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Interaction potentials for multiquark states from instantons and other background
gauge field configurations
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We present a simple rule for calculating the contributions to the interaction potentials between constituent
particles for a family of multiquark states, due to the presence of a semiclassical gauge field configuration
which exists in a single SU(2) subgroup of color SU(3). In multiquark states beyond the baryon we find
many-body potential terms. The static (Wilson-loop) limit is suAicient to elucidate the dependence of the
potential on the color structure of the multiquark state.

I. INTRODUCTION

In recent years interest has grown in the study of
the physical effects of instanton solutions of quant-
um chromodynamics (QCD), ' as these objects pro-
vide the basis for a semiclassical treatment and
a different partial view of the complex phenomena
contained in the theory —one which emphasizes
nonpe rturbative effects.

Recently, several authors' have considered
the contribution of a dilute gas of instantons to the
interaction energiep of quarks and antiquarks
arranged in meson and baryon configurations.
These calculations have derived, at a first level,
the static spin-independent potential from a Wil-
son-loop analysis, and have also shown how a
systematic expansion for the effective Hamiltonian
of a system composed of heavy quarks, in powers
of 1/m„can be constructed.

The emergence of a QCD-based theory of had-
ronic structure, the bag model of Callan, Dashen,
and Gross, ' which indicates that the instanton size
cutoff provided by the bag makes dilute-gas calcu-
lations appropriate, suggests that once the instant-
on size distributions in the bag and the linkage of
the bag to its contents are clarified, serious spec-
troscopic calculations will be possible.

'This state of affairs, combined with the increas-
ing evidence for the existence of multiquark states, '
such as baryonium and dibaryon states, prompts
us to investigate the nature of instanton contribu-
tions to the interparticle potentials in multiquark
had rons.

From the work of Callan et al. ' and Aragao de
Carvalho' on the heavy-quark expansion of the
quark-antiquark potential due to a dilute gas of
instantons, we see that color configuration depen-
dence of the potential may be determined by anal-
yses in the static limit. The terms in the 1/m,
expansion of the Hamiltonian result from instanton
position, size, and color orientation integrations
over the potential due to a single instanton, which
itself consists of single-quark operators contain-

ing various m, " terms acting on the color-struc-
ture-dependent effective Hamiltonian of the static
limit. Accordingly, the generalization of the Wil-
son-loop expression to a multiquark system in-
fluenced by a single instanton suffices to elucidate
any complexities associated with the more intricate
color structure. Callan et al. ' discovered a simple
expression for the static spin-independent poten-
tial existing in a baryon due to a dilute gas of in-
stantons in terms of the analogous potential gen-
erated in the meson cases:

V„,(x„x„x,) = —,
' g V„-(x,, x,).

pairs

They pointed out that this. is a result of the semi-
classical configuration involved (the instanton)
lying in a single SU(2) subgroup of color SU(3).
The three quarks in a baryon are all differently
colored at any moment, and any given background
instanton field, being of SU(2) nature, only affects
two colors at a time, leading to this separation
into two-body potentials once the summing over
instanton color orientations is performed. If it
is necessary to go beyong the dilute-gas approxi-
mation and consider group-orientation-dependent
instanton-anti-instanton forces, then many-body
forces are to be expected. Callan et al. ' showed
that this separation mechanism applies to (a dilute
gas of) any semiclassical configuration which lies
in a single SU(2) subgroup of color SU(3).

Besides the growing experimental' and theoreti-
cal interest" in multiquark states it seemed
worthwhile to see the significance of the SU(2) nature
of the instanton for these more complicated color
structures. Once more than three quarks are
present, their colors are not all simultaneously
different and so many-body potentials are expected
and these should give some insights into the spatial
structure of multiquark states.

We present a simple general rule for calculating
the interaction potentials due to a semiclassical
background field contained in a SU(2) subgroup of
SU(3), for a family of multiquark states. Many-
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body potentials are found, and after some general
features have been examined we consider the first
many-body potential, which is the only one en-
countered in the, configurations of immediate ex-
perimental interest and its contribution at the
static spin-independent level is considered for a
dilute gas of instantons.

In Sec. II we display the family of multiquark
states for which we have developed the simple
potential rule. Then in Sec. III we present an out-
line of the effective-Hamiltonian approach and the
heavy-quark expansion of the potential. In Sec. IV
the rule is proved inductively for the general mem-
ber of the multiquark family, while in Sec. V the
form of the many-body potentials encountered is
examined. Section VI fo.cuses on the first of the
many-body potentials —the four-body potential—
analyzing it for a dilute gas of instantons.

II. A FAMILY OF MULTIQUARK STATES
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The family of multiquark states for which we
have formulated a rule for interaction potentials
includes T baryonium and also the dibaryon. For
a given number of quarks and antiquarks various
"color configurations" arise from the various ways
in which the color direct product

l c 3m 3g e 3e3 (3)

of the color-triplet quarks (+3 and antiquarks (3)
can form a color singlet. For the static-limit
calculation we only require the color-structural
part of the multiquark system wave function.
(Naturally the color part, when taken together with

space, spin, and flavor structure, must be anti-
symmetric. ) The family of multiquarks we consid-
er consists of those which are obtained by always
taking the triplets from
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and finally taking the singlet when expression (3)
has been reduced to a final 3(33= 1 $8.

Clearly the meson is the simplest member of
the family and the baryon is the next. The usual
multiquark diagrams for this family, ' with quarks
and antiquarks at link ends and junctions repre-
senting Levi-Civita symbols, resemble Cayley
trees with connectivity %=2, i.e., three "nearest"-
neighbor junctions for each junction. Figure 1
shows the first few members of the family. The
triplet nature of the decomposition of the direct
product at all stages (except of course the final
singlet from 38+8 shows that the class is built up
from the meson by the prescription of removing
a quark (say) and replacing it with a color-anti-
symmetrized pair of antiquarks. It should be
noted that each link connects a 3 (quarklike) to a
3 (antiquarklike) object, or equivalently that each

(0 Q) QQ (QQ)

FIG. 1. The members of the "color tree" multiquark
family for two to six particles, listed together with their
normalized color-singlet projection operators. (Greek
color indices take values 1, 2, , 3. ) Each junction repre-
sents a Levi-Civita antisymmetric tensor in the projec-
tion operator.

junction connects three like-natured objects. For
comparison Fig. 2 shows the M-baryonium state
drawn in the same system. In this, state the quark
pair is in a 6 representation with the antiquark
pair in a 6 representation yielding a color singlet.

For the effective Hamiltonian we shall require
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the color-singlet projection operators for the
states. These are directly reflected by the color
states, e.g. ,

1I
1 2 s (3X2)'~' 1 a s'

and are listed with their states in Fig. 1. The re-
placement of a particle color n„by a pair of color-
antisymmetrized antiparticles (colors P„P,) to
step up the family one level simply involves the
modification

p &By821"' n 1~1~2 1"' n-1" (4)

i.e., the old particle label becomes a link label
and the new antisymmetrized pair is added with
the appropriate addition to the normalization.

III. EFFECTIVE HAMILTONIAN AND THE HEAVY-QUARK
POTENTIALS

We present in this section an outline of the ap-
proach use.d by Callan' et al. and Aragao de Car-
valho4 in developing the large-mass expansion for
the quark-antiquark potential. The extension to
multiquark states is also considered.

To calculate the net effect of a dilute gas of in-
stantons on a multiquark configuration, i.e., neg-
lecting correlations and interactions between suc-
cessive instantons, we need to find the effect of a
single instanton on the evolution of the system
and then integrate over the position, scale size,
and color orientation degrees of freedom of the
instanton with the appropriate density distribution
of instanton sizes.

The time evolution of the multiquark system is
obtained by consideration of the propagation of a
single quark or antiquark through the field of an
instanton or anti-instanton. The systematic large-
mass expansion of the effective Hamiltonian for
the multiquark is obtained by calculating the quark
propagators in the external gauge field. using the
systematic 1/m, expansion of the quark's Dirac
Hamiltonian, provided by the Foldy-Wouthuysen

M bar yonium

FIG. 2. The color diagram for M baryonium. It has
a closed-loop construction reflecting the fact that the
two quarks {antiquarks) are in a symmetric 6 {6)repre-
sentation and not the natural antisymmetric representa-
tion which the link-diagram trees characterize.

where the 2 && 2 matrix

Q(x —r) =exp(ivr (x —r)/[(x-r)'+ p]'~'j, (8)

R is a rotation in color space, and the nature of
the instanton as an embedding of an SU(2) object
in color SU(3) is clearly demonstrated. The re-
sults of such calculation show that the quark wave
function Pn, u,.(x) with spinor label s, and color
label n,- is transformed by propagation through
the region of influence of an instanton of scale
size p located at the origin of spatial coordinates,
to

0(x) =A(x, p, a, p)4(x),

where

A(x, p, a, p) =O(x, p, a, p)U '(x). (1O)

The operator 0, to order rn ' and neglecting some
terms which appear only in 84 0 vacuums, i.e. ,
in I'- or T-violating worlds, has the form

O(x p a p)=1-—L ~ V- a ~ V
2m

1
2 L ~ Va' ~ V + 2

a' ~ (p x V)2'' 4m

xyp 2

, p„, , „,(vox),IV,5m ' (x+p)

[from Eqs. (18) and (2.14) of Callan et al. ' and
Aragao de Carvalho, ' respectively], where
L =x && p, p operates on the x of g(x), while V acts
only on the U '(x), and the repeated indices in the
anticommutator term denote summation. For an
antiquark, U '(x) is replaced by Ur(x), while the
contribution from an anti-instanton reverses the

transformation combined with standard nonrela-
tivistic path-integral methods.

Consider the evolution in Euclidean space, using
the gauge AD=0 of @quark at x influenced by an
instanton at r. [A, =A„'V/2, using the usual Gell-
Mann SU(3) matrices. ] We assume that the quark
is initially in a region where the gauge field is
zero (A„=O). It advances through a region where
it interacts with the full instanton field and finally
reaches the inequivalent pure gauge field region
where

A = ~ U 'VU(x —r),
with

U(x —r) = exp{ivX' ~ (x —r)/[(x —r)'+ p']'~'], (8)

where the three components of &' generate an SU(2)
subgroup of SU(3). U(x —r) can also be written as

I

U(x —r) =R R ',
0 1
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signs of the 1/m terms. As shown by Callan et al. ,
the expression for the time-evolved multiquark
wave function can be constructed as a tensor prod-
uct of the single-quark operators and can be used
to construct the effective Hamiltonian for any

color-singlet system.
For a confxguratzon of m quarks and m antxquarks

at positions x„with colors o,'&, the evolution
through the field of one instanton positioned at the
spatial origin is given by

m+m m

y&...((x,])= O({i)) V-'.
,..(x,.)

4~1 f=Y

m+m';'
. ':.(x;)~(..)(b;]).

i='m+i

The effective Hamiltonian for the one-instanton background field is then extracted as

-HI=4-' ~ (13)

As we are interested in the color-singlet states we select that sector of the Hamiltonian by including in it
projection operators for the type of multiquark state under consideration. This effective Hamiltonian would
require integration over instanton center position, scale size, and color-space orientation, i.e., over all
R rotations in Eq. (7), to yield the dilute-gas result.

One can see that the color structure of the one-instanton effective Hamiltonian is determined by the
static-limit term in the multiquark evolution Eq. (9), i.e. , the leading term in O(x, p, o', p).

'The rest of the effective Hamiltonian is generated by a complicated set of single-particle operators, the
other terms of the O((if), acbng on the static term, followed by the integration over the dilute-gas degrees
of freedom.

As we are presently interested in the way potential terms arise through the color structure of the multi-
quark state, we therefore consider the static-limit one-instanton effective Hamiltonian

m m+m m+m

(14)

In Sec. IV we derive a simple rule for the construction of H t tg y for the family of multiquark states of
Sec. II. From that we can, of course, also investigate the structure of the static spin-independent potential
formed by use of H„,«, , in the dilute-g" appxoximation. Equation (14) is just the multiquark generaliza-
tion of the Wilson-loop argument.

IV. INDUCTION OF THE STATIC ONE-INSTANTON EFFECTIVE HAMILTONIAX
FOR THE "TREE"MULTIQUARK FAMILY

The static one-instanton effective Hamiltonian for the meson is well known'.

H;f„„,=-g tr[Q(x, —r)A '(xm —r) -I], (»)
where the instanton has been placed at r. %e now proceed to showby induction how thiscan be generalized to
the higher members of the family of multiquark states defined in Sec. II—the color "tree" family. As be-
fore, we focus attention on the effect of replacing a particle with a pair of color-antisymmetrized anti-
particles. For definiteness consider the Hamiltonian Eq. (14) with the quark j, color n' singled out for
eventual replacement by antiquarks with colors P„P, at y„y„respectively:

m m+m m+m

(16)

with

=-[X...,, U'...;(x,) —1]

=-[trPC'V-'(x, )) —1],

m

rp-1
Cg Q' Q - ~ ~ C' Qj'"

gg j. " y
'' ggi. ai g f4=1

j4j

m+m

'=m+1

(16)

Now the Hamiltonian of the extended state with the antiquarks at y„y, is
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m m+m
t yy

R „„.,=.-)P., „.P, „.—.'t. « t„r r U '. .. (*,) U." .. (yt )Urr (y )U+r(y )-)) (2o)

(21)[2X ~
t) t)

~ t)r ()r Ut) (tt (y, )U; ()r (y, ) —11 ~

To proceed further, the nature of the instanton as an SU(2) object embedded in SU(3) is crucial. Given
two SU(3) matrices A, B which consist of SU(2) matrices 8,$ embedded into SV(3) with the same rotation
matrix R,

A=R R i, B=R R
e 0

0

then defining a matrix T by

1T~o'= 2 E~gyf~'g+'Agg

it is shown in Appendix A that

(22)

(23)

0

0

tr(6$ ')
R- j" (24)

0 ' +-' 0
R ~ + R

1 1 1

R-
}

(25)
0 ,tr(tta ) j I 0 ,tr(ctt )

so the matrix T is the average of two matrices which are the transposes of matrices rotated from block
diagonal by the matrix R. The element T33 is also somewhat more involved than was the case in A. and B.

Returning to our effective Hamiltonians, Etls. (18) and (21), we note that if

then

fl(x) 0

0 1
(28)

(27)

u'~~ 0v'N) =8-"
0

Then it follows that

H„ct„ t
——-[tr(X U '(x))) —1]

(28)

(28)

XrR R ' -1=-jtr XR R (30)

r fl "(y,) + fl "(y,)
Rtatt.cr 1

l
~Xyyr

0 tr(fl(y, )f1 '(y, ))

R
j

—t
)

yy'

jt' f1 '(y, )+~ '(y.)
2 yy

0

0

tr(&(y, )& '(y, ))
R'

j -t)i
yy'

(31)

a-'(y, ) + a-'(y, )

tr(~(y, )& '(y.))
R'j —t)

]
(32)
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This analysis shows that, as required, the oper-
ator associated with the antisymmetrized pair of
antiquarks transforms like the quark operator it
replaced i.e., with R matrices. The replacement
also retains the block-diagonal form of the matrix
being rotated. We also consider the matrix X. It
is at the other end of the link which originally ter-
minated at the quark n&. Accordingly, X is a 3 ob-
ject (antiquarklike) and will have the form

removed particle are multiplied by the factor
tr(Q(y, }Q-'(y,})/2.

For an initial meson,

(37)

as X contains the normalization factors of the pro-
jection operators, so

H „„(x„x,) =-—', [tr(Q(x, )Q '(x,))+1]—1 (38)

0 x'

e.g. , if X is just an antiquark then

0 00 0

0 1

so that finally

H = -[tr(=Q '(x,))+x' —1],
while

H =-{-,'[tr(=Q '(y, ))+tr(-Q '(y, ))

+x' tr(Q(y, )Q '(y, ))] —I] .

(34)

(36)

(36)

or as more usually written

H „.,(x„x,) =-{s[tr(Q(x,)Q '(x,)) —2]}
=-s tr(Q(x, )Q '(x,)-I). (39)

Equation (38} is obviously in the form to which the
rule is applied. By use of the rule or by directly
from Eq. (36) for H',

H„„„(x„x„x,) = -{-,'[tr(Q(x, )-,'[Q '(x, ) + Q '(x,)])
+1'xtr(—'Q(x )Q (x )}l I} (40)

= —v'[tr(Q(x, )Q '(x,)) + tr(Q(x, )Q '(X,))

+ tr(Q(x, )Q '(x, )) —6], (41)

%'e now have our rule. %hen increasing the
complexity of the multiquark state by replacing
a particle by a pair of color-antisymmetrized
antiparticles, the following procedure is performed
on the expression for H -1:

(i) In all trace terms containing the matrix of
the removed particle, that matrix is replaced by
the average of traces involving the matrices of the
two added particles (keeping the same type of
matrix as originally), i.e., Q(x&) —&(Q(y,)+Q(y, )).

(ii) All terms not containing the matrix of the

which reproduces the result Eq. (1) of Callan et
zl. , in this case for an antibaryon. (We replaced
the quark by antiquarks. )

One can immediately construct the static effec-
tive Hamiltonians for the higher members of the
color tree family. For T baryonium with quarks
at x»x, and antiquarks at x3 x4,

H =- ~~[tr(Q(x, )Q-'(x, ))tr(Q(X, )Q '(x,))

+ tr(Q(x, )Q-'(x, )) + tr(Q(x, )Q 'I', ))

+ tr(Q N, }Q 'I,)) +tr(Q(x, )Q '(x4)) —12], (42}

TABLE I, 'The one-instanton static-limit effective Hamil. tonians for the "color tree" states
shown in Figs. 1{a)-1{d).The particle at the position x; is of the type indicated by the figure
and the order of the terms in each expression is that expected when systematically expanding,
using the inductive rule presented in Sec. IV. For compactness, the Hamiltonians listed have
not, had the many-body terms broken down by the method of Sec. V, and have the instanton at
the spatial origin.

Meson

Baryon

T baryonium

{ee)e{ee)

—
~ [tr(Q(x&)Q '(x2)) —2)

—t [tr(Q(x&)Q (x2)) +tr(Q(x&)Q (x,}}+tr(Q(x,)Q '(xs)) —s)

-+t [tr(Q(x&)Q f(x&))tr(Q(xq)Q f(x4)}+tr(Q(x&)Q f(x3)}

+ fr(Q (xf)Q (x4)}+fr(Q (x2)Q (xg)) + tr(Q (x2)Q (x4)) —121

24 [tr(Q(x&)Q (x2)) tr(Q(x&)Q (x4}}+tr(Q(xf)Q (X2))

xtr(Q(x, )Q '(x,)}+tr(Q(xf}Q '(X3)}tr(Q(x4)Q '(xs)}

+tr(Q(x&)Q f(x4))+tr(Q(x&)Q f(x5))+tr(Q(x2)Q f(xs)}

xtr(Q(x4)Q f(x5))+tr(Q(x2)Q f(x4))+tr(Q(x2)Q f(x&)}—24]
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TABLE II. The one-instanton static-limit effective Hamiltonians for the six-particle states
of Figs. 1(e) and 1 (f). The terms in each expression are in the order obtained by systematic
use of the induction rule of Sec. V. The instanton is at the spatial origin.

State

(QQ)'

(dibaryon)

(QQ) QQ(QQ)

Jeff

-~43 [tr(D(xt)Q 3(x3))tr(D(x3)D (x4})+tr(Q(x4)D (x3))

&& tr(Q (x4)Q ~(x4) )+ tr(D (z&)Q 4(z3) )tr(Q (x3)D 4(x3})

+tr(Q(xt)D 3(x3))tr(Q(x4)Q 4(x3))+tr(Q(xt}Q 3(x3))

xtr(Q(x4)Q 4(x3))+tr(Q(x&)Q 3(x3))tr(Q(x4)Q 4(x3))

+tr(Q(x&)Q 3(z4))tr(D(x3)Q '( z)3) +tr( Q(x )4Q'(z3))

x tr(D (x3)Q 3(x3))+ tr(D(x3)Q 3(z3)) tr(Q (x4)Q 4(x3})

+tr(D(x3)Q 3(x3)) tr(D(z4)Q ~(x3))+tr(Q(x3)Q 4(x4))

&&tr(Q(x3)D 3(z4))+tr(Q(x3)Q 4(z3))tr(Q(z3)D 3(x4))-48J

f3 [t-r(D(x&)D 3(x3))tr(Q(z3)Q 4(z4))tr(Q(x3)Q ~(x3))

+tr(D(x&)D 3(z3))tr(Q(x3)D '(x3))+tr(Q(x&)Q 3(x3))

x tr(D (x3)Q 3(x3))+tr(Q(x&)D 3(x3))tr(D (x4)D ~(x3))

+tr(Q(x&)Q 3(x3))tr(D(x4)Q ~(x4))+tr(D(xt)Q ~(x4))

xtr(Q(x3)Q 3(x4))+tr(Q(x&)Q (x3))+tr(D(zt)Q (x3))

+ tr(D (x3)D 3(x3)}tr(Q (x4)Q 4(x3))+ tr(D (x3)Q ~(x3))
x tr(Q (x4}Q 3(x3)}+tr(Q (x3)Q 4(z4}) tr(D (x3)Q 3(x3))

+tr(Q(x3)Q 3(x3))+tr(D(z3)Q 4(x3)) —48J

showing how the multiquark s diquark and antidi-
quark elements (which are each color triplets) are
involved in a many-body potential term as expected.
It is to be noted that one can, of course, superpose
the two particles in one of the color-antisymme-.
trized pairs [tr(A(x)& '(x})=2] and so reverse down

the multiquark family.
So, the effective Hamiltonian has many-body

terms and these for static quarks are really just
potentials for the multiquarks of Fig. 1. They are
displayed in Tables I and II. Again for comparison
the effective Hamiltonian for Ibaryonium, Fig. 2,
is presented in Table III. It is interesting to note
that only the four-body potential appears in both
T and I baryonium, in the 4(Q)Q state, and in the

0 1

where Q is an SU(2) matrix, can be combined at
a vertex using the antisymmetric tensors in the
projection operators to yield

I

dibaryon, which are the multiquark states cur-
rently the subject of the most experimentation and

theoretical speculation.
Alternatively, instead of building up to the com-

plexity of the multiquark state of interest, one can
work through the color tree of the multiquark
building up the potential, starting from an anti-
symmetrized pair. We saw earlier that two ma-
trices of the form

TABLE III. One-instanton static-limit effective Hamiltonian for M baryonium, presented
for comparison with that of T baryonium in Table I. The particle at x; has the nature (quark
or antiquark) indicated by Fig. 2.

~ baryonium —
34 (tr(Q (x&}Q (x3))+ tr(D (x&)Q (x4)) + tr(D (x3)D (x3))

+ tr(Q (x3}D (z4) )—tr(Q (x&)Q (x3)}tr(D (x3)Q (x4) )
+ 2 [tr(Q (zt)Q 3(x3)}tr(Q (z3)Q (z4))+ tr(Q(xt)Q (x4))

&&tr(Q(x3)Q ~(x3)) J —20)
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a

x, U (xj

FIG. 3. A pair of color-antisymmetrized quarks
attached to the link &n'.

FIG. 4. Combining T, T matrices at a junction.

tr(&(x, )&-'(x,))

0 '(x, ) 0, & '(x,)

0 f ~g 0 1

& (x,)+& (x )

0
(43)

with 8, S SU(2) matrices, we find that

implies

(45)

or

T~--'R b8 '+a ' 0

tr(8e ')
(46)

where T has the expected U -type color-space
rotation reflecting our selection of 3 from 33.
In dividing up T as before, we see that we have a
sum of two matrices of antiquark nature which, on
proceeding along the color tree, we find are either
summed against a quark ending the chain, or else
enter a junction with like-natured Q3 objects. To
continue combining these T matrices we need a
generalization of Eq. (43). In Appendix A we show
that for block-diagonal matrices

A =It ft-' g =~ ft-' (44)

+-,'gR-'~

R~
-'. tr(ee-')

b

0
R

—,
' tr(ee-') (4V)

when we have regained a sum of two block-diagonal
matrices transforming with the transpose-rotation
matrices, and with SU(2) upper blocks.

With this generalization we can combine matrices
from our first pair of antisymmetrized quarks
with one of the two like-natured 3 matrices (or
sums of matrices) at the next junction. The meson
normalization factor of 3 for the projection operat-
ors must be inserted at the first step. For ex-
ample, the portion of a multiquark in Fig. 3 is
easily dealt with by our previous matrix result
yielding

1J

X
U, (x)

lJ lJ 3

&N, )+&(x,)

0 tr(fi(» )fi 'I ))

(46)

and now with the above generalization we can com-
bine this with the 3 object T' of Fig. 4 as

(49)

FIG. 5. A particular case of Fig. 4 when X3 particle
is an antiquark.

For example, if T is a simple antiquark matrix
U„„,(x,) as in Fig. 5, then
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-xr
Tg y t $C g~ 6 gpaie)()g

' 8
2 0 -' tr(Q{x,)Q '(x,))

So, using our rule from Eq. (46},

Q '( )- tr(Q(x )Q 'F ))+1Q 'F )

tr(QF. )Q '(x, ))

+A
Q '(x )-'tr(Q(x )Q '(x ))+1Q-'(x ) 0

(62)

(62)

0 tr(Q(x )Q '(x ))
Note that we can continue to restore these matrices to the form of a sum of multiples of matrices with the
block-diagonal form of A or B [Eq. (44)] and an SU(2) matrix as the upper block and so we can continue to
combine them at vertices all the way through the color tree using Eq. (46) until we meet a single particle.
%e complete the above example by attaching an antiquark to T„"~ to generate again the T-baryonium result

II -1=-~~[L '.{x,)r",]
= -„'[tr(V(x,)r")]

Q(x ) 0
'

Q '(x,)tr(Q{xq)Q '(x2))+Q '(x,)+Q '(x, ) 0
(64)

tr(Q(x, )Q '(x,))+tr(Q(x, )Q '(x,)) i

~ [tr(Q(x )Q-~N ))tr(Q(x )Q- (x ))+tr(Q(x )Q-'(x ))+tr(Q(x~)Q '(x,))+tr(Q(x, )Q '){x,))+tr(Q(X3)Q (x~)}]

(66)

regaining the result of Table I. The increasing number of matrices into which the T'"' must be divided

to regain the form required for combination at vertices using Eq. (46) directly shows the large number of

terms which appear for multiquark states.
V. MANY-BODY POTENTIAL TERMS

The formation of the static effective Hamiltonian for a multiquark state of the color tree type due to the

influence of an instanton showed the existence of many-body potential terms for states more complicated

than the baryon. These terms have the form of products of two-particle trace factors, e.g. ,

a ((x,.))= [tr(Q(x, )Q-'N, )}tr(Q(x,)Q-'(x, ))tr(Q(x, )Q-'(x, ))" 2 ], (66)

where n is the number of trace factors, and N =3 x 2 denotes the normabzation denominator factor for the

projection operators, with 0 denoting the number of tree junctions. Clearly, if the particles were super-

posed in all but one trace factor, H» would take on the form
e-1

a„sN„x,) = [tr(Q(x, )Q '(X,) -I)],
i.e., there are two-body-like terms in H~. In fact, when the two particles in a trace factor are close to-

gether compared with the distance r to an instanton from their neighborhood, i.e., ~x, -X,
~

«
~

~ (i, +x,) —r ~,

tr(Q(x, —r)Q '{x2-r))-2[1+0(r ')] . {66)

%e extract these two-body contributions leaving many-body potentials which will be less sensitive to dis-

tant instantons.
The breakup into two-body terms and further many-body potentials is achieved using the decomposition

n

-2"= (x, -2+2)-2"
5=1

=2" ' (x. -2)+2"-' (x, —2)(x, -2)+ ~ ~ +2"' Q, ', (x, —2)+ ~ ~ ~ + (x,. —2),
(ay) age~ 5=1

where a,. is a selection of j elements from (1, . .. , n). Using this for the trace-factor product allows the

extraction of the two-body potentials [the (x', -2)'s] and generates the various many-body terms. The fac-

tors in the many-body terms will now behave for t»~x, ~, ~'x, ~, as 0(x '), and so the more factors pre-

sent, the less the effect of distant instantons will be felt. This property should prove very useful in cal-

culating their contributions in a dilute-gas approximation.
As an example, consider the T-baryonium effective Hamiltonian Eq. (42) and Table I with quarks at
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x„x„and antiquarks at x„x,. Making this modification to the many-body term and casting two-body
terms into mesonlike form

Hr- - r')[tr( Q(x, )Q '(x,) -I)+tr(Q(x, )Q '(x ) -I)+tr(Q(x, )Q '(x,) -I)+tr(Q(x, )Q '(x ) -I)
+2 tr(Q(x, )Q '(x,) -I)+2 tr(Q(x, )Q '(x,) -I)+tr(Q(x, )Q(x,) -I)tr(Q(x, )Q '(x,) -I)]

g H,-,(x, , x~)+pH -(Xg x )+2H I3 x4) 12 tri(Q(x, )Q '(x,)-I)tr(Q(x, )Q (x,)-I),
(6O)

(6i)

where

H,,(x„X,) = --,' tr(Q(x, )Q '(x,) —I) .

%e see that the particles in each diquark of the
T-baryonium are bound by a two-body potential
twice the strength of the quark-antiquark potentials
in the system. The color-structural nature of
these potentials is reQected in the fact that this
relative weighting of the two-body potentials be-
tween the quark pairs and the quark-antiquark
pairs is just that found from the gluon-exchange-
motivated interactions of the form tr(X, &~)V(x, —x&)

when the color trace is evaluated between T-bary-
onium color states. In Sec. VI we present some
remarks concerning the asymptotic behavior of the
four-body potential contribution in the dilute-gas
approximation.

VI. THE FOUR-BODY POTENTIAL

Inspection of Tables I and II shows that the only
many-body potential to present itself in the one-
instanton effective Hamiltonian for the T and M
baryoniums, the (QQ)g(QQ) and the (QQ)' dibaryon,
is the four-body term

H, = tr(Q(x, )Q '(x~) —I)tr(Q(x, )Q '(x~) -I). (62)

As this term will also be found in the Hamiltonian

of any system which has more complicated many-
body terms, due to the decomposition [E(l. (59)],
we consider it worthwhile to examine the static-
spin-independent dilute-gas approximation effect-
ive Hamiltonian, which could be obtained from H,
by integrating over instanton size with the appro-
priate density distribution sizes, integrating over
color orientation, and integrating over position of
the instanton center. The size integration would
be cut off at a scale size determined by the size
of the abnormal bag of dilute instanton gas existing
around the quarks in the normal strong-coupling
phase. At present we concentrate on the instanton
position integration. As the color-orientation ma-
tices have disappeared, the integration over color
orientation is trivial.

Following Callan et al. , we consider a dimen-
sionless potential W«&((x, /p}) for an instanton
size p,

H, =+ 2 t—,D(p)W, ((x, /p}), (63)

and

where the factor of 2 takes account of anti-instan-
tons and D(p) is the density of instanton of size p,

D(p) =x' 8" for x = 8v'/g'(p),

~x x x x 1 1
W, ~, ~, ~, ~ = ——,— d'r tr(Q(x —r)Q '(x —r) -I)tr(Q(x —r)Q '(x —r) —I)' p'p'p'p p'N (64)

4
Np'

))'lx, -rl & w lx2- rl
' " '" I(„-;),p) ',I" ((„-, -„),p )

(x, -r) '(x, -r) . ))'Ix, -rl & . mix, -rl
Ix -rl lx -ri [(x F)' ']'"i [(x -&)'+ p']"')

Xy~ X3

X2~ Xq

Expanding the integrand factors for all ix, /p{ «1 we find that tr(Q(x —r)Q (x —r) -I) for small

~

~

(x, -x,)' . , ~r/p [(x, -x,) r] t p' . , (wr) m'p'
()»»'&P'I'"' ~'

i
&»' (»'+»')"' &( '+ ')' I

and, changing to dimensionless variables r/p-r,
4 ",~ 1 . , my' ~, 1 . , my mW= —— d'r — , sin')( . 2»' (1+»~)'»', 2»' (1»»')'i') 2(1+»')' I

+ (s 0)' sin'

2»' ()+» ) I 2» ((»» )'~' 2(1» ') I)'

(65)

/x,./pi is

(66)

(6'7)
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where s=(x, -x,)/p and t=(x, -x,)/p, and

5'=- —s I; 4m r dr sin»&, 4
4 2 ~

1+r' ' ' 4r'.
r2 2

+ dns P't r' rdr sin '1 21l2 22-2'1 23
I ~I

A s 2 2 ' 4 ( ) + 'n2+
J

dt)[(t 0)'r(s 'r) ) r dr -sis
(t ), i, 4 +si"

(t )
t ) ~ (( (68)

The angular integrations can be done immediately:

4m
dQ(t 'r"')'= —, (69a)

4p QJr2 (] + ~2)) /2 2(1+~2)3

(711)

JidQ(t 0)'(s x)'=1 (1+2cos'8„), (69b)

when 8„ is the angle between the two "diquark"
vectors s and t. The appearance of 8„ in the four-
body potential suggests that many-body potentials
can give us information on the spatial structures
of multiquark states. Rearranging we find

(70)

mr

J (Sr' .((+r')'i')
7r

2

4r2 1+r2 3

(71a)

%e note that A and B are positive definite so that
the four-body potential is repulsive for all four
particles close together in T baryonium. Numeri-
cal evaluation finds A=O. 715 and 8 much smaller,
B= 0.013, suggesting that spatial orientation may
be a little elusive, , although a "minimization" of
S' would suggest s and t parallel or antiparallel in
T baryonium. M baryonium, which has three po-
tential terms of this type with both signs, is more
complicated.

The second limit which is easily accessible oc-
curs when all interparticle separations are large.
In this limit the integrand in Eq. (65) can be con-
sidered in two regions. First, if the r vector is
near one of the particles, say x„ then taking that
particle as the' origin the integrand becomes

—cos»t, 1- - -, + -' -, sin»&, +higher-order terms-1
N (1+r')'t' 8lx, -r I' 2lx, -rl' 1+x' ' '

-v' v2 (x, - r) (x4- r) (72)

If r is in the vicinity of x, then ~x, —r~=~x, -x,
~

=x, So the integrand is given by
i

near x„which is taken as the origin.
Far from all the particles the integrand becomes

v4 (x, -r) (x, r) ' (x, -r-) (x, -r) '
16N Ixg rI' Ix2 —rl Ix3-rl' Jx4-rl (74)

to lowest order. To obtain a large separation limit for the potential we consider integrating around the
vicinity of each particle in turn, such that

ha 3' 1 4 1

) Ix, —x4 I' Ix2-x413 I x, -x, l
'

I x, -x, l' ( &x j

(75)
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for all ~x,. -x&~ large. The potential is attractive
here and the terms in Eq. (75) relate to qq sepa-
ration, and not to qq separation within a diquark.
In the limit of large separation for all quarks,
i.e. , ~x, -x&» p, the spatial integration over the
neighorhood of each quark gives a leading contri-
bution which blinds each qua, rk to its diquark part-
ner yielding the form of potential Eq. (75).

VH. CONCLUSION

We have found a simple but general rule for cal-
culating the contribution, to interaction potentials
for the color tree family of multiquark states, due
to the presence of an instanton or any other semi-
classical gauge fieM configuration which exists in
a single SU(2) subgroup of SU(3). As expected, we
found many-body potential terms appea, ring in the
more complex states. We were then able to ex-
tract hidden two-body potentials from these many-
body terms generating further, more tractable,
many-body interactions. The static-limit effective
Hamiltonian due to one instanton provides the basic
building block for the construction of systematic
expansions of the effective Hamiltonian in powers
of 1/m, and for dilute-gas calculations. Accord-
ingly, we see that there will be spin-spin and spin-
orbit corrections to our many-body potential
terms. The four -body potential is the only many-
body term which appears in T and in I baryonium,
in the (QQ)Q(QQ) state and in the dibaryon, and
therefore it seems worth some effort to investigate
it—at least at the level of the dilute-gas approxi-
mation for the static spin-independent term. De-
tailed analysis extending the asymptotic comments
of Sec. VI is in progress and will be presented in a
companion paper. It is perhaps fitting to note at
this point that an attempt to study instanton effects
on baryonium states, via the effective determinan-
al four-fermion interaction related to the fermion
zero mode of the background instanton field, and
first introduced by 't Hooft, has been made by
Hikosaka et al. using NIT bag-model wave func-
tions and perturbation theory. Finally, the most
interesting feature of instanton effects in multi-
quark states is the ability of these nonperturbative
objects to generate many-body potentials.
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APPENDIX A

We present here a proof of the results used in
the paper as Eqs. (24) and (46) . Consider

~+@' ~Iab Of'a'b' aa' bb' ' (Al)

T«.= 5««.(trA trB —trAB)

+ A~rNBN q s A~ s~&y ry

+A...A~ -A.,a.,
Using

«(tc))«tttt()t= 5««t (5bb 5aa 5btt 5()(t)

+ 5,.(5,~8~ ~ —5« .5))y)

+ 5 y(5„.5~-5,~5«„.),
we obtain

+= 5„,(trA, trB —trAB)+ (BA) ~

-A .«trB+ (AB)«.« —trAB«.«,
T=f(trAtrB —trAB)+ (BA)r

—Qr(trB}+ (~)r (tr/)Br
Now we are considering

8 0
A=A R', B=R

0 b
R"',

(A2a)

(A2b)

(A3)

(A4)

with 8,$ SU(2) matrices, so

trAtrB -trAB =tr8 tr+ btr8+ atrS -tr(8$) . (A5)

Now for the SU(2) matrices we know that

tr8 tr -tr8$ =tr(8(S '), (A6)

so

T =I[b tr8+ atr(8+ tr(8&8 ')]

and

+R R~ -R R ' (f)+trS)
ab

5 0 - 0
+R R ' -(a+tr8)R R '

ab

(A7}

T=(tt-')"Il[btr(t+atta+tr(ttttt '))

(8)' 0 (8)'
0 ab 0 ab

8~ 0
—(f)+ trR) 0 a

—(a+ tr8) Rr .
b,

(A8)

Then by writing the & symbols in terms of Kronec-
ker 5's we find
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Now we assemble all the elements of T. The
result after much cancellation is

so

b22+ a22 -b8„—a„
—b 82, —a» —b8»+ a»

0

R '

( M '+a%'
T=la 1

tr(8$ ') (A10)

0 tr(8+ ') using the definition of an inverse for a 2 x 2 unitary
matrix. This is the result in the construction of
the rule for multiquark effective Hamiltonians.

A. Polyakov, Phys. Lett. 59B, 82 (1975); A. Belavin,
A. Polyakov, A. Schwartz, and Y. Tyupkin, ibid. 59B,
85 (1975); S. Weinberg, Phys. Bev. D 11, 3583 (1975);
G. 't Hooft, Phys. Rev. Lett. 32, 8 (1976); C. Callan,
B. Dashen, and D. Gross, Phys. Lett. 63B, 334 (1976);
Phys. Rev. D 17, 2717 (1978); N. Andrei and D. Gross,
ibid. 18, 468 (1978); C. Callan, in Proceedings of the
19th International Conference on High Energy Physics,
Tokyo, 1978, edited by-S. Homma, M. Kawaguchi, and
H. Miyazawa (Phys. Soc. of Japan, Tokyo, 1979), p.
481; B. Sakita, ibid. , p. 921.

F'. Wilczek and A. Zee, Phys. Rev. Lett. 40, 83 (1978).
C. Callan, B.Dashen, D. Gross, F. Wilczek, and
A. Zee, Phys. Rev. D 18, 4684 (1978).

4C. Aragao de Carvalho, Phys. Rev. D 19, 2502 (1979).
C. Callan, B.Dashen, and D. Gross, Phys. Bev. D 19,
1826 (1979); A. Jevicki, ibid. 20, 3331 (1979); 21, 992
(1980).

For reviews of the numerous experimental papers see

K. Igi, in Proceedings of the 19th International Con-
ference on High Energy Physics, Tokyo, 1978, edited
by S. Homma, M. Kawaguchi, and H. Miyazawa (Phys.
Soc. of Japan, Tokyo, 1979),. p. 129; G. Fliigge, ibid. ,
p. 793.

See, e.g. , R. L. Jaffe, Phys. Bev. D 15, 262 (1977); 15,
281 (1977); Chan Hong-Mo and H. HPgaasen, Phys.
Lett. 728, 121 (1978); 728, 400 (1978); Chan Hong-Mp,
in Proceedings of the 19th International Conference on
High Energy Physics, Tokyo, 1978, edited by S. Hom-
ma, M. Kawaguchi, and M. Miyazawa (Phys. Soc. of
Japan Tokyo 1979) p. 143 Y. Hara ibid. p. 824.

M. Imachi, S. Otsuki, and F. Toyoda, Prog. Theor.
Phys, 54, 28 (1975); 57, 517 (1977); X.Artru, Nucl.
Phys. B85, 442 (1975); G, C. Bossi and G. Veneziano,
ibid. B123, 507 (1977).

K. Hikosaka, Y. Michikiro, and S. Sakai, Prog. Theor.
Phys. 61, 1762 (1979).


