45 GeV and a potential matched ( )~2

m u) '/' 2 I'(n+~2)
2n 2' I (n)

(s8)

to the spacing of the (t) and g' particles, E, —E,
=E&, —E& or 2h&=0. 6 GeV. We used &=0.6
GeV, which corresponds to a full width at half-
maximum for the Gaussian of 1.4 GeV. For the
oscillator
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and E„=(2n -~a))f pe. The results are excellent,
even uncorrected, above the free-quark threshold
E=O. Below threshold, the correction term be-
comes important and the corrected (K(E))„„,„
agrees very well with (K(E)),„„,.

Our second illustration involves the linear po-
tential, V(r) =r/aa. In this case Eq. (22) fails
and we have investigated the duality relations for
the smeared cross sections by using the Euler-
Maclaurin formula~ to convert the sum in Eq.
(35) to an integral. In this case

9vaga) 1/3
(/p —I/4)'/P[1+ O(pp-') j,

I, 4m, a )
(40)

which is accurate to 0.8'fc for n= 1 and is better
for higher n. The result is

m, '~'
(K(E)) u' VZ' e-"-E"~~'

2n'5 0

m '~'
Eg (s sp)a/aaa

2vtf' J,

+ ' s-'s-ax" /'~'+ ' (41)
4a )I

(39)

for all n. We have used the JWKB formula for
the energies E„,

term corrects for the fact that the first reson-
ance for the bound system is above the threshold
for production of the free system. The third term
is the first Euler-Maclaurin correction. All high-
er corrections involve derivatives of the summand

We give numerical results for the linear poten-
tial in Table II. We have chosen the parameter
a= 2.06 GeV ~ to fit the g and g' spacing, Ea =E~
=0.6 GeV with m, =1.45 GeV, and & =0.6 GeV.
The uncorrected duality relation is inaccurate
by I% at the first resonance and is much worse
below that. At threshold the error is 55%. The
Euler-Maclaurin corrections bring &K(E))„„,„ into
agreement with (K(E))„„,to better than 1.5%.
The corrections are obviously important in this
case.

Since the commonly used confining potentials
which best fit the P and T data are closer to linear
than quadratj. c, correction terms should always
be included in duality calculations. The threshold
region is especially sensitive to corrections. One
can always make these corrections using the
Euler-Maclaurin formula. The corrections depend
primarily on c„„(assumed to be known), and on
the energy and cross section for the first reson-
ance. The higher corrections in the Euler-
Maclaurin series involve derivatives which can
be estimated by using data for more than one
resonance.

The first term in this equation is just (Kc(E)).
The presence of this term is guaranteed by the
fact that K(0, 0, t) =K,(0, 0, t) for t sufficiently
small, independently of the potential. The second

/

8. Moments and finite-energy sum rules

The method of moments or finite-energy sum
rules corresponds to the choice of smearing

TABLE I. Duality relation for the three-dimensional harmonic-oscillator potential using
Gaussiah smearing. The spacing 21m of the oscillator levels E„=(2n —~)1'co was chosen to
match E2- E& to E~ -E&, 2N~ = 0.6 GeV. We used 4= 0.6 GeV and m~= m, =1.45 GeV.
&IC(E)& ~, and &K(E)&~~„were calculated using Eqs. (88) and (88), and Eq. (86), respec-

tively.

E
(GeV)

&Kp(E))
(GeV')

Correcbon
[Eq. (36)]

&K(E)&I(Ipmx
(GeV )

&E(E)&m~p
(GeV')

E2

E3'

E4

-0.4
0
0.4
0.8
1.2
1.6
2.0
2.4

0.0574
0.1329
0.2365

0.3446

0.4390
0.5173
0.5836
0.6418

-0.0054
-0.0042
-0.0005

+0.0021

0.0024
0.0017
0.0011
0,0009

0.0520
().1287
0.2360

0.3467

0.4414
0.5190
0.5847
0.6427

0.0519
0.1286
0.2363
0.3470

0.4416
0.5191
0.5847

0,6428
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TABLE II. Duality relations for the three-dimensional linear potential, calculated using
Gaussian smearing and the Euler-Maclaurin method. The parameter a in the potential V
= r/a' was chosen to match E2 E& to—E& E&, —a = 2.06 GeV ', Et Et—= 0.59 GeV. We used
6= 0.6 GeV and m = m = 1.45 GeV. &IC(E))~~ „was calculated using Eq. (41) and &IC(E)&~~t
using Eqs. (35), (39), and (40).

(GeV)

-0.4
0
0.4
0.8
1.2

&ICO(E)&

(GeU3)

0,0574
0.1329
0.2365
0.3446
0.4390

Correction
[Eq. (41)j

-0,0314
—0.0482
-0.0441
-0.0220
-0.0042

&+(E)&aprox
(Gev )

0.0260
0.0847
0.1924
0.3226
0.4348

&IC(E)&~,z
(GeV )

0.0264
0.0860
0.1942
0.3235
0.4346

E3
E4

5

1.6
2.0

0.5173
0.5836

0,'6418

+0.0008

0.0004

0.0000

0.5165

0.5832

0.6418

0.5180

0.5844

0.6425

E is given a value well below both the free and
bound spectra, and k ranges over both positive
and negative integers. E is usually taken to
be above the resonance region. With this choice
of f (and A=i),

(43)

and
rn "'

(fc (z)) =-' vz'(z z)'dz . -
2m

(44)

For E=-2m and k =-l, the approximate rela-
tion (IC(z)) = (ICO(z)) and Eq. (4) give the sum rule
for leptonic widths suggested by several authors' '
and derived in the JWKB approximation by Quigg

function

f(E' z) = -(z' E)'6((-E z) —(E-' -E)) (42)

and Rosner)

~~' dz' g arm, '" I'„(e'e-)
((E' + 2m, )' „, n'e, '

This sum ru1.e has been used to'determine the
quark mass in terms of resonance masses ~„
and leptonie widths I'„.' '

The accuracy of the moments method has ap-
parently not been cheeked previously for potential
models. We have compared the results in Eqs.
(43) and (44) (the uncorrected duality relation)
for the linear potential V(z) =y/a' with a =2.06
GeV ', m, =- 1.45 GeV, E =2.77 GeV, and
E = 2.31 GeV (this choice of E gives the correct
P and g' masses). The value of Et, was chosen
somewhat above the fifth bound state, and adjusted
so that the k =0 sum rule is essentially exact.
The results of the calculation are shown in Table
III.

TABLE III. Duality relations for the three-dimensional linear potential using the moments
defined in Eqs. (43) and (44) with N=5, Em~=2. 77 GeV, and E=—2.31 GeV. The remaining
parameters are given in Table II. The end-point corrections change the interval of integra-
tion 0 &E' &E~~ which appears in the definition of &ECO(E)&, Eq. (44), to the range E, &E' &E~
which occurs in &IC(E))~~~„, Eq. {46). We have included only the first two Euler-Maclaurin
corrections. These are given in Eq. (46).

Mi (Kp(E))
(GeV3)

End-point Euler-Maclaurin Mt &IC(E))~ „Mt ~&IC{E)&,„~t
corrections corrections (GeV3) (GeV3)

-10
8
6

—2
0
2

6
8

10

0.626
0.508
0.458
0.474
0.583
0.852
1,447
2.748
5.639

12.203
27.403

—0.526
—0.379
-0.281
-0.217
-0.179
-0.171
-0.216
-0.381
-0.849
-2.111
-5.462

0.118
0.113
0.109
0.110
0.124
0.171
0.305
0.692
1.662
4.293

11.193

0.218
0.242
0.286
0.367
0.528
0.852
1.536
3.059
6.452

14.385
33.133

0.214
0.240
0.285
0.368
0.528
0.853
1,522
3.045
6.457

14.392
33.222
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The uncorrected sum rule for leptonic widths,
Eq. (45), requires that (K,) =(K),„„,. This equal-
ity fails spectacularly for the high moments:
(Kc) and (K)„,differ by a factor of 3 for k =-10
and by more than 20fg for k=+10. The correc-
tions are clearly important.

We can derive an approximate expression for
(K(E)) in terms of g, (z)) by using the Euler-
Maclaurin formula and the results for

~
$„(0)~

'
and E„ in Eqs. (39) and (40) to convert the sum
in Eq. (43) into an integral,

m, 3"
(K(z)) = ' Vz(z -z) dz +- —,' [(z, -z) +(z„z) ]

1 m t'E ')'/2
(E E)3-1

~

~
~

(E E)3-1
27a ' (E] (46)

Except for the range of integration, the integral
above is just (X,(E)), Eq. (44). Thus, (K(E))„„
is equal to (K,(E)) plus the end-point corrections
necessary to change the range of integration
from 0 & 8' - 8 to 8, & E' & E~, plus the first
two terms in the Euler-Maclaurin series.

We have calculated the moments (K(E))„~„
using Eq. (46) for ~k~ ~10. The approximate
results given in Table III agree with the exact
moments to better than 1'fo for all values of k
except -10.

We can understand the breakdown of the simple
duality relation g(E)) = (K,(E)) for moments if
we note that the function f (E' —E) (E' —E)"
varies rapidly for ~k~ large. Our proof of the
duality relation required a smooth, broad function

f (E'- E), with a sharply peaked Fourier transform
f (f/If). This condition is clearly violated.

We can get further insight into the growth of
the error with

~
k

~ by considering the k =0 cal-
culation. (Z~(E)) and g(E)),„„,are asymptotically
equal for N and E very large [see Eqs. (43)
and (44)]:

ming ~(.(o)l'- 2„ f M«(47)

(49)

The displacement of E„ from the center of the
interval leads to systematic discrepancies when
sums over the resonances are compared with
integrals with weighting functions which vary

(a) 4 5 6

0
OP
N

Q
E
OZ

2'
I
I
I

4I
I
I
I

Ol

O

(c) j

2
4

5I
I
I
I

linear and harmonic-oscillator potentials.
For the linear potential. the E„'s are very close

to the E„"s. For large n, it is easy to show. that

E —E~ a(z~ EI )

This corresponds to f(E'-E) becoming very
broad, that is, to the very short-time behavior
of the propagators. We can make Eq. (47) be
an exact equality by choosing a set of intervals
E' ~F. ~ E' such that 0-

0
E (Gev)

2'
I

(I
I

m.3/2
(Ei3/2 Er 3/2)

n n-1 (46)

It is usually assumed that each resonance can
be associated with such an interval ("local dual-
ity") and furthermore that the resonance energy
E„ lies in the middle of the interval. The second
assumption is generally incorrect. The relation
of E„ to E„' is shown in Figs. 1(a) and 1(b) for the

FIG. 1. Comparison of energy eigenvalues, l 4„(0) l

and "duality intervals" for (a) the linear potential V=+/a
with g=2.06 GeV, m =1.45 GeV; (b) the oscillator
potential with m = 0.3 GeV, m = 1.45 GeV; (c) the linear-
plus-Coulomb potential of Bell and Pasupathy, Ref. 16.
l (()n(0) l is normalized in all cases to the value mg43a
for the linear potential. The curve labeled E~~2 in (b)
gives the corresponding result for the free qq system.
The duality intervals E„, E„-~ are defined so that the
integral of EI/ over the interval gives l ())n(0) l [see
Eq. (47)]. Note in case (c) that Eq&E2, E2&E4 [failure
of local duality for the free (noninteracting) q q system].



ll00 BERNICE DURAND AND LOYAL DURAND

rapidly over the interval, e.g. , high-order mo-
ments. We. illustrate the problem with the k =-10
moment in Fig. 2, where the weighting function
and the integrand of Eq. (44) are shown. In con-
trast, the harmonic-oscillator resonances are
essentially at the centers of the intervals for
n & 2, so we mould expect the simple moments
method to work much better for that potential.

C. Short-range effects

The confining potential commonly used in models
describing the g and T systems is""

Here gz(r) is the free wave function with energy
E in the potential Vz. (If there are bound states
in V~, their discrete contributions must be added
to the integral. ) The correction terms in Eq.
(51) can be calculated or estimated using the
methods discussed earlier.

We will illustrate this technique by treating
the Coulomb singularity in the potential of Eq.
(50), using the exactly solvable Hulthen po-
tential'4'" Vs(r) for Vz,

(53)

Q
V(&) =- —+-r a'' (50)

(K (E)) = — ' J" f(E E) )y (0) )2v' E dE~

which includes the color Coulomb singularity of
QCD (n=4n, /3). As discussed in Sec. IIIC, the
duality relation holds only if V(r) is separated
into a (nonconfining) short-range part Vz which
includes the Coulomb singularity, and a long-
range confining potential V~ which is well behaved
at r =0. The duality relation is given in this case
by Eq. (22) with K,(0, 0, f) replaced by Kz(0, 0, f)
from Eq. (26),

(K'(Z) &= (K, [E—V, (0)j) + ~ ~ ~, (51)

where

Vz approaches the Coulomb potential —~/r for
r -0, and is cut off exponentially for r& X '. We
note that in Eq. (50), V(r) = 0 at r -1 GeV ' for
parameters in the usual range, ' "z -0.25,
a-2 GeV '. For rg1 GeV ', the Coulomb term
is dominant, and the full potential varies rapidly,
while for r &1 GeV, the linear confining po-
tential is dominant, Bnd V varies slowly and
smoothy. We therefore choose X =1 GeV in VH.

The resulting Hulthen potential 'mocks the Cou-
lomb potential for r &1 GeV ', and dies out
rapidly for r & 1 Gev '. The full potential V(r),
V„(r), and the long-range potential V~(r) defined
by their difference, are shown in Figs. 3(a) and
3(b). Note that Vz is nearly linear over the range
shown, with Vz(0)&0, and approaches V smoothly

(52)

Y
(GeV)

(a)

Yg

0

0.75—

I

).0
I

i

2.0 5.0

0.50
V

(Gev)
0.25

0
0 0.5

E (GeV}

I

).0

FIG. 2. Plot of the weighting function and integrand
used to calculate the moments defined in Kqs. (43) and

(44) for k = —10. The location of the first bound state
in the linear potential is shown.

I

1.0
r (GeV ')

I

2.0 5.0

FIG. 3. (a) Comparison of the linear-plus-Coulomb
potential P (r) of Eq. (49) ( n = 0.25, a = 2.06 GeV )
with the Hulthen potential of Eq. (51) (o. = 0.25, A, = 1.0
GeV). (b) Plot of the long-range potential Vz = V —VH.
The linear term in V is shown for comparison.
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for large r.
The exact 8-state mave functions for the Hul-

then potential are given in Ref. 25. For r =0,

where

(54)

The number n of bound S states is the largest
integer n) 0 such that n ((m, o(/)(.)'~'. For c(
=0.25 and X=1 GeV, there are no bound states
for m, =ng, =1.45 GeV, and one bound state for
ma ~~ =4.58 GeV.

In Fig. 4(a) we compare the exact ~gz(0) ~' for
Vz to the bound state ~g„(0) ~' for the Coulomb-
plus-linear potential as given by Bell and Pasu-
pathy. " We note that the values of ~)4(0) ~' track
the Coulomb-plus-linear values very nicely, and
that the local duality intervals defined by the
equation

)y(o) ]'

1.5—

1.0
0

Free

I

0.5

Ithen

I I

I I
I

).0
E (Gev)

5' 6'
I I

II I I

2.0

I

).0

bra. cket the actual bound-state energies. This is
in sharp contrast to the intervals calculated using
E(I. (48) for free (noninteracting) (Iuarks, which
are shown in Fig. 1(c). In Fig. 4(b) we show the
finite enhancement of ~(t)z(0) ~' for the Hulthen
potential relative to the case of no potential. The
enhancement is large and causes (Es(E)) in the
duality relation in Etl. (51) to be significantly
larger than (X,(E)).

A different approach to the Coulomb singularity
was suggested by Novikov et gl. ' 'and tested by
Bell and Bertlmann. " Those authors used the
wave functions for a pure, infinite-range Cou-
lomb potential to calculate their eompa, rison cross
section. We show ~(I)s(0) ~' for a pure Coulomb
potential in Fig. 4(b). As shown, ~(1)z(0) j

di-
verges as I/v for v-0. It is also necessary in
this approach to include the infinite number of
bound states in the Coulomb potential in the
duality relation. Although this method a.ppears
to work well, "we regard it as somemhat cum-
bersome. It is also unphysical since the con-
fined quarks do not feel the long-range part of
the Coulomb potential. More generally, we would
argue that al/ long-range effects in perturbative
calculations of the qq cross section should pro-
perly be cut off since these are presumably in-
cluded in the empirical confining intera, ction.

FIG. 4. (a) Comparison of ) Pz(0) ( for the Hulthen
potential of Eq. (51) (n=0.25, )). =1.0 GeV) with ( $„(0))

for the linear-plus-Coulomb potential of Bell and
Pasupathy, Ref. 15. ( $„(0)

~
is normalized to the value

for the pure linear part of this potential to shoes the
enhancement caused by the Coulomb interaction. (b)
Comparison of

~
i)z(0) i as a function of the nonrelativ-

istic velocity of the quarks v for no interaction, a pure
Coulomb interaction, and the short-range Hulth6n in-
teraction.

V. CONCLUSIONS

%e have derived the duality relation in Sec. III
for a class of potentials regular at the origin,
then modified the derivation to allow for short-
range singular potentials. The proof includes
correction terms to the duality relation, which
can be calculated from a commutator series or
from the Euler-Maclaurin summation formula.
In Sec. IV we have illustrated with exa,ctly solva-
ble potentials how to use the corrections and
hom to include a short-range potentia, l. The cor-
rections for potentials similar to those thought
to work well for heavy-quark systems are large.
This indicates that the correction terms should
almays be calculated in applying duality to data.
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