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Total absorption in quantum chromodynamies at high energies
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Using a calculational scheme developed earlier for unitarizing high-energy S-matrix amplitudes, we find that the
high-energy elastic hadron-hadron scattering amplitude in quantum chromodynamics agrees with the expansion of a
unitary eikonal formula up to the eighth perturbative order. This eikonal formula is a convolution of hadronic wave
functions and the amplitude of scattering among constituent quarks (S)=(exp(ig)), where g is a Hermitian
operator in the Fock space of pionization particles (here vector gluonsj. Based on a classical-quark-charge
representation of the eikonal operator g, we derive a functional partial differential equation for (S), from which we
prove that a color-singlet hadron becomes completely absorptive at high energies.

I. INTRODUCTION

Recently, using unitarity as a guiding principle,
a high-energy approximation to (two-body) scatter-
ing amplitudes in gauge field theories was pro-
posed' (high center-of-mass energy, fixed mo-
mentum transfers). A unitary amplitude was
obtained in quantum electrodynamics (QED) and
Yang-Mills (YM) theory, "expressible in an eikonal
form with the eikonal as an operator in the Fock
space of pionization products. This led to the de-
velopment of an operator eikonal formalism, '
which was used to prove in QED that a particle
becomes completely absorptive at high energies.

Strong interactions, however, are most likely
to be based on the theory of quantum chromody-
namics (QCD), with quarks forming hadrons
through a yet-unknown color-confinement dy-
namics. Hence it is important to know how to re-
late quark-quark scattering studied earlier with
color-singlet hadron-hadron scattering, to study
modifications of the operator eikonal formalism
in the limit of zero gluon mass. More seriously,
even in the non-Abelian gauge theories with mass-
ive vector mesons studied earlier, ' that the eikonal
operator is.also a matrix in group representation
space of the interacting particles has foiled an-
alytical attempts to extract any experimental im-
plications from the operator eikonal formalism.
The situation in QCD can only be worse.

In this paper, we shall report on progress on
the problems posed above. Our starting point is
QCD, but we make no pretense on our ignorance
of color-confinement dynamics. Rather, we as-
sume confinement effects to be satisfactorily des-
cribed by a hadron wave function or quark distri-
bution function, and leave such a function prac-
tically unspecified. We shall first give a small
mass to the color-gluons, via the Higgs mechan-

ism for calculational purposes, then show how
to obtain infrared-convergent expresssions for
color-singlet-color-singlet elastic scattering, in
the limit of zero gluon mass.

We use a scheme of diagrammatic calculations
devised earlier for Yang-Mills theories' to show
that in QCD the high-energy scattering amplitude
up to the eighth perturbative order can again be
expressed in an operator eikonal form, convoluted
with hadron wave functions, in the form of an im-
pact picture of scattering4 (or impulse approxi-
mation) as given by Eqs. (2.2) through (2.13). This
scheme of calculation consistently retains terms of
the form

g'P)" g'lns

n, nz being positive integers and t' the quadratic
Casmir invariant of the quark representation
t, (t,t, = t'1). In this paper, we shall call such
terms the leading-unitary terms. Terms dropped,
the nonleading terms, have additional factors of
g'. We review the justification and discuss the
meaning of this approximation in Sec. IIB.

For our present discussion, we want to empha-
size that only the leading-unitary terms generated
by the eikonal operator in the scattering amplitude
are meaningful and determined uniquely by the
diagrammatic calculations. Hence two represen-
tations of the eikonal operator which generate the
same leading-unitary term& in the scattering
amplitude, but different nonleading terms, are
equally good representations of the eikonal op-
erator at the present level of approximation.

We have found a classical-quark-charge repre-
sentation of the eikonal operator which yields
leading-unitary terms consistent with the diagram-
matic calculation scheme in QCD, and which can
be analyzed to the stage where we can prove that
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a color-singlet hadron becomes completely ab-
sorptive at high energies.

Our analysis proceeds by deriving a functional
partial differential equation for a certain gen-
erating functional for the S matrix in ixnpact-dis-
tance space. This is the functional-space analog
of deriving Schrodinger's equation from the Fey-
nman path integral, as the operator eikonal form
is a kind of path integral. The partial differential
equation describes how the S matrix behaves with
increasing rapidity (rapidity is T= ins/2v, s being
the center-of-mass energy of scattering). A lat-
tice version of the partial differential equation is
studied. In the continuum limit, the analysis en-
ables us to arrive at the behavior of the S matrix
at high energies stated earlier.

The paper is organized as follows. Section II
is devoted to the discussion of the diagrammatic
calculation in QCD incorporating hadron wave
functions, and the summary of the eikonal-ap-
proximation results, some details of which are
presented in Appendices A and B. We introduce
the classical-source representation of the eikonal
operator in Sec. III, with a proof that it yields
leading-unitary terms consistent with the diagram-
matic calculations of the previous section. A

functional partial differential equation for the gen-
erating functional of the S matrix is derived in Sec.
IV. Using this approach, we present a solvable
model in Sec. V. In Sec. VI we analyze the partial
differential equation in QCD, in the limit of zero
gluon mass, to obtain the behavior of the color-
singlet scattering amplitude at high energies. We
conclude in Sec. VH with a brief discussion of the
phenomenological aspects of our research.

II. EIKONAL. APPROXIMATION IN @CD

A. Hadronic wave function

Before we present diagrammatic results in

QCD, we shall describe how we propose to handle
confinement dynamics in hadrons. In a high-en-
ergy collision between hadrons, there are two
time scales for interactions. Interactions among
quarks from the same hadron, the quark-confine-
ment interactions, are associated with a long
time scale, that of the hadron rest frame. On the
other hand, interactions among quarks from diffex-
eygf hadrons are instantaneous. Hence we shall
assume that the confinement dynamics are ade-
quately described by hadron wave functions, pre-
scribing the distribution of quarks inside the inci-
dent and target hadrons, a long time before and
after the high-energy instantaneous interactions.
This is the physical picture that quarks from the
same hadron do not interact among themselves
during the short time scale when quarks from
different hadrons interact. Hence in the Feynman
diagrams for the scattering processes that we
shall consider we do not put in explicit gluon ex-
changes between quarks from the same hadron.

With this in mind, it is possible to show that for
high-energy and fixed-momentum-transfer pro-
cesses, any given Feynman diagram incorporating
hadron wave functions is factorizable as a convo-
lution of hadronic impact factors4 and an amplitude
of scattering between constituent quarks of differ-
ent hadrons. This is proved in Appendix A, where
in the infinite-momentum, center-of-mass
frame, any Feynman amplitude is obtained as in
Eq. (A17):

8„qq, %0 q;, , q~, 8~ q~ "' q;i — q&i qual ~ (2.1)

Here, 8„((q,,}) is the impact factor of hadron A
carrying large plus momentum P„(P,= P, + P,),
and which is made up of M quarks each absorbing
transverse momentum q,, (i = 1, . . . ,M). Hadron
B has R quarks, and a similar notation applies.
0~ is the amplitude of scattering between the M
quarks of hadron A with the A quarks of hadron B,
having the same topology as %~, but with the ha-
dronic wave functions truncated. The total mo-
mentum transferred to each hadron is fixed to be

We shall proceed to compute %, perturbatively
up to the 8th order in the coupling constant, using
a scheme developed earlier' to compute leading-
unitary terms in Yang-Mills theory. We shall
find that , is in an eikonal form in the impact-

I

distance space, ' with the eikonal being an opera-
tor, just as in QED and Yang-Mills theory studied
earlier.

B. Leading-unitary terms

In the discussion of high-energy scattering
amplitudes with fixed momentum transfers, a
high-energy approximation to the perturbation
series is meaningful only if the result it gives
dominates the sum of the terms being dropped.
In contrast, in the leading-logarithm approxima-
tion, for example, where in each perturbation or-
der we keep only the terms with the highest power
of (1ns/2v) (s being the center-of-mass energy),
each of the terms we have dropped can be much
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larger than the final answer. Indeed, summing
leading logarithms in both QED and non-Abelian
gauge theories leads to results which violate the
Froissart bound. ' So the sum of nonleading terms
must necessarily be as large as the leading terms
to restore the unitarity bound. In other words,
the leading logarithms by themselves cannot be
meaningful at high energies.

On the other hand, consider summing leading
terms defined by a high-energy approximation
scheme which respects unitarity at every stage,
and assume that the scattering amplitude so ob-
tained is bounded by unitarity. Then in this sum
there must be numerous cancellations among lead-
ing terms from the different orders of perturba-
tion, which individually violates the Froissart
bound. The dramatic cancellation in this case is a
consequence of the constraints of unitarity, so it
is perhaps reasonable to hope for a similar can-
cellation among the nonleading terms that we have
dropped, due to unitarity constraints. If this
happens, the leading terms which sum to a unitary
answer, which we call /eading-unitary terms, are
probably meaningful and dominate the sum of non-
leading terms.

This is borne out in QED, where we have re-
cently proposed a procedure to sum leading
terms, respecting s-channel and t-channel uni-
tarity at every step. ' The sum of the so-defined
leading terms are explicitly unitary. Both elastic
and inelastic amplitudes are summarized by an
eikonal formula, in which the eikonal is an opera-
tor in the Fock space of pionization particles. A

subsequent nonpertuxbatine derivation' of this op-
erator eikonal form (under general high-energy
assumptions) shows that the sum of nonleading
terms does not invalidate the leading-unitary
terms. As to be expected, the nonleading terms
modify the various functions in the functional form
of the leading result in a perturbative fashion. The
eikonal operator obtained from the leading-unitary
terms emerges as a first approximation to the
full nonperturbative eikonal operator.

Details of this unitar ization procedure in QED
are described in Ref. 1. Briefly, the leading-
unitary terms of this scheme are the leading
terms of a minimal set of Feynman diagrams
which closes under unitarity, crossing, and gauge
symmetry relations.

In the same spirit, a high-energy approximation
scheme to calculate the leading-unitary terms
diagrammatically in non-Abelian gauge theories
was devised in Ref. 2 (where the vector mesons
acquire masses through the Higgs mechanism).
For fermion-fermiori scattering, where the rep-
resentation matrices of the fermions are t„ the
scattering amplitude for a particular channel in

the t-channel is a function of the Casmir invariant
t' (t,t, = Pl). (This comes from the vector-meson-
fermion vertex as the exchanged vector mesons
are attached to the scattering fermions. ) In fact,
the scattering amplitude in each order of pertur-
bation is a double series in t' and (Ins/2~) at high
energies. The scheme in Ref. 2 is to approxi-
mate the coefficient of (t')" for fixed integer n in
this double series by the term with the highest
power of (Ins/2m). From calculation, these lead-
ing terms are of the form s(g't'/2m)"(g' Ins/4v'2)

having all powers of t2. A priori, this mathema-
tical prescription does not guarantee a unitary re-
sult, but for an amplitude 9R, which is a function
of f to satisfy the nonlinear unitarity condition
ImR =Kt, it must at least contain all powers of
t'. Indeed, these leading terms are summarized
by a unitary eikonal formula, with an eikonal op-
erator involving Reggeized vector mesons. In
contrast, the leading-logarithm approximation re-
tains terms with only the first or second power of
t, so the unitarity-violating result it gives is not
unexpected.

A nonperturbative derivation of the eikonal form
to justify this perturbative unitarization scheme in
non-Abelian gauge theories is still under investiga-
tion. Owing to the similarities of this scheme with
the unitarization procedure in QED, it is likely
that this can be done soon.

We shall define leading terms for M +N quark
scattering in QCD in a similar manner as in Ref.
2, all quarks being in the same color-group rep-
resentation with representation matrices t, . Ap-
pendix B contains the details of the calculation to
extract these leading terms from Feynman dia-
grams up to the eighth order, ' using the methods of
Ref. 2. These leading terms of the amplitude gg,
of Sec. A, having the form s(g't'/2w)"(g'Ins/2w),
again sums to an eikonal form.

C. The eikonal form in QCD

The impact-distance representation of the sum
of leading-unitary terms is [see Eq. (A19)]

%=2is I„4 x. I~ -~ e

x 6'" x. 5"' y rPx,.d'y b,
j=l k=1 jg 0

(2.2

The scattering matrix S(b„,g&},gs, T) describes
scattering of two hadrons separated by b, in trans-
verse impact-distance space, at center-of-mass
energy s (T= Ins/2w), where the jth quark is at
position x& measured from the center of mass of
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the hadron it belongs to. For elastic scattering,
it is the expectation value of a unitary operator:

S(b„%,],SJ, T}

0 exp i P X((e,ex, ep„t( . 0):.. (2.3)
A=1

The eikonal is a sum of Hermitian operators
y(b, + x~+ y„T), each associated with one of the
ways M quarks can scatter from N quarks.

The eikonal operator y is the same as that ob-
tained earlier in non-Abelian gauge theories
(with massive vector mesons and Higgs scalars).
The modification for hadron-hadron scattering
is merely in the additional impact factors I„and
I~ to be convoluted with the quark-quark scatter-
ing amplitudes. Owing to the operator nature of
X, however, S includes numerous mixed interac-
tions between the quarks. We shall postpone taking
the zero-gluon-mass limit until Sec. VI, but for
now, we shall invoke the Higgs mechanism to
give the gluons masses. Then the eikonal operator
X between two quarks is explicitly given by the
iterative solution of the following integral equation
(2.5). We define y„ from y as (where T= ins/27(
is the rapidity)

jt(b, +xz+y», T) =y„(b,+x~+y», T)(-t 't()(. (2.4)

Then

y„(b„T)= y'„(b„T)

The quantity in the first square brackets in the
Fourier representation (2.8) is a sum of a mo-
mentum-dependent vertex V" for vectbr-meson
creation and annihilation, and a similar vertex
V~ for Higgs scalar particles responsible for
the vector-meson masses. The quantity in the
second square brackets represents further Regge-
ized vector-meson exchange after particle pro-
duction, just as in (2.6).

The vertex V" is expressed in terms of crea-
tion and annihilation oPerators aaa~(k„T), aa (k,', T')
( f»,a being the structure constant of the gauge
group):

v "(q„,q,„T)=if„,l'„(q„,q„)&„'(q,—q, )

x [a~ ~(q„—q „T)
V2

(2.9)

a, , a„~~ are 5-function normalized:

[a,'(k,', T'), aa8~(k, T)]= 5 85,a(27()'5(»'(k, —k,') 5(T —T') .
(2.10}

They operate on the Fock space of pionization
particles, which here are vector mesons.

The vertex factor of V" is the same as Eq.
(3.8) of Ref. 2, with 1'„[where 1 „(q, —q,)„=0]
given by

1 a(qiie q2i) =gai(qadi+ q2i)
+g dT' b,'X,q b,', T'

0 e

x Z"(b„b,', T, T') e (2.6)

1 q„'+ X'
q'}- 2 (q —q )' + ~'

1& 2J.

where the inhomogeneous term is), d'q, ,» .» exp([n(q, ) —1]T}
~ac J. e g ac (27()a . (q 2+ g)

(2 6)

1 q '+A.'
+g.-(q, -q.},—.—.-

4 (ql~ —q2j j + ~

(2.11)

with n(q, }being the Regge trajectory on which
the vector meson lies [where if„,t, t, = C„t„so
that C„=N/2 in SU(N)]:

n(q, ) = 1 —C„g'(q,'+ X')

" d'q, '

(2 w)' (q,"+x') [(q, —q,') + X']
'

The kernel Z is

Also, &, for 0, =1,2, 3 are three physical polariza-
tion vectors for the created massive vector meson,
satisfying k„&,(k) = 0, &'(k) = —1.

By choosing &,(k) to be the following four vec-
tors:

k, =(k„k,k„,k,),

tl) k„
Ik I

' Ik IJ.

d2- d2-
g» (b b T T ) q qa e (((»/ ((2-»i

S (2~)' (2v)'

x[V"(q„,q„,T )+V„"(T)]
exp ([n (j») —1](T—T')]

q2~ +X

(2 8)

2Ik I k, k„
Ik, l'Ik, l

'

1 k,' —X'
e(„"(k)=- k„

we can express the product ~„q„as

(2.12)



TOTAL ABSORPTION IN QUANTUM CHROMOOYNAMICS AT. . . t 007

(q o )aal(q q ) 2 fl 'hv 'It'v. 72
() qyg q2J ) ( 2(qj~ +A. )

j q~1 —q2~ l (q~~ —q~~ J + X

2(q„'+ )(')
+X 1 —,q„-q„" (2.13}

Only the physical polar izations e = 1, 2 contribute
to (2.13) as X-O.

Finally, the vertex V'„' in (2.8) describes crea-
tion/annihilation of Higgs scalar particles. As
we shall take the limit of zero gluon mass X-0
later, we shall not bother to exhibit VH explicitly;
suffice it to note that VH" is also an operator, but
V "o-X-0 as X-0

The matrix element (%, ~ ~ k„IX Ik,' ~ ~ kJ of the
eikonal operator X between incoming m-vector-
meson state Ik,' kg and outgoing n-vector-me-
son state (k, k„I is related to the scattering
amplitude of

2 fermion+ m vector meson
—2 fermion + n vector meson.

(2.14)

&o
I x(q, T)I o& . (q, T)

&oIx{q T) Ik T &

(q+k, T') „
(k,T')

(qTT) v

agree with the diagrammatic calculation using
similar techniques. %e shall not present the de-
tails here, as it is rather tedious but straightfor-
wal d.

If o((q, ), the Regge trajectory of the vector-meson,
were one instead of being given by Eq. (2.7),
(k, ~ k„l)(lk,' ~ k„'& is in fact the lowest-order
amplitude of the processes of (2.14). The crea-
tion and annihilation of vector mesons. are des-
cribed by the vertex factor V" of Eqs. (2.8) and

(2.9}. Hence we can think of the operator )( gen-
erated from the iterative solution to Eq. (2.5) as
having matrix elements which are the. lowest-or-
der amplitudes of the processes of (2.14), but with
the exchanged vector mesons Heggeized as given
by Eq. (2. (}. Examples of matrix elements of )(

are given in Fig. 1.
Knowing the matrix elements of y, we can

evaluate S of Eq. (2.3) by first expanding the ex-
ponential, then inserting a complete set of states
where necessary. For example, the y' term is
evaluated as

«. T
I x(q, T) lo&

&0 lx(qk T)
I k( T(' k2 T2

exp {ta(q ) —
t 3T }(q, T) -z

q +))

'k('(q-k, T )

(k,T') ~g

(q-k, -k2,T~)
'~'

&~(k(,Tj )

(q - k2,Tp-T~) 'v'

(I~ (k~, T~)
(q, T-rp) 'v'

«lx'Io&= E «lxl~&(~lxlo&

The leading-unitary terms generated by such an
expansion of the eikonal in Eq. (2.3), i.e. , terms
of the form s(g'f'/2(()"(g' lns/47('), can be com-
pared with the result'of the diagrammatic calcula-
tion. That they agree in the case of quark-quark
scattering is shown in great detail in Ref. 2.
For the case of M+N quark scattering in QCD,
the eikonal form of Eq. (2.3) can be shown to

, , (q), TI )

'~~(k,T)
" (q&, T2)

V (qt, q2, T )

FIG. 1. (a) Examples of matrix elements of X(q, T), th.e
Fourier transform of X(b, T ) = J [d f/(2 q) J'e''T'b X(q, T').
(b) Diagrammatic rules for Reggeized propagators,
"Reggeon-Reggeon-meson" vertex function, and quark-
quark-Reggeon vertex. [See Eqs. (2.7) and (2.9) for def-
initions of &(q) and V~, ]
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IH. CLASSICAL-SOURCE REPRESENTATION
OF THE EIKONAL OPERATOR

The eikonal formula (2.2) of the previous sec-
tion summarizes the leading-unitary terms of the
diagrammatic calculation in the sense that if we
compare terms of the form s(g 't'/2v)"(g' lns/4v'),
both the eikonal formula and the diagrammatic
calculation give the same result. However, this
does not mean that the eikonal operator X of (2.4)
is determined uniquely by the diagrammatic cal-
culation. For instance, consider an operator y
defined in exactly the same way as X through Eqs.
(2.4)-(2.10), but with an additional term of order
g', independent of t or lns, added to the Begge
trajectory o.(q, ) of (2.V). When put into the eikonal
formuIa (2.2), both y and j generate results with
the same functional dependence on o.(q, ), so the
leading-unitary terms of the form s(g't'/2z)"
x(g' ins/4w') are the same. The presence of the

term of order g4 in the n(q„) of X can only give
rise to nonleading terms with extra factors of g',
with no compensating factors of t or lns. At the
present level of approximation, where nonleading
terms are not considered, X and X are equally good
representations of the eikonal operator.

This nonuniqueness of the eikonal operator is
far from saying that the eikonal formula (2.2) is
not useful. That Xand X discussed above are
equally adequate representations of the eikonal
operator hinges crucially on the fact that they
have the same functional form. This particular
functional form comes from the sum of leading-
unitary terms and seems to be determined uniquely
by them. Indeed, in QED, the functional form for
the eikonal operator and eikonal formula, obtained
from summing analogous leading-unitary terms, is
preserved when nonleading terms are included. '
So it is very reasonable to expect that (2.2) is a
meaningful first approximation to the full high-
energy scattering amplitude.

To extract experimental implications from the
eikonal formula of (2.2), we would naturally want
to consider the simplest representation of the ei-
konal operator which reproduces the leading-uni-
tary terms of the diagrammatic calculation. Not
only would the mathematical analysis be the sim-
plest, but more seriously, if nonleading. terms
are included into the eikonal operator in an arbi-
trary manner, unwarranted infrared divergences
are likely to appear (in the nonleading term sec-
tor) when we take the zero-gluon-mass limit.

Below we shall present a representation of the
eikonal operator simpler than that given by Eqs.
(2.4)—(2.10), but which still reproduces the re-
quired leading-unitary terms of the diagrammatic
calculation. In essence, we shall treat the quarks

of one of the hadrons as classical quarks in the
eikonal operator, so the resulting representation
is a classical-source representation of the eikonal
operator.

Nevertheless, the representation presented in
Sec. II remains the best representation of the
eikonal operator for purposes of comparing with
diagrammatic results. This is so because the
corresponding eikonal formula (2.2) generates
expressions in the form of a product of a mo-
mentum integral (represented by transverse-mo-
menta Feynman diagrams) and a group-spin dia-
gram, forms in which the diagrammatic results
are expressed. For the classical-source repre-
sentation, we need to project the amplitudes into
the respective channels in the t channel before we
can compare with diagrammatic results. To this
we shall now turn.

First, we shall consider quark 1 scattered from
quark 2. In Eq. (2.4), we set j=1, k=2, and x,.

[t„f,]= if, ,t, . (3 2)

The classical source r-epresentation of the
eikonal operator is the representation in sehich see

demote the quantum nature of the quarhs of one
hadron to the classical level in the eikonal opera-
tor.

For the example of quark-quark scattering, we

replace f,"' in (3.1) by commuting vectors Q,"' in

group space, with Q,"@,"'= t', but otherwise we

keep the definition of X„as in (2.5)-(2.10). We
shall now show that the amplitude generated by
the eikonal formula (2.2), when projected into the
different exchange channels in the t channel, are
the same for the eikonal of (3.1) and the eikonal of
the classical-source representation, up to non-
leading terms.

Consider the expressions generated by the ei-
konal formula (2.2} with (3.1}as the eikonal op-

(3.1)

While X,„ is an operator in the Fock space of
pionization particles (vector mesons), y is also a
matrix in the product group space of the interact-
ing qu3, rks: X Q t"'(st'". This is the manifestation
of the quantum nature of quark sources in QCD
(and non-Abelian gauge field theories).

In classical non-Abelian gauge theories, a source
has a classical charge which is specified by a
vector Q, in group space. This is, however, not
a canonical description of the sources (see Sec.
II of Ref. 9). A canonical description, necessary
in the quantum theory, is obtained by promoting
the vector Q, to a set of matrices t„so that the
quantum source transforms according to a parti-
cular representation of the gauge group:
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(3.4)

%%en SK„ is projected into the various exchange
channels (p, ) in the t channel, with projection
matrices P,„„the projected amplitude %„("'is
given by

X„=g 311„'"'P,.„
... Tr(P...II„)

Tr(P(2„)

(3.5)

Tr is the trace in the product space t"'8 t"', as
both P,„,and SR„are matrices in this space. %e
make use of the fact that P, „)is a tensor product
of projection operators P('„')., k k and

P (2'). k, k with m indices in the t channel

erator. [We drop the factors I„,is in (2.2) for
quark-quark scattering. ] Each term is a subamp-
litude which we shall generically denote as Sk„ if
it comes from the matrix element (0 jy" ~0) in the
expansion of (0 ~exp(iy) ~0). Il„ is the product of
a group-spin factor and a space-time factor. The
group-spin factor is of the general form

I —(g«)«t&&)t&&&. . . t&&&g&&'"''& t(2&. . . t(2& (3 3)ij» ~ ' ~
& fn

where O{f& is some invariant tensor of the gauge
group, depending on the subamplitude. The space-
time factor is in the form of momentum integrals,
and has a general form F„(g' Ins/4»'), a function
of the combinati&in g' 1ns/4&&'. So each subampli-
tude is expressed as

being the separate group-representation space of
the quarks):

P(y) gP(2)
k~.~ ' ' ~ m + ' j.~ "' s

{k)
(3.6)

For example, in SU(2), the isospin-1 channel
(t» =triplet) in the t channel has a projection opera-
tor which is P (x:t t so that P = t P3 k 3tk k r 3ak
=t„" In .the va, cuum channel (1( =singlet), P,
=] "'I&»'

s&& I =0 and P"' =1"' P'«'= I » (11 ~

is the unit matrix. )
From (3.4), (3.5), and (3.6), we obtain

lnsTr(P 5II ) =(g')"E 0 ""'~
(JrL) n n 4' f] a ~ ~ ~

xTr(P' t' t')(t );k~, ...,k

&& Tr(P"' t"' ~ t"') (3 7)(p)»k] s ~ ~ ~ y km fn

Equation (3.7) together with (3.5) clearly show

that SR„" is a polynomial in t' (t,' t,' =t,' t,'
=t'1). The highest power of t' in this polynomial
is at most n, as there are only 2n matrices t, in

the product of (3.7). It is this term with the

power (t')" which we need to retain as a leading-
upitary term, for only this term is of the form

(g 't ')"E„(g'lns/4»').
In fact, the two trace factors of (3.7) can each

be expressed as a sum of invar iant tensor s of the

gauge group. In this sum, the tn term is multiplied

by tensors of one specific kind, namely, the in-
variant tensors symmetric with respect to all the
indices (0„.. . , k, i„.. . , i„)or $k„.. . , k,
] r ~ ~ ~ r)n] ~

Tr(PI'„I.» « t&" t&' ) =A„t"x (invariant symmetric tensor 8»" », , )+It&»

(3.8)

8 {k&;«& denotes remaining terms with powers of
t' less than n. These are associated with non-
leading terms that we have no interest in. (If
A„happens to be zero for the 5R„" of a subam-
plitude, then this subamplitude K„does not con-
tribute to the leading-unitary terms in the p chan-
nel of the t channeL)

To summarize, we have shown that the leading-
unitary term of SR„" in (3.5) comes from the con-
traction of QI&I in (3.V) with invariant symmetric
tensors S " . and S"' ofkj s ~ ~ ~ akm~g gy o ~ ~ y f n kj.a ~ ~ akme fj.e ~ ~ ~ af n

(3.8). All other invariant tensors in the trace
factors of (3.7) can be dropped.

On the other hand, had we started with the clas-
sical-source representation of the eikonal opera-
tor instead of (3.1), the only change in the above
discussion is to replace matrices t,' every-'

I

where by vectors Q,' [see discussion after (3.2)].
For example, the tensor product in (3.6) is not

needed:

PQ P (1) PQ
(p,) &@);k~,...,k &~);k~,...,k

{k)
(3.9)

in SU(2), the t-channel projection operator for the

isospin-1 channel becomes P, (x: t «"Q»', so that
Po»=Q»'&. Similarly, the last trace in (3.7) is
unnecessary, so (

lns
Yr(r ('„)m„)=(I')"r„4y')

x 0'&~" ~ ' Tr(P " t ' ~ ~ ~ t "')
fXs ~ ~ ~ afn ~Q) t gy ~ ~ ~ t ~n

x P' . Q"' Q"' (3.10)
t &kit ~ ~ ~ tkm

Since the Q,' are commuting. vectors in group
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e,~»(t )„,(t»),~, e,, ,„=—Tr(t t»)

as shown in Fig. 2. So what we have said about
quark-quark scattering applies directly to ha-
dron-hadron scattering, by replacing (A) for (1)
and (&) for (2) in the above discussion.

The classical quark-source representation of
the eikonal operator in QCD is obtained from
(2.4) by replacing t,"by color group-spin vec-
tors Q, (indices k denotes quarks in hadron 8):

(3.11)

space, the last factor P&~„q.»» Qz", ..Q&",
being a product of Q,' 's, is, in fact, an in-
variant tensor symmetric in the indices (k„.. . ,
k,j„.. . ,j„'f, just like S," » «of (3.8),

P~„&,[»~Q"' ~ ~ ~ Q&" projects out the term with the
power (t')" in the same manner as the tensor

does in (3.V), because they are both
completely symmetric and Q,

' Q,' =t '. Further-
more, since the normalization of these two sym-
metric tensors are conveniently incorporated
in Eq. (3.5), the leading-unitary term of 5R„" is
the same whichever one of these two tensor s we
use to contract with O&&~ and S&», ~, &.

In other words, whether we use the represen-
tation (3.1) or the classical-source representa-
tion of the eikonal operator makes no difference
to the leading-unitary terms generated in the
scattering amplitude. So the classical-sour ce
representation is also consistent with the dia-
grammatic calculation for quark-quark scattering.
An explicit verification has also been made in

SU(2) Yang-Mills theory, using the results of
Ref. 2.

This conclusion is easily generalized to the case
of M quarks of hadron & scattering from N quarks
of hadron B. The M quarks of hadron &, say,
belong to the same group representation with
matrices t," . So the projection of the group-

spin states of the quarks into the p channel in the
t channel (with m indices as before) involves the
trace Tr(t "' t "'t'"' t,'"'), where the ma-
trices (t» j come from the projection operator
Pt"„&. This is the same trace factor as in (3.V)

for quark-quark scattering. For example, to
project into the color-singlet channel of three-
quark states in color SU(3), with two of the quarks
each emitting one color gluon, we evaluate

IV. PARTIAL DIFFERENTIAL EQUATION
FOR A GENERATING FUNCTIONAL

FOR THE S MATRIX

The analysis of the elastic scattering amplitude
S(b, T) given by (2.3) that we shall present is
based on the observation that S is a sort of Feyn-
man history path integral. The rapidity variable
T =Ins/2v plays the role of time. Indeed from
(2.5), we see that the eikonal x(b, T) at a specific
T value, defined through x„(b,T) of (2.4), is a
function of x(b', T') for all rapidities T' less than
'E. A sum over histories is involved in evaluating
X(b, T), if T were the time.

In quantum mechanics, the Feynman path in-
tegral representation of the wave function can be
studied by first deriving the Schrodinger equation
for the wave function from the path integral. In
the same manner, we shall show how to derive
a partial differential equation for the scattering
amplitude S based on the classical-source re-
presentation of the eikonal operator of Eq. (3.12).
In the field theory case, this is a functional par-
tial differential equation. '

S(b, T) is not a convenient function to study.
Instead, we define the generating functional for
the S matrix to be

th

[Qd.(b');7 )0 exP(( J b, (b', T)Q,(b')d'b'j 0),

(4 1)

where we have introduced matrices x,(b', T) in

quark representation space as

. b.(b', d') = g (-t."')b..(b'+*„&)
y=l

with x„satisfying (2.5). Q,(b') are functions of
b,', and which transforms as vectors in group
space. S(b, T) can be recovered from S [Q,(b'); T]
by setting

(4 2)

Q.(b') =():(b') = g ().'"b (b' -b - V ) (4.3)

with Q,
" as the classical quark sources in (3.12):

S@.(b') =Q.'(b'); T1=S(b,T) . (4.4)

X(b, +x, +y», T) =X..(b. +x, +y», T)

x( t'»Q," (3.12)
- Tr (t, gg)

The scattering amplitude so obtained by substitu-
ting (3.12) in (2.2) agrees with diagrammatic cal-
culations of Sec. II. We shall turn to the analysis
of the scattering amplitude in the next few sec-
tions.

FIG. 2. Example of color-singlet projection of three-
quark states [see Eq. (3.11)j. t is the representation
matrix for the quarks.
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We can interpret Q,(b') as a vector source func-
tion, and Qs(b') as the source function of hadron
h, with classical, nonradiating quark sources
Q,» located at b+y», from the center of mass of
hadron &.

Discussion in momentum space proved to be
easier algebraically. To avoid having a proli-
feration of symbols, we shall use the same nota-
tion for a function in b space as its Fourier trans-
form in q space, making a distinction only in the
argument of the functions. For example,

it must be remembered that X,(b, T), X,(q, T),
and X',(q, T) are all matrices.

To derive a Schrodinger-type equation for the
generating functional' of (4.1), we divide the
rapidity T space into small regions and approxi-
mate integrals over T by sums, as in the quan-
tum-mechanical case. This is to replace T by a
one-dimensional lattice with lattice spacing e, so
that T =Nc, with N an integer. The lattice version
of S[Q,(q);T] is S[Q,(q);N], and similarly for
other functions. By evaluating the difference

I d'
x,(b, T) =

(2,). e"'x,(q, T),

"d2-
Q,(b) =

2 .e*"@.(q)

so that

~ [0,(b'); T] =~ [Q,(q); &]

(4.5a)

(4.5b)

(4.9)

we obtain a difference equation, which would be a
partial differential equation for S in the continuum
limit e -0 with T fixed.

To evaluate the difference of (4.9), we first
express X,(q, N+I) in terms of X,(q, N). This is
obtained from the lattice version of (4.6):

x,(q, N) =g'x'. (q, N)

~

~
=Oexpi X qr q

q 0.
(4.5c)

The integral equation for X,(b, T) is derived
by contracting Eq. (2.5) with (-t,~'), and then
summing over j as in (4.2). This leads to the
integral equation for the Fourier transform

x.(q, T):

x,(q, T) =r'x', (q, T)

J dr, „.x.

& [V"(q', q, T')

+V'„'(T')]x'„(q, T -~'), (4 6)

rr r d»qs
+Me g, X,(q', l)

x [V"(q', q, I + 1)

+ Vrr'(I +1)]X'„(q,N —& —1)

(4.10)

In (4.10), V"(q', q, l') and V'„»(l') are defined as
in (2.9), but with the creation and annihilation
operators satisfying unit normalization in the
lattice T -space sector:

[a, (k', I'), aP(k, /)] =5~rr5,q(2rr)'5(k -k')5„. ,

(4.11)

where

where V" and Vs» are defined as in (2.8), (2.9),
and

' dT'
a, (k, l) = ~ a, (k, T'),

7T

(4.12)
exp{.[~(q) —1P')x'„q, T =6„

q +A.

x ',(q, T ) = g (-f."')x'.,(q, T )e "'~.

(4.'I)

(4 6)

' dT'
e r-

Writing an equation for x, (q, N +1) similar to
(4.10), then subtracting (4.10) from it, we obtain

X,(q, N+I) -X,(q, N) =g'[X',(q, N+I) -X',(q, N)]

1 f 2 p

+pe Jl, X. (q', l)[V'»(q', q, l+1)+V»s (/+1)] [X~(q, N —/) -X' (q, N-& I)]
1-"0

d2 I
+~e 2» X,(q', N)[V"(q', q, N+I)+V'„'(N+1)]x'„(q, N-N). (4.13)
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From the lattice version of (4.7) and (4.8), the differences [](",(q, N+1) -X',(q, N)] and [g',(q, N —/) -)f'„
(q, N —f —1)]are linear functions of y', (q, N) and Z bc,(q, N —f —1), respectively. Using (4.10) again, and
keeping terms up to order & only, we arrive at

y, (q, N+1) =y,(q, N)+/&, Z"(q, q';N+1)y, (q', N)+e[a(q) —1]]t,(q, N), (4.14)

where

Z"(q, q', N+1) =Z"(q, q';N+1, N+1)

is the Fourier transform of Z~(6, 1', T, T) of (2.8):
1'I T Tx 1.

Zixc(q qi T Tx) [P' b(cqi q Tx) +wibc(Tx)]

Putting ](',(q, N+1) of (4.14) into the lattice version of (4.5c), we obtain

(4.15a)

(4.15b)

s[i),(q);is+1]=(q exp i]] .C,(q)Ix.(q, ix)

2

+Ms]~, s-(q, q', is+()x (q', ix)+x(s(q)-(]x (q, N) q)
(4.16)

The exponent in (4.16) is a sum of operator valued, noncommuting matrices in group space, so the ex-
plicit dependence of S[Q,(q);N+1] on S [Q,(q);N] is obscured. "

Fortunately, by using functional derivatives, (4.16) can be expressed explicitly in terms of S[Q,(q);N] as
follows:

s]C,(q");ii+(]=(q
I

exp ],q, (q) &x ]I,x-(qq', is+() -, +x]~(q)-(] (-)j:j
ha

ft

&& exp i,Q,(q") g,(q",N) 0
J 7T

(4.17)

(4.18)

where

We have introduced a normal-ordering prescription: []:,which ensures that inside the square brackets,
all functions Q,(q) stand to the left of all functional derivatives. Equation (4.17) can be shown to be equi
valent to Eq. (4.16) by comparing the direct expansions of both expressions. "

On expanding the first exponential operator in (4.17), in powers of e, we obtain a difference equation.
Unlike the exponent in (4.16), this first exponent of (4.17) is no longer a matrix in group space, so the
associated exponential can be easily expanded in powers of e. It is only necessary to keep terms up to
order e, for our purpose of deriving a partial differential equation in the continuum limit. A further
simplification is possible by making use of the fact that the vacuum state

~

0) is a tensor product of all
the vacuum states

~
0), at each point f on the r-space lattice. So in (4.17), Z"(q, q';N+1) operates only

on the state
~
0)„„,whereas y, (q", N) operates on all states

~
0), with l ~ N, but not on

~
0)z„. The dif-

ference equation takes the final form (,(0~ 0), =1)

S [Q,(q");N + 1]-S [Q,(q");N] =(CHS [Q,(q");N]

q
2

— t(2,), [ (q) -1]Q,(q)
6Q (-)

-4 Q
2

+-,' ~t, q,', (0~ Z-(q„q„N+1)Z'"(q„q„N+1)
~

0) Q,(q, ) Q,(q,)(2') (4 19)

We have dropped the term multiplying q] c, as Z (q, q', N+1) has zero vacuum-expectation value
(O~Z (q, q', N+1) ~0) =0, being linear in the creation and annihilation operators ac~~(q' q, N+1) and-
acs(q -q', N+1) of (4.11) [see eqs. (2.8) and (2.9)].

From (4.15), (2.9), and (2.13) we obtain
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&0 T-(q3 q1 "+')~ (q4 q2 ~+')lo&=~.~~4&q3 q4lq1 q2&+(olvs("+')vs("+')l»
wh~~e (qs, q, lq1, q2) is defined, as

(4.20)

(2)
(q3, q4lq1, q2&~ (») 5 (q3+q4 q1 'q2}

(q 2+ ~2)(q 2+~2)

( q1'+&')(q4'+ &')+ (q2'+ &')(q '+ &') [(- +
-

}2 ~ 2i

2 2(qs-q1) + &

(4.21)

&o lv„"(x+1)v„"(x+1)lo) =o (x') .
Hence

(4.22)

d q
(2 }2 a(q) -l]Qc(q) 5q (-)

2

+ &
', ,2 q3, q4 q&, q2 „, ,@,Q, q3, q4 . . .-, + 0 Z (4.23)

3 T S[@ (q ); T] =Jig[4() (q"); T] . (4.24)

The generating functional S[4(),(q ); T] in this
equation is still a matrix in the group-repre-
sentation space of the quarks of hadron A. It is
useful to consider the projection S '"' of the gen-
erating functional into the (p, ) channel of the f

channel, as in (3.5}:

S[Q.(q");T]= Q S'"'[e.(q");T]I"., (4 25)

In the continuum limit, we obtain the de-
sired functional partial differential equation for

S[~.(q");T1:

Nt- 2is[I-S(T)],

where

s(T) = (ol exp[i x(T)]l0) .

(5.1)

(5 2)

%e consider the classical-source representation
of the eikonal operator y(T) =X,(T)Q„where Q,
is the classical-source vector in SU(2), and g, (T)
satisfies the integral equation

a two-dimensional continuum.
Consider the scattering of two particles, "each

being in the spin-j representation of SU(2) with
matrix f, (f, ,f= f12, so that Tr 1= 2j +1). The
leading-unitary terms of this model are summar-
ized by an eikonal form,

P(» are t-channel projection operators defined
in Eq. (3.9). Since Po(» are not functions of Q,(q),
but only of 4I1,

' ' of (4.3), S'"' satisfy similar par-
tial differential equations as (4.24):

3T
S'"'[@.(q");T]= »'"'[Q,(q");T] (4.25)

y, (T) =g't, exp [(a-1)T]

T
+ dT'X, (T')V "(T')

x exp[(a -1)(T-T')]. (5.3)

As in (3.5), S'"' are no longer matrices in group-
representation space:

This is Eq. (4.6) in the case of a one-point q space.
Here

S(„)[ (-„) T] Tr{J(„,S [q,(q");T] t
V"(T') =i'„,[af(T') —a, (T')] (5.4)

(4.27)

V. A SOLVABLE MODEL

%e shall illustrate the discussion of the last
section by a solvable model" based on the SU(2)

group. It is the case in which q space (or similar-
ly% space) consists of only one point, instead of

describes the creation and annihilation of vector
mesons which are the pionization particles, to be
compared with (2.9) in the case of continuum q
space. The operators a4t(T') and a4(T') satisfy
5-function normalization [a,(T),a4(T')] = 5(T- T')
The vector mesons in this model lie on the Regge
trajectory a, so in view of (2.7}, we define

(5.5)
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S[Q iT] =«Iexp[lX, (T)q, ll0} (5.6)

Replacing T space by a one-dimensional lattice
with lattice spacing &, so that T=¹,we can de-
rive' a partial differential equation for the gener-
ating functional for the $ matrix, following the
procedures of Sec. IV:

S, „[Q„'T]=HS) [Q„'T] (5.12)

from (5.7}.
The partial differential equation (5.12) can be

solved exactly. It is convenient to change to vec-
tor notation q, =(Q}„c=1,2, 3, so that

so that

,T S[q.;T]=as[q.;T]

with.

a2

(5.7)

8If =g'(1-P)q,e [)q

a i s )
Qe&eee [)~ I Qe&55(e S~v, ) [)&

=g'(1-P)Q V --'. g'L ', (5.13)

The first term inII reflects the Beggeization of
the vector meson, while the second term in (5.8}
is associated with the creation and annihilation
of vector mesons as pionization particles. [Also
see Eq. (4.23).]

We shall study the projection of the generating
functional S into the various (t() channels of the t
channel. An appropriate choice for the t-channel
projection operators in SU(2) is the set of irreduc-
ible spherical tensor operators" of rank l for the
channel p= l. For the operator &(&,'}), , defined
in (3.9), the irreducible tensor operators are
formed from the group matrices t„whereas for

in (3.9), they are formed from vectors
Q„. We write these operators, respectively, as
P)~ and P), where m=-l, -l+ &, . . . , o, . . . , l
labels each ef the (2l+1) irreducible tensors of
rank l. An example is the triplet channel of the
g channel, where

(5.9a)

1P;,O-Q. , P2, , -- ~2(q. +tq, ))

1
(q. -tq, }

(5.9b)

so that t~q), = p„P(,'&„*Pc)„is the triplet projection
operator.

We define

Try ('& S[q.;T]j
S),iR [qei ] Tr jyj() ) Rc P(2) t

Y Z.m . l, mJ

so that

(5.10)

Q )(2

S[q . 7] P(1)&lcPQ ~m I m ).m L&e5
c~ t,m 1,m ~ Q+ 0

atm ttPg ttP
g

tt

(5.11}

The projected generating functional satisfies

where L is just the angular momentum operator
in three-dimensional Q space [for a SU(2) classi-
cal Yang-Mills source]:

L
(&

= —. Q x Vo.
2

(5.14)

Since (2) Vz commutes with Kz', the solution to
(5.12) and (5.13) is a product of a radial function R
in t2& space, and an angular function 8, (Q = I(2)I):

S [Q T] =R[qe' (' »']8,,(e, y, T) .(5.»)
With the specific dependence of the radial function
shown in (5.15), Eq. (5.12) becomes simply

a8, „=-2 g L() 8, „. (5.16)

This equation can be solved easily when we take
into account the initial condition for S, [g; T] We.
show in Appendix C that

S,,„[4;T=0]=R, [4]Y,„(e,y), (5.17)

F,„(e, (je)) being the spherical harmonics in g
space [see Eq. (C9)]. Hence we can identify
8, „(S,y, T = 0) = F,„(S,y).

Therefore, the complete solution is

S [4 T]=R)[qe' ""]e ' "~"""r(8 y) (5.18)

with R, defined in (5.17), which is evaluated from
Eqs. (C8), (C9) of Appendix C and (5.10).

From the result (5.18), we can study the high-
energy behavior of the various SU(2) t-channel
exchange amplitudes. For instance, the vacuum-
channel (l = 0) amplitude %0, and the triplet (l = 1)
channel amplitude It, is obtained from (5.1),
(5.11), (5.17), and (5.18) as

52, -2iS 1 —
m R, [i)5'"' 5"']I, (5.19)

R -2i ( s/43)' s-tR [qs (' @t e] -e'@ef«)q

(5.20}

[We have used the relation F, = (3/4s)'@(1/q)P(() „,
obtained from equation (5.9b), as well' as T
= ins/2)(. ]
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In Appendix C, we have computed R p and R y to be
[see equations (C11) and (C14), respectively]

1 1
1+2 cos ng', j =integer.[Ql=, .„
2 cos 'fl

~ j = 2 integer
n= 1

(5.21)

(3/4v}' 'R, [Q] = . in sin(ng Q), j =integer
1

2j+ 1 a=1 1
(n~zl2) (—, integer).

(5.22}

For P =1, %, of (5.19) and &, of (5.20) exhibit
Hegge-pole behavior, with trajectories 1 and

1-g'/2m, respectively (the latter being the tra-
jectory on which the exchanged vector-mesons lie).
In fact, since R, in (5.18) is no longer dependent
on s (where T = In s/2m), the I-channel amplitude
shows a Regge-pole behavior with trajectory
1 —/(1+1)g2/4m. This result is also obtained in
Ref. 12, in a different context and from different
analytical considerations.

The case P & 1 is similar to the previous case
P =1. Ko and K, have the same type of Begge-
pole behavior as before (as s-~, Qs ~ ~~ '~~'"-0
and is only weakly s dependent). For P & 1 how-
ever, Rp and gg, have in addition a rapidly oscil-
latory component of g„cos(ng'Qs~ ~' @~") and

g„s sin(ng'Qs~~' Bi~'"), respectively

VI. COLOR-SINGLET SCATTERING IN QCD

%'hat we have presented so far in this paper is applicable to high-energy scattering regardless of what
group spin is exchanged in the t channel. In this section, we shall focus our attention to the physical
situation that hadrons are color singlets and that the exchanged color gluons are massless. The functional
partial differential equation (4.24) or (4.26) summarizes the behavior of the S matrix as the center-of-mass
energy s (T =Ins/2') increases. Hence we shall analyze this differential equation, concentrating on the
vacuum exchange channel in the f channel (the singlet channel p, =1). In addition, we shall display the
infared convergence of our expressions in the zero-gluon-mass limit (X-0).

A. Initial condition for the differential equation

From equations (4.5}, (4.V), (4.8), and (4.2V), the generating functional for the singlet f channel S~ '~ at
7 =0 is

1S~'~[Q, (q'); T =0]= —Tr exp ig'g, -» (-t'."}Q,(q)
F

(6.1)

as P~@»=1, the unit matrix, and D~ is the normali-
zation of P&», D„=Tr I, which is the dimension of
the representation f,. It is clear from (6.1}that
in the limit of zero gluon mass X-0, S~' [Q,(q');
T =0] is infrared finite. This is so because the
infrared divergence of the exponent inside the
trace comes from the region of small q, where
e'~'"s]-1, so that we can first sum over t,"' in the
exponent. For a color-singlet hadron, Q~, t~~i has
zero eigenvalue, hence killing the infrared diver-
gence in the exponent.

We do not have to worrv about the region ~x ) be-
ing very large, so that e'&' "g g1 even though q is
small, for the impact factor f„(s,[x,)) of (2.2)
which we eventually must convolute with, provides
a cutoff for large ~x~. This is the statement that
the quarks inside a hadron cannot get too far away
from each other, owing to confinement dynamics.

B. Infrared finiteness of the generating functional

The coefficients of each of the two differential
operators of H in (4.23) are separately infrared di-
vergent in the zero-gluon-mass limit A. —0. We
shall show that 0 admits a simple infrared regu-
larization so that all expressions in 0 are infrax'ed
convergent, when 0 operates on the singlet pro-
jection of the generating functional S 'i[Q, (q"); T].
In essence, the separate infrared-divergent ex-
pressions in II cancel when operating on
&'[Q (q'); T].

From the form of the initial condition (T =0) of
S~'~ [Q,(q'}; T], and the form of the differential
equation (4.23), we can deduce that 0'~ [Q,(q"); T]
can be expressed as [see (3.10) with all the quarks

j = 1, .. . ,M in hadron A belonging to the same
color-group representation]

S'&[Q,(q )„r]=g
&

=

(2 },
' &„(q„.. ., q„; r)e„[Q, (q,), . . ., Q, (q„)], (6.2a)
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where

(6.2b)

(6.3a)

where

[Qg, (q,), ~, Qg (q„)]=Qg, (q,)"' Q) (q„)fl,I;:::;," »f&)

and Q~&j. is again some appropriate invariant tensor of the gauge group. 4 „satisfies the following eigen-
value relation, which we prove in Appendix D:

I' d'qq d'q' -, 6 -, 6 t
2 J( (2v)2 (2v)2 face Qc(ql)

6Q (gt) f(qreQ(((q2) 6Q ( t)

d Q2
(q )* (qq)* * -' "' ' ' ' ' q()( ')c( ') " (q~)' ' qe(')I

(6.3b)

(6.3c)

and C„ is the Casmir invariant i f,)„tt,t, = Czt,
[C„=N/2 in SU (N)]. Physically, h as defined in
(6.3b) is proportional to the invariant quadratic
Casmir operator in functional space (see the dis-
cussion at the end of Appendix D). 4' of (6.2b) is a
singlet state, just as S '~ of (6.2a} is, so naturally
M =0.

Therefore, if we add to II an operator h„of the
following form:

limfH —h~] = infrared-finite operator Hs . (6.6)
X~p

Using the operator H~, defined in (6.6) in the zero
gluon-mass. limit, in place of II in the differential
equation of (4.26) guarantees that S~'&[Q, (q"); T]
is infrared finite, since it is infrared finite at
T =0 from Sec. VI A.

We only need to exhibit the choice of R (X) which
has the required property

h„=R(X)h,

then

(6.4) R(f)
R(X) =2g

(2 ), (6.7)

LH -h„]S~'~[Q,(q"); T] =HS~'~[Q, (q"); T] (6.5)

from (6.2) and (6.3). The function R(A. ) we shall
choose to be a function of the gluon mass X, such
that

where R (k) is any function ensuring the conver-
gence of the integral for finite X, and such that
R (0) = 1. For example, R (k) = exp(-k'/A') with a
regulator mass A. This leads to an infrared-finite
operator [from (4.21) and (4.23)]:

d'q - - 5

(2,).[~R(q) —1]Qc(q}
6 ( )

4 %2
1 q~ ~ d qy+-. „(2,). (q., q. Iq„q.)RQc(qs)Qa(qa)facefat 6Q (q )6Q (g )-

W a~~ O

(6.8}

where

d'q' q'-(q-q') R(q'}-q"R(q-q'}
)q (q — -s Q (2 )2 -t2[(- t)2] (6.9)

dqa dqa
2 2+ 2 q3&94q&tq2 B c ~3 d ~4

d qa d'q» 2R(qa qq)(q „q, (q „q, ) Q.(q,) e, (q, ) —q g* (- ' —)', c.(q,)e (q )
I3 1

(6.10a}
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-,- .[q,'Q. (q.)Q, (q, + q. -q.) -q, 'fI(q, -q, ) Q,(q, ) Q, (q, )]2w] gg -q q

+
& '2 && )2 [12 Q(, (q3)QJ(qg+ 12 q2)
iQ, -q, & &q, + Q, -Q,

—(q, + q2 —q2) R{q,—q, ) Q, (q, ) Q, (q2)]

(6.10b)
(q &+ q2)

Q*(c (2 (0, + u -0 )I ~

Qs &&i+ q2-qs&

Possible divergences from the regions of small q", or (q -q')' in (6.9) and small q, ', or (q, + q2-q, )', or
(q, —q, ) in (6.10) are explicitly canceled among the various terms in either expression.

C. Behavior of the singlet scattering amplitude
with increasing energy

S'[Q (q") T]=H~S' [Q (q"). T] (6.13)

The scattering amplitude for color-singlet scat-
tering is obtained from (2.2) by replacing
S (1,fx&], fy2), T) with its projection Si'~(b, fx~],
(y„],T) into the singlet f channel. In momentum
space, using (4.3) and {4.4),

S"(b, (,),1y ), T) = S"'[Q.(q")= 0,'(q"); T],
(6.11)

Q.'(q) = QVexp[-2q (b+y.)] .

with H„gi ev nby (6.8), (6.9), and (6.10). We shall
show that H~ is both negative definite and Hermi-
tian. That H„ is negative definite means that the
generating functional S~'~[@,(q"); T] decreases with
increasing T, from (6.13). From the Hermitian
property of H„, we are able to study features of
its eigenfunctions to conclude that S~'&[Q,(q"); T]
indeed decreases to zero as T becomes infinite.
Such considerations in a model based on ij&' theory,
as well as in @ED, have already been presented in
Ref. (3).

First, we observe that H„may be expressed as

At large impact distance, where there is little or
no scattering, we expect from (2.2) that S&'l(b, (x~),
fy2], T) is close to unity. On the other hand, at
small impact distance in the region of appreciable
scattering, S '~ may be anything less than unity.
The behavior of the total scattering cross Isection
as energy increases [related to the imaginary part
of (2.2) at a =0], depends directly on the change
in extent of this region where S~'~differs appre-
ciably from unity. We shall show that at fixed
impact distance b, SI'~ decreases to zero as T in-
creases, which means that the region of scattering
grows with increasing energy as the target hadron
becomes completely absorptive at high energies.

The behavior of S '~ (b, fx&), {y„),T) is obtained
through the infrared-finite generating functional
S '~[@,(q");T] which satisfies

(2 )2 ( q 2& q 4 iq» q 2/Z

5f,.Q.(q2) 6q (- )a 1.

" f .Q (q.)
6@ (- )

~ (6.14)

This is an explicitly Hermitian form due to the
totally antisymmetric property of the structure
constants f„„and the symmetry of (q„q, Iq„q,) ~:

(q2&q4Iql&q )B2(4& 4 Iq2&%)8 {6.15)

which is obtained directly from (6.10), with

q, +q, —q, —q, =0. To see that (6.14) follows from
(6.8), we need only to show

6
(2 )'2 &q2 4 I, 4 q2)sf(&ce @(;(4) 6@ (q ) @&((q4) fMe

~
=

(2v)2 [+z(q J@c(q

(6.16)

The equality results if we put into (6.16) the following definition of (q„g~Iq„Q~, obtained from
(6.10b) by changing integration variables q, -q, +q, in the middle of the three terms in the curly brackets
(permissible for convergent integrals):
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f 2d q3 d q4
(2v)2 (2

.)2 q3& q4 Iql & q2)R Qc(q3)Qd(q4)

2

(2,l - -,-, [q,' Q, (q.)Q,(q, +q, -q.) —q.'&(q. - q, )Q.(q, )Qd(q2)1
(q, —q, )'q. '

+, , [q,'Q, (q. +q, )Q, (q. —q.) —(q. —q.)'&(q, ) Q.(q, )Q, (q.)]
q, '(q, —q, )'

, Q.(t(.)Q.(t), 4.—t).)I .
q3 (q1+qe —q3)

(6.17)

I.C.[Q.(q")]=0

so that

(6.18)

HRC ~[Q,(q")j = lim H4~[Q, (q")J
o

(6.19)

from (6.6). (6.19) means that even though H does
not have a limit as X-0, the separately infrared-
divergent expressions cancel when operating on
C „[Q,(q")], and (6.19) has a limit as A. -O. Let
us define

[(6.17) is used instead of (6.10b) because the latter
introduces ambiguous differences of divergent
integrals when evaluated in (6.16).] We also use
the relation f„,f„,=-2C„5„,.

Next, we shall prove that all eigenvalues of II~
which contribute in the eigenfunction expansion of
S"'[Q,(q"); T] is negative definite. Let such a
contributing normalized eigenfunction be
4~[Q,(q"))with eigenvalue W. Then since
13@")[Q,(q"); T] =0 from (6.3), (6.4), we must also
have

where

fccefMe«3& q4 I q1 & q2) o

=f.cefade»m «3& q4I ql& q2) (6.23a)

W=- [dQ] lim(OIx~xIO)-0,
)t- o

where

',—Q,(q, }Z"(q„q,;++1)

= lim (0 IF'-(q. q.»+I)&"(q. q, '»+1) Io&.
0

(6.23b)

(6.23b) follows from the definition (4.20), as
lim P —0.

Using the explicit expressions (6.22) and (6.23)
in (6.21b), we may finally express the eigen-
value N' in a well-defined negative semi-definite
form, after an integration by parts:

lim HC ~[Q,(q")]=HQ 4 ~[Q,(q")] .
0

In terms of H„ the eigenvalue W is

W= d C*,q' ll @, , q"

ao

(6.20)

(6.21a)

(6.21b)

4'(Q.(4'))I
6Q. (q, )

GPq4 d q2
(2 )'2 (2„)2 Qd(q. )~"(q., q. ;&+I)

& f,,Q.(q.)
6Q (q)

5
&& f„,Qd(q. )

5Q3(q2 i
(6.22)

%'e observe that a formal expression for Ho can
be obtained directly from HR by setting R(k),
defined in (6.7), to be zero. From (6.14) and
(4.21), we have the formal expression

q
O 2,„, /2 )2 ( l3& q41ql& q2) 0

j=] i /

x —4, (Q, (4")iI
6Q.(q. )

(6.25)

with Z being Hermitian (Z =Z). In (6.24), the
equality holds if and only if 4 ~ is a constant. A
similar situation occurs in the P -theory model
and QED studied earlier. ' Again it is possible
to show that this eigenfunction does not contribute
to the asymptotic behavior of S"'[Q,(q"); T] as
T-~, so that S"'[Q,(q");T]-0 in this limit.

To proceed as in Ref. 3, we replace the con-
tinuum q space by a two-dimensional lattice with
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M lattice points. It is useful to define a radial
variable" r and angular variables &,'. ;

r2
q& q& &

c&. —
q

ce Jf

c (6.26)

In terms of these variables, 8"' at T =0 given
by (6.1) can be written in Mellin-transform rep-
resentation

S"'X' (q()~T=0]
J,+ jco 1

e c& '0/ 2F (g)2 7T D~

x Tr([~U&u', }f0(q„T=0)U '] "} (6.27)

using (4.7) and (4.8). In (6.27), we have defined
a matrix U in group-representation space which
diagonalizes the matrix uP, X,'(q„T =0).

It is easy to check that the lattice version of
H„commutes with

a 8
(qJ) sq p' )

the generator for seal. e transformations, , so that
the eigenfunctions of Hs are of the form r "j'(cut).
Hence we define Ks(q) operating on angular func-
tions E(u&f} as

It is only necessary to discuss a complete set
of these eigenfunctions useful in the discussion
of the differential equation (6.13) with initial con-
dition (6.27). For this purpose, we choose g
=D„M/2+ip (p real, -~&p&~), where D„ is the
number of generators in the gauge group, owing
to the following consideration. e', are the an-
gular variables of a D„M-dimensional space,
so from (6.8) and Hz =Hz, it can be shown that
K„(q)=X„(D„M—q*) (the differential-volume
element in this space being d'~&"'rIIde', ). Hence
Xs(D~M/2+ip) is Hermitian, having real eigen-
values and a complete set of eigenfunctions in the
angular sector. In the radial sector, the eigen-
functions r "' &" '~also form a compl. ete set,
with 0- function normali. zation. Furthermore,
that such eigenfunctions have radial derivatives
proportional to M implies that the real eigen-
values W of (6.24) approach -~ as M-~.

To express (6.27) in terms of these eigenfunc-
tions, we move the contour L to the line Req
= 2D„M. Then the solution to the lattice version
of the differential equation (6.13) is given in the
Laplace-transform representation as

de -
(~S"'[Q (q ) T]= . e" rS"'[Q,( q);~]

27TZ

(6.29)
H„r "F((u', ) =r "x~(q)F((ug) . (6.28) with

"dp 1S"'[q (q ) ~]=- (re ""—) "' ~" '~Z(D M/2+ip)
277 D

[3C (D„M/2+ 'P) — ] T ([U;,( „T=0)U ] ' (6.30)

As in the Q' model and QED studied earlier, ' the Laplace transform of the generating functional
S "'

[Q,(q, };wj is an entire function of m in the continuum limit M-~, since all singularities at the lo-
cations of the eigenvalues of K„are at infinity in the complex m plane. Therefore, we can integrate along
the imaginary axis in (6.29), where m is pure imaginary, and conclude that

S"'[Q (q"); T]-0 as T-~ (6.31)

due to the rapid oscillations in the integra, l (6.29).

VII. CONCLUSIONS AND PHENOMENOLOGICAL
ASPECTS

We have concluded in the last section that for
color-singlet scattering in QCD," the region of
scattering in impact-distance space grows with
increasing energy as the target hadron becomes
completely absorptive at very high energies. This
picture of high-energy scattering is derived from
the operator eikonal form of equations (2.2) and
(2.3), using a classical-source representation of
the eikona1 operator. Unlike other operator eikonal
forms proposed by assumption, "Eqs. (2.2} and
(2.3) result from high-energy perturbative cal-

culations in QCD reported earlier in this paper.
The perturbative results presented, however,

do not yet establish Eqs. (2.2) and (2.3) beyond a
doubt. First, the calculations must be extended
to all perturbative orders. Second and more sig-
nificantly, in these calculations we must go beyond
the leading-unitary terms discussed in this paper.
It is important to see if indeed the nonleading
terms do not destroy the leading behavior that
we have derived, but merely modify the functions
in the functional form of Eqs. (2.2) and (2.3) in a
perturbative fashion, as we have argued in Secs.
II and III. Owing to inherent difficulties, pursuing
higher-order calculations and extending cal-
culational schemes to address nonleading terms
are not the best ways to proceed. Rather, deriving
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the eikonal form of (2.2) and (2.3) nonperturbatively
will settle our doubts, and promises to shed light
on the important physics responsible for such a
result. The physical understanding gained may
even provide a simple physical explanation for
the emergence of a Heggeon in the eikonal op-
erator in non-Abelian gauge theories, and the
totally absorptive behavior of the singlet scat-
tering in QCD." Investigation in QCD along the
lines of the nonperturbative derivation of the op-
erator eikonal form in QED7 is under way.

From an experimental standpoint, much re-
search is needed to extend our discussion to in-
elastic scattering. For elastic scattering and
the high-energy behavior of the total scattering
cross section, we have at least arrived at a
qualitative picture. More specifically, although
we have been able to show that the singlet scat-
tering S matrix S"'[Q,(q"); T] vanishes as T be-
comes infinite, we do not yet know the rate at
which it vanishes. This rate determines how

fast the total cross section rises with increasing
s, as well as other features of the elastic scat-
tering amplitude near the forward direction, and
hence can be tested against present and future
experimental data. A possibly fruitful direction
to determine this rate' for QCD is the computer
evaluation of S"', treating both q space and T
space as discrete lattice spaces. ""Preliminary
results are encouraging. "

Finally, even though both QED and QCD exhibit
a totally absorptive behavior at high energies,
the rates at which total absorption are approached
in the two theories would be different. That the
rates are different is at least true in the simple
though unrealistic case in which q space consists
of only one point instead of a two-dimensional
continuum. In this case, the solvable non-Abelian
SU(2) model of Sec. V yields a constant total cross
section for singlet scattering, whereas a sim-
ilar solvable Abelian QED-type model" is as-
sociated with a total cross section which decreases

Pa
PA+b

q)) q2)q) aq3)I 'I ~
q2, n2

I I I I

q21 ql I 3l 22

Q3

—d8

as a negative power of s." Phenomenologically,
it is important to exhibit the quantitative dif-
ferences between the high-energy behavior of
QED and QCD. These predictions could serve
as other tests of the non-Abelian nature of hadron
dynamics.
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FIG. 3. A general Feynman diagram for hadron-hadron
scattering, incorporating hadronic wave functions. q;.
refers to the momentum of the jth gluon attached to the
zth quark. [See Appendix A where g and M are defined,
as in Eq. (A7).j

APPENDIX A: INCORPORATION OF HADRON WAVE FUNCTIONS

In the infinite-momentum center-of-mass frame for two colliding hadrons, the plus and minus mo-
mentum components are p, =p, +p, . Let us focus on' the hadron with large plus momentum P, . It is made

up of M color quarks, each of which carries fractional plus momentum p, , =pIP„and exchanges n, gluons.
with quarks from the other hadron. In the Feynman scattering amplitude, each quark line contributes a
factor NI DI(n, ), to be convoluted with the hadron wave function. Here

(If)P y„I($, f'„+I+)ym„.(P, j,+, +g, ,+m. )y„~ ~ ~ y P,. + +If'„+m~(f t, )
j=l "1

and
+l

2 -1

D, (n, )= [p,.
' —m'J .' [(.p,. +q, ,)' —m'] ' p. + Q q. —m'

j=l
(A2)

as in Fig. 3.
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For large p,.„D,.(n,.) can be approximated a,s

p,.(,.)=(p,,) ""(p,.p, —p. ' —m +ie) '(p,, (q,. —q). — '+ie) ' (p,. +q, , +ie) '
(p,.

n.-l "l
+ q,j +i&

l

where Q,. =(p. +Q,".(,q, ,) and (j,, -p,.„assuming q, , -0 small. The product in square brackets [.~ ~ ] above
has the following Fourier representation"":

n.-l"j nj -1"
2&& P.-+ 0 .- . G - qj- ~ q { l)- =2&~ P -+ qj - - j-+& l-+ ~

j=1 j=l 'j=l

"t n e

exp -'L q j. . —sP. i+sf.j j j j j j
j=1 j=l

(A4)

where

( i)ii 1 if $ ) $ ) )$
~ ~ ~

0 otherwise.
(A5)

This representation can be proved by a series of contour integrations (temporarily suppressing ail i
index):

J exp~i q, &, ~(2v)&l p + qy- —Q IG(P q).- ~ ~ ~-
)

n-l

=exp(ig(„) Jt exp ig
n-1

n 2

=exp((i)(„)f exp i+
n 2

=exp(-zP (, +aqua„) x (g„.. . , ~„). (A6)

We are in a position to convolute the factors from the quark lines with the hadron wave function g(fu(), )),
defined with truncated external propagators. We shall only consider fixed momentum transfer between
the colliding hadrons, such that Q,.&q,.z

——6, with 4, =& =0. The Feynman scattering amplitude is a con-
volution of three factors 5g„(fq,j)), 5Ks((q&,)), coming from hadron wave functions and quark-line prop-
agators of hadron A and B, and I (Iq,.&),(q~,)) describing gluon interactions after being emitted from the
various quarks, as in Fig. (3).

(A7a)

For hadron A, we define the factor%„((q,.~)) as
n

pee Pq„qx„((q„))=(pq)e gqq „(pq)'e"' Pu, pe"' p, —Pq, , -i))-
j,j j=l j=l

(A7b)

with iq~D, (n, ) coming from the quark-line propagators.
Consider first the integration over all minus momenta p, , Q, . We define the appropriate piece st, in the

integral of (A7b):
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p g p ~ .
q g p ~ t

N

dP, dQ,
(i)(p;, ) ""G(p, , q((, , q((„() )

x (p, ,p,. —p, ,' —m'+i e) '(p, .Q,. -Q,,' —m'+it) '

Using the Fourier representation of (A4), this is equal to
N N

st, = J"(2(()&I Qp( y(Q,.)) ' exp(-ip, . ((()(p„p,. -p', , m'-+i~) '
»=1 »al

N ll i

x(i) Q N, (p, ) "("exp iQ-q(y $(I($,', . . . , g ) d$(
»=1

(A8)

x (mx)((l"Zq, )('((((,()

(A9)

((

&&
' exp(iQ( g )(p, , Q,. Q(,

'-m'+-i&) '
i=i

We can now integrate over all p, easily if we assume the singularities in p, of the wave function $((p())
do not contribute to the integral. Again we define the relevant piece X, of the integral of (A9):

N hf

) 2((& ~, g(Ip,.)) ' exp(-ip, &()(p.,,p,. -p„'— m' i+ )e'
»=1 »=1

u"1
-1

x (P) P -P( -Nl +Ex) (-(' T P) -Px —Ill +(E (A10)

Since all p„ is positive and large, in each p,. integration, we can close, the contour in the upper half plane
if f,"~ $(, and in the lower half plane if P, '&$(. In either case we obtain the same result. Hence we have

(( ((

&.=P((p,))(-')"'(-I)
I „..p„ I g "™ (A11)

The Q, integration is done similarly and we have
hf ((

J" 2.~I' Q, e'(I'Q, ))....
, , ' em(iQ, &„',)(P,.Q, -0„'- "')'

eel

=|'(&Q(k)()" '(-I)
I „.p„I Q

x. k (-„( ~ Jml p(x.

Since the main contribution comes from the region p,. of order 1/P„we can neglect p, , p, q,.( com-
pared with P.. Hence we can approximate N, by (p, )"(p(5„,5„.~ ~ ~ 5„,&& (group-spin factor).

Finally, we obtain (in terms of longitudinal momentum fractions P()

~ Ze, ,III(((~„(&=.('. f ~l'(-Z((, ~"' Zp, .-&(l;; do(~z'j((~ )( ~"'l0,. Z~„.-((,. (((( hX(&
(~ j

((A(('((Qi.(, (AH I ((ilZ " . .. (...((i)Z "
I

a»

&, .. .G(q((, ,q;„)&„,5, &„,x (group-spin factor),
2 (A13)
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where

tl

G(qi . s.) = d(, ((„.. . , („)exp -( gq, (,)gai 9=1

(A14)

is the Fourier transform of (E„.. . , („).
The integral inside the large curly brackets f }in (A13) in fact is the impact factor 8„(/q„})of hadron A,

where we have defined q« ——Z&,"'
q, ».

(
IfA(&q~&}) =P~,~~Kq(J})... , [G(q;,.) qq„.-)& „' ' ' &„„.+]x (group-spin factor).

(je j (A15)

The factor 3R~(fq,
' }) associated with hadron B can be similarly evaluated (noting that p,.&q, &

——A = -Z q „
and defining qI, J ( f«q-I, «):

N

5] gqI„[~~((q,',})= ~ @~(fq,',}) [&(q,',.. . . . .q)' .)x&„.. . &„]x(group-spin factor) .
Eki

(A16)

So from Eq. (A7),

5'2'
q,] -&,„, p 2 2

~w Q]~ 0 Q)j. ~ q.k~ (A17)

where & (pq. ,},g' })is just the high-energy scattering matrix of the M+K quarks with truncated external
legs (writing s =&q,&2.):

N ng n~

G(q„, . . . , q,.„, )(5„,, ~ ~ 5„,)
J

x(group-spin factors M~"' "
(fq, &},(q~,})

'

&(q~,„.. . , q)')„„.)(&„, ' ' ' &„„-)
k=;.le

The impact-distance representation of Eq. (A17) is

(A18)

I~-+, yk e
i k k=i

(A19)

where

1
[1—S(bg, pxg}, gp})]= . exp i Qq»'(x)+b~)+i QqI)) 'y~ +0(pq»}'(qyx}), „, ~ ~p ' ~~2~ ~ (A20)

Here, x„y& are two-dimensional vectors transverse to the incident direction, in the impact-distance
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space. The position-space impact factor I„of hadron A is the Fourier transform of 8„((q~,j) with respect
to the (M- 1) independent relative momenta

where Q, is the total momenta Q, =Z~, g&, . Hence &~((g&f) =-@~(Q„pq&}), j=&, . ~ . , ~, and

(A2l)

so that

s„(}q,.})=f ex')-) gq, . x, II (Q., }*s})&"')p*y), ;, ;"'xr.
E y=}

' 'i '
) ~-& & "i-'}'

I~ of hadron B is similarly defined.

APPENDIX 8: CALCULATION
OF LEADING-UNITARY TERMS

First, we shall review the salient features of
the diagrammatic calculational scheme of Ref.
2. The amplitude of a Feynman diagram in non-
Abelian gauge theories is a product of a momen-
tum amplitude and a group-spin factor (e.g. , iso-
spin factor in Yang-Mills theory). The group-
spin factor is best represented by a group-spin
diagram having the same topology as the Feynman
diagram. However, the amplitudes of Feynman
diagrams cannot be easily compared since their

group-spin diagrams have different topology.
Especially in view of expected cancellations among
amplitudes, it is desirable first to express the
group-spin diagrams as linear sums of diagrams
with a common topology. The set of planar dia-
grams were chosen as such a basis (they are the
"box factors" of Ref. 2, having only vertical and
horizontal lines for fermion-fermion scattering).
Such a decomposition of group-spin diagrams into
planar diagrams can be achieved by application of
the Jacobi identity (in diagrammatic form). An
example is given in Fig. 4.

The coefficients of a particular planar group-

in t

Fey
dia

N

2

M =sM7x
i 8 6——9 —2g Ig T) n-4

l2
N

2g (gTI -}2g(g T} )(~)g (g T}

FIG. 4. The SU{K) group-spin diagrams of the four Feynman diagrams shown in the left-most column may be de-
composed as linear sums of planar group-spin diagrams of the top row, with coefficients given in the table. The last
row M shows the coefficients which multiply the group-spin diagrams of the respective columns when the four Feynman
diagrams are added together. Here T =1n/g2~, and M~ is given in Fig. 7. {SeeAppendix B.) Also, n-I denotes non-
leading terms.
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spin diagram from all Feynman diagrams of the
same perturbative order are then added together.
The leading lns term of the resultant sum of mo-
mentum integrals can be evaluated by the infinite-
momentum technique. "4 Such leading terms are
the leading-unitary terms of the scheme of Ref.
2. The technique to evaluate sums of. momentum
integrals using a Fourier representation of prod-
ucts of momentum propagators (as in Appendix A)
is detailed in Sec. IV (iii) of Ref. 2 and shall not
be repeated here.

Part of our results in the 6th and 8th perturba-
tive order is presented in Figs. 5 and 6. - For
clarity, we have omitted depicting the hadron
wave function as well as quarks of hadron A. .and B
not taking part in the instantaneous interaction
(i.e. , with no exchanged gluons attached). Figure
5 shows the case in which two quarks of hadron A
exchange gluons with one (Iuark of hadron B (rep-
resented, respectively, by two horizontal lines on
top of each diagram, and one horizontal line at
the bottom of each diagram). Figure 6 shows re-
sults of diagrams with gluons exchanged among
two quarks from hadron A and two quarks from
hadron B. (The case of one (Luark of hadron A
scattered from one quark from hadron B is the
same as quark-quark scattering of Ref. 2, so
we shall not repeat it here. ) Scattering involving
more quarks has similarly been calculated. Ow-

ing to space limitations, we choose not to present
our entire result.

using (C3).
We can evaluate the trace in (C4) by explicitly

putting in states corresponding to the eigenstates
of the z component of the angular momentum in
Q space:

Tr{UP "U 'D'~'(R~)}

= g (~ (UP,".'U lj )u„'.)..(R,).
m' m"

(C5)

(jm'lUP, "„'U 'ljm')

Pr m
mf

(C6a)

=(jllP"'ll j& Z (~I~'~(l~&~~') +'.-(U) .

Here, the conventional notation applies: j is the
eigenvalue of the total angular momentum, and
&'~„'„.(R,) the standard matrix elements of the
rotational operator D'~'(R )2.

&„'~-' .(Rq) is diagonal, as D'~'(R2) of (C3) is, so
we only need to evaluate the first matrix element
of (C5) with m"= m'. The matrix element can be
simplified further from the transformation equa;
tion of the irreducible spherical tensor operators

(1& .Pi, m

APPENDIX C: INITIAL CONDITION FOR S( [Q;T]

We start with the initial condition for S[Q;T] of
E(I. (5.6). From (5.3),

SIQ;T=0}=exgig '&.q.}. (cl)
(Cl) is in fact a rotational matrix in SU(2). For
convenience, we shall set g= 1 and denote the rep-
resentation of t, as the spin-j representation, so
that

S[Q;T= 0}=D ~'(R, ) = exp{if,Q,}. (c2)

D ~'(R&) =exp[if, II),}=UD ~'(R, )U ', (C3)

where t, is the diagonal z-component matrix in the
spin- j representation.

The initial condition for projection of the gen-
erating functional S,„[Q;T= 0] is related to the
following trace by (5.10):

TrjP& ' S[Q;T=0]}=TrIIP&' D ~ (R~)}

=Tr(UP, ' U D ~'(R2)},
(c4)

Define a rotation from Rq to A2 by a unitary matrix
U:

We obtain (C6b) from (C6a) by use of the Wigner
Eckart theorem, where (jllP"'llj) is the reduced
matrix element, and (j,j2m(m2

l j(j2 jm) is the
Clebsch-Gordan coefficients for the product of
representations j&,j2 to form representation j
=j~+j2, with eigenvalues rn~, m2, and m, respec-
tively. However, the coefficient (jim'm(l jljm')
is nonzero only if m'+m& ——m', or m&

——0.
Combining (C4), (C5), (C6), and the fact that

( 4 1/2
u()'„'(U) =l I', (8, (t(),~21+ 1 (cv)

"(,"."((I =4&=( ") ~,.(~, (&(j~(~" (~j)

x jim', mg ——0 jEjrn',

xu„(V, (R,) . (cs)

(CB) together with (5.10) clearly shows that

F, (8, Q) being the spherical harmonics, we finally
have
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Prototype Feynman diagrams S cattering Am p I itude

i —g+s (g~T) x
. I

2
x Mi

n on- I eading

l

—i —g s(g T) xz
2

+ . N

2
x Mp

-ig"s (g2T)2 x H ' xM&

!H I+i' H '2—'g 4s (g'T)' x

+ —gs(q T) xI e + + + + + xM~

i —g s(g T) x—. I e 2 ~ N N

8 iH
+ —g s(g T) x

I 6 p
3 + + xM5

x M

P roto type

Fey nman d iagrams

—I —g s xI 8
l2

Scattering Amplitude

x M6

- -g s (g T) M6 x (
I e

+
j

+i —g4s(g T) x'2
)

+ (-—" + xM,

I 8— i —g s x
l2

x IVI7

-i —g s M&x

+I g S (g T) X—N N

2 2 2

I'

+ xM7

FIG. 5. A summary of the Feynman diagram calculation in eighth perturbative order for the case with two quarks
of hadron 4 (upper horizontal lines) exchanging gluons with one quark of hadron B (lower horizontal line). For clarity,
we have omitted the hadronic wave functions and other quarks with no exchanged gluons attached. The amplitudes on
the right-hand side are expressed in terms of M& of Fig. 7 and SU{N) group-spin diagrams depicted. These amplitudes
come from the corresponding prototype Feynman diagram on the left, and all distinct Feynrrian diagrams obtained from
it by any permutation of the order of attachment of gluons on each quark line. [For 5(b), we only consider permutations
on the two upper quark lines. j Here T =Ins/2x.
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Pr ototy pe

Feynman diagrams Scattering Amplitude

-i g s(g T)x x Me

f

M lo x

)

+ I I permutations

——g s (g T)MlOx
I 6 2
3

+ 5 permuta tions

+ 5 permutations + + 5 permutations

+ —g s{g T)M x — . + 5 per mu tationsI 6 2 N

3 IO 2

(
f l

+ i g s ig Ti M x g +
lo

FIG. 6. A summary of part of the Feynman diagram calculation in the sixth and eighth order for the case with two
quarks of hadron A (upper horizontal lines) exchanging gluons with two quarks of hadron B (lower horizontal lines).
As in Fig. 5, we omit hadronic wave functions and extraneous quarks. The amplitudes on the right-hand side are ex-
pressed in terms of SU(N) group-spin diagrams, and "permutations" refer to planar group-spin diagrams obtained by
permuting the order of the vertical gluons as in the second row. These amplitudes come from the prototype Feynman
diagrams on the left, and all distinct diagrams obtained from it by permuting the order of attachment of gluons on each
quark line.

MI', M2' M3'

M4'

xP
MIP I

FIG. V. Transverse-momentum dfapams used in Figs. 4, 5, and 6. All lines are gluon lines, associated with a factor
of (q~~+ A2) ~ if it carries momentum q~. They attach to the quark lines at the crosses (x) depicted. The total momentum
entering each cross appears in the argument of the hadronic wave function I~ s((q&~J) of Appendix A, which we omit in
the diagrams for clarity. For each horizontal bar through a vertex, there is a factor of {q~+ X ), where q is the sum
of the momentum going vertically up (or down) the vertex. Finally, for each closed loop, we integrate over the loop
momentum k~: 'f d k~/(2x)
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[Q;T =0]cc Y,„(8,p}. The coefficients of Y,„
in (C8) is a function of the radial variable Q = ~Q~
in Q space, so that if P,"' is given in terms of the
matrices t„we can evaluate the radial function
R, [q] in

S, „[Q;T=0]=R,[Q]Y,„(8,P) . (CQ)

As an example, for l=0, it follows from (5.3}
and (5.6) that (since Tr 1 = 2j + 1)

S0, 0[Q;T=O]= . Tr{exp[ig t,q,])2j+1
f

1+2 cos(ng Q}, j= integer
1 tt=

X2j+ 1
2 g cos(ng Q), j= —', integer .

(C 10)

(C11)

Comparing (C11) with (5. 17) (with Y00 = 1/~4p )
we obtain (5.21).

For l=i, m=0,

I

Comparing (C14) and similar expressions for
Sj

~
f[Q;T =0] with (5.17), we obtain (5.22).

Sg p[Q'T =0]= .+ Trft, exp[ig t,q, ]]'2j+ 1

1
So, o[Q'T = o]

ig sq,

(C12)

(C13)

APPENDIX D: +lQ/g {ql) ' ' ' Qj„(qn) 1

AS AN EIGENFUNCTION

In this Appendix, we prove the eigenvalue rela-
tion

(4w't"'
basin ng — Fg p

( 3)
(n i/2)

for j=integer (~ integer) . (C14)

a~„[q„rq,), . . . , Q, (q.)]=0,

where

(D1)

2 (2 )2 (2 )i f gqc(q1)
5Q (q ) fleqdrq2~

5Q (q )
(O2a)

d d
~ (2v)I (2~)' 'f-'f"'Q'rq' Q4(q'

5Q rq,')6q, rq2)
" J (2 )&

Q rq )
5Q (q') (D2b)

+,[Q„rq|), . . . , Q, rq„)] =Qg, (qi) '
Qg rq„)fl, , ':.",, »(t&, . (D3)

(D2b) is obtained from (D2a) by straightforward expansion, where f„,f~„=- C2„~5and [5/5Q, (q')]Q~rq~i)
= (2v)'5„5 "&(q'- q,.).

First consider @ of (D3) where &=1:
+ [Q,,rq ), , Q, rq„)] = Q, ,rq ) Q,„(q„)T (t„ t, ) .

Then

2~ Id q2 5
J (2,) f,q rq )

5Q (-.) [Q,rq ), , Q,„rq„)]

= Q, rq, ) ~ ~ Q, (q„)[f...Tr(t, , t, ~ t, ) +f. ..Tr(t, t, ~ t, )

f~'( e r(t~i ti ti )] (D5a)
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+ ~ ~ ~ +Tr(t ".t, [tj, t,]}] (D5b)

(D5c)

Hence from (D2),

J +,[q„(q,), . . . , q, (q„)]=0.

Next, we shall show the following property of ~:
j

fjjjge j'(~"., j", fj~j2N j&~ j'p "~ jn jnj, ' j4"' ~ n i» n

(De)

(D7a)

y gjty&'PI ~ ~ ~ ~ &n j' ~ ~ ~ . P ll
""~ «n-g' n j. , (D7b)

yf, ..., j„&if''fe )f ~ ~ ~ &g ~ &2&)~ ~f "'& && 'n e

from which we conclude k4„=o, as

t ~ g

= q j~(gi)" q, (a„)x Tr(t&," t& ) x(ajI " j"f,,j,, +"~ + n j tl

(D8)

in view of (D7) and (D5).
We make use ot' a property of O. From the initial condition (6. 1) and the form oi & of (4. 23), we see

that 0 is iormed from a product of structure constants f ~„We may .write

g~ft ~ ~ ~ ~ «g g g Q f
&f, ~ ~ i &n ~~)~ ~ ~m~gg ~f~ "~~l ~

' ~ m''"' (D9)

so that (D7a) is

~ ~ ~

~

~

~ ~ ~ ~ ~
)gag~+ S ) tl ~e~o~ ~f 1 ~of f ~g ~ ' e ~ ~ '' ~ Jn "j" "m" m lgn m™

Ot&l, ~ '

~

~ ~ ~ ~ ~

haft ~ ~ ~ ~ ~g

j j'dfj' j"dfj' j e j( ..., j'(,"~, j~, j~ ~
mm ~m ~

' ~ ~ ~ m~ ~ n (D10a)

Q (gal ~ e ~ sl fiZ fj' j~~ ». "j'n, "j'j j~ 'm~ ~"~~ ~
g g N yg

"(+&l,m)

haft

~ ~ ~ t ~g 0 f ~ ~ ~ ~ ~ 'lg+f - il j- j' j +fj"j'~%

(D10b) is obtained from (D10a) by use of the Jacobi
identity on the last two terms of (D10a). The sum
of terms inside the brackets in (D10b) is just that
in (DVa), with Q replaced by Q. Hence we can
define 0 with two structure constants explicitly
shown as in (D9) for Q. We would arrive at (D10b)
with 0 replaced by Q. This procedure may be
repeated as many times as is required to exhaust

all the structure constants present in ~, so that
all & stands on the left of fj j, , (o'=1, . . . n) as
in (D7b). This is illustrated diagrammatically
in I"ig. 8.

The physical meaning of h+ =0 is readily seen.
With /z defined as in (D2), (-2h) in fact is the in-
variant quadratic Casmir operator in functional
space. For example, in SU(2) in the case that g
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Jl j2J4, Jm Jn

'n

+ 0 ~ ~ + ~ ~ ~ + ~ ~ ~ +

JC Jm Jn

~ ~ ~ + ~ ~ ~ + ~ ~ ~ +

Jn

+ ~ ~

Jn
(b)

FIG. 8. (a) Diagrammatic representation of Eq. (D9). (b) Diagrammatic representation of Eqs. (D10) and (D7).:

space consists of only one point (as in the solvable
model of Sec. V), -2k=Le, the square of the
angular momentum operator in Q space Lz ——(1/i)Q
x V. If we consider q space as a discrete lattice,
then in SU(2), -2h =L„„the square of the total

angular momentum operator L„,(L„,is the sum
of all Lz defined at each lattice point j in q
space. ) Since 4 is a singlet state, just as S of
(6.2a) is, we must have h4' =0.
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