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Renormalization of trial wave functionals using the effective potential
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We introduce a procedure for renormalizing trial variational wave functionals in Fermi and Bose field
theories in terms of zero-momentum n-point functions. The method relies on a variational calculation of the
effective potential. Two model field theories, Ziti and gitipiti, are treated explicitly with simple trial wave
functionals for the Fermi and Bose vacuums.

I. INTRODUCTION

The idea of treating the search for solutions of
quantum field theories as a variational problem
is not a new one. In the 1960's papers by Schiff'
and Rosen, ' in particular, attempted to find ap-
proximate solutions to several model theories
variationally, though with mixed success. The
procedure followed in all of these papers, which
we shall adopt here, is to write the (functional)
Schrodinger equation which an energy eigenstate
of the field theory must satisfy. An ansatz for
the vacuum state is written which has a number
of free parameters, and these are determined by
minimization of the expectation value of the Ham-
iltonian. Once the vacuum state is obtained, it is
straightforward to search for the excited states
variationally. All this is completely analogous to
the variational approach, familiar to us from
simple quantum-mechanical problems.

All of these papers had two essential weaknesses
which contributed to the decline of interest in
variational calculations in the late 1960's. The
first was the lack of a functional description for
fermions, which precluded any treatment of a
field theory involving fermions. ' Clearly, any
calculational scheme which cannot be used for
fermions is of very limited applicability. For-
tunately, physicists have recently discovered
how to use Grassmann variables, and the required
description of Fermi state vectors as Grassmann
functionals has been developed. 4' The remaining
weakness of the earlier variational calculations
was the problem of renormalization. In a typical
variational calculation one encounters divergent
integrals which somehow must be absorbed in
bare parameters in the Lagrangian, so that phys-
ically measurable quantities become their finite
observed values. Quite simply, it was not clear
just what a reasonable definition of the physical
coupling constant or even the mass was, given

some variational ansatz for the vacuum. The
schemes for absorbing divergences which were
employed suffered from this uncertainty in phys-
ical interpretation, and thus tended to be rather
arbitrary. This is in contrast with the situation
in perturbation theory, in which one could con-
struct given n-point functions perturbatively and
relate simple properties of these functions to
quantities such as physical masses and coupling
constants, which allowed renormalization to pro-
ceed unambiguously. As with the first weakness
of variational calculations, this problem may now
be avoided by making use of a new technique in
field theory, based on the effective potential. "'

Starting from the effective potential one may
easily construct n-point functions which may be
used in renormalization, as is conventionally
done in perturbation theory. The relevant ob-
servation here is that the variational calculation
of the effective potential is a straightforward
exercise and uses an ansatz of which the vacuum
trial ansatz is a special case. This allows the
development of a renormalization scheme which
employs the same approximation in treating the
n-point functions as in finding the vacuum state,
and in which the physical interpretation of the
renormalized quantities is clear and unambigu-
ous. The application of this renormalization
scheme to variational calculations of the state
vectors of Bose and Fermi-Bose interacting
theories is the principal new contribution of this
paper.

The text of the paper is organized in the follow-
ing way. First, we show how the effective po-
tential may be obtained and used in a simple
quantum-mechanical problem in one dimension.
Rather than discuss the effective-potential for-
malism in detail in this paper, we instead refer
the interested reader to a concise review of its
properties, ' which we shall use without explicit
justification. Next, we consider the familiar

1980 The American Physical Society



RENORMALIZATION OF TRIAL WAVE FUNCTIONALS USING. . .

problem of a scalar field with quartic self-coup-
ling, and find the vacuum, one-particle, and two-
particle states in a simple vacuum ansatz. The
effective-potential-based renormalization is
carried out for this model, which leads to an
interpretation of the variational ansatz for the
n-point functions derived from the effective po-
tential as sums of all Feynman diagrams of a
certain type. Finally, we treat a model Fermi-
Bose interacting theory variationally and discuss
the applicability of our approach to physically
interesting theories such as quantum electrody-
namics (QED) and quantum chromodynamics
(QCD).

(——„++—x'+Xx')(((x() =Z(((x)).
i 2dx' 2

(2.1)

With no perturbation, XO 0, the ground state of
this theory is simply a Gaussian,

|/4

I, n)
(2.2)

Eo= aP
1 (2.3)

II. QUANTUM MECHANICS

In this section we illustrate our approach to
variational problems by considering a simple
model which avoids the complexity of the infinite
number of degrees of freedom in field theory.
The model we choose is a one-dimensional simple
harmonic oscillator with a quartic term in the
potential energy. The Schrodinger equation,
which energy eigenstates of this theory must
satisfy, is

V(x, ) = min{(x, !H!x,)),
with

(2.V}

(x, !x!x,) =x„
(x, !x,) =1.

To calculate V(x, ) variationally, we need only
consider a set of states {!x,)) with some para-
metrization, and we minimize (x, !H!xg with
respect to these parameters. A set which has
(2.4) as a special case is

(2.8)

(2.9)

!

1/4
n x) = — e ~("~&» /'. (2.10)

Clearly, the requirements (2.8) and (2.9) are
satisfied. To find V(xo} we simply minimize
(H) with respect to n, with H given by (2.1). (H)
is explicitly

(n, x, !H! c(, x,) -=V(n, x,)

1 P 3XO 1=- 0. +—+ +—p, g
4 (y 4a' 2

(2.11}

So the value of n which minimizes V(o, , x,) is

6~, X/2

G(xo) =+ p +,+ 12Xoxo(xx) (2.12)

We obtain the effective potential V(x,), which re-
sults from the Gaussian ansatz (2.10), by solving
the implicit Eq. (2.12) and substituting n(x, }for c.
in (2.11). The value of this is that we may now

obtain the renormalized mass m and coupling X

from the effective potential,

For XO& 0, a simple trial vacuum wave function
one might choose is

d2V
m

d 2
+0 min

(2.13)

Qx = — e (2.4) 1dV
4 (2.14)

The expectation value of the energy of this trial
function is

E(c()=—n+ —+1 p 3~0
4 n 4n'

The value of c( which minimizes E(n) is the
solution of

+ p2 + 0

(2.5)

(2.6)

which approaches + p, as XO-O.
Now we consider the effective potential for this

problem. Here we define the effective potential
V(x,) as the minimum value of the energy in the
set of all normalized state vectors in which x

' has the expectation value xo:

The derivatives are evaluated at the value of xo
given by dV/dx, =0, d'V/dx, ') 0, which is the
value of x, in the vacuum state. From (2.12) it
is clear that u(x, ) is even, and the solution of
dV/dx, =0 we require is x, =0. At this point we
may evaluate derivatives af V(xo) to obtain

(2.15}

(2.16)

d V 6Xp2+ 0 m2
dXO x =0

1 d V 1 —6X,/ms
4! dx,' „, '1+31,/m'

The meaning of (2.15}is clear. If we define m,
the renormalized mass, by E, -EO—= m, it is easy
to prove that m = n. This shows that the mass
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(2.17)

We construct this state by acting on the vacuum
with the adjoint of the vacuum annihilation oper-
ator,

4'(u) =
! nx ——!.dl

(2.18)

The energy of an n-particle state constructed in
this fashion is

obtained from the effective potential (2.15)
agrees with the mass obtained variationally in
(2.6). The variational first excited state used to
obtain this result is

E„=(n+-,')n+ [2n(n —1) —1]3X0 (2.19)

from which E] Ep m —Q.
Henormalization consists of the elimination of

unmeasurable parameters in the theory (here
p, , A.,) in favor of physically measurable ones,
such as m and A.. We have not given an inter-
pretation to the renormalized coupling constant
A. [(2.16)], but it may presumably be related to
the quantum-mechanical analogs of n-point func-
tions in field theory. For example, we might
relate it to the amplitude to go from the asymp-
totic state

! 1) to ! 3) under the interaction Xx'.
Assuming that such an interpretation may be
found, the renormalized version of the Hamil-
tonian in (2.1}is

1 d' 1 f 1 3A. 3X~' A.
' ') m' 3X t 3XH=- — + m'! 1-- 1-—.— 1-—s I

-24 —, !x'+—I-—.— ! I- . -24—.
2 dx' 2 l 2 m' . m'i m' ] 12 m' ( m' m'

and the n-particle energy is

1 [2n(n —1) —1] 3X 3X '
E =!n+ —+ 1 ——— 1-——24— !m.2 16 m m j

(2.20)

(2.21)

Although this corresponds to the conventional
renormalization scheme in terms of coupling
constants and one-particle masses, the fact that
we know the higher excited-state energies lets us
renormalize in terms of these masses only. For
example, in terms of m —=E, —E, and m2 E2 Ep
we find

III. A SCALAR QUANTUM FIELD THEORY

Now we treat the problem of the variational
determination and renormalization of energy
eigenstates of a nontrivial model field theory
described by the Lagrangian

g 1 (8 y)2 1 ~2y2 y y4 (3.1)

H = ——,+ —[m' —2m(m, —2m)]x'
1d2 1

m2
+—(m, —2m)x',

m = E —E =m -n+ ' —1 n(n —1)n n 0 2m

(2.22)

(2.23)

The state vectors may be written as wave func-
tions Q[$], which give the amplitude for the field
Q to be found at a point Q(x) in function space. '2
The Schrodinger equation satisfied by Q[Q] is in
this case'

g2

In terms of simplicity, the second choice of
physical renormalized parameters is obviously
preferable.

We have now completed the desired objective of
calculating the particle spectrum in terms of re-
normalized quantities variationally, using the
effective potential. Naturally, one could further
improve the variational ansatz [(2.4), (2.10)] by
introducing more parameters, and thereby obtain
better approximate wave functions and energies,
but we would encounter no new conceptual diffi-
culties. Hence, we shall proceed directly to the
scalar-field-theory problem.

(3.2)

It is this functional Schrodinger equation which we
shall treat variationally.

First, it helps to know the solutions of the free
theory with X, =O in (3.2). One may easily check
that the vacuum state is the Gaussian functional

!fl.[kl) =@exp -2 dx4(x)(V' —&')'"e(x) (3 3)

with the usual zero-point energy [defining &o-„

(~2 + ~2 }1/2]
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0 (2)32 x ~2 K'
K

=qz exp —— dxdy P(x)f(x —y)P(yj .

(3.6)

Translational invariance of the vacuum requires
that f be a function of x —y. We could write f as
a differential operator, but the kernel form we

give here is both easier to manipulate and com-
pletely equivalent to an operator f. The normal-
ization constant is understood to normalize 0& to
unity,

P'

exp — dx dy x x —y y

(3.7)

and the functional integral fDP is over all func-
tions P(x) at some fixed time t.

Having found a suitable normalized ansatz for
the vacuum, we proceed to find the expectation
value of the Hamiltonian E[f] as a functional of
f(x —y). The necessary matrix elements are
easily derived by considering a vacuum with a
source term added,

lo&, D, exp-
foal

x=dyd(xgdy(x —y)0$-)
e

+ x elxdx (3.8)

(We suppress the trivial time dependence e ''&&'

in Q.} Excited states may be constructed from
this vacuum wave functional by repeated applica-
tion of the creation operator At(p}:

dt(p)= dxe"'((p. -V)'ip(z)
[(2v)~2(g-]''2

e(~)
If we write an n-particle state functional

l
Q(p„. . . , p )& in terms of the Fourier compo-

nents a(k) of Q(x), we obtain a more familiar
looking result, which is a Hermite polynomial in

a(p) times a Gaussian in g; la(k) l' ~ As the free
scalar theory is a collection of uncoupled har-
monic oscillators, one for each p, this result
is exactly what we expect for the excited states.

To approximate the ground state of (3.1)
variationally, we need an ansatz for the vacuum
functional Q[$]. By analogy with the choice (2.4)
as a generalization of (2.2), we choose here to
generalize the functional matrix (p,

' —V')'~' which
appears in the free-theory ground state (3.3}.
Our trial vacuum is

l Q~[y]& -=)0,&

The scalar product of this state and the regular
trial vacuum is

&oeloe)e
——0*fdoe'e"'. (3.9)

where g is the functional matrix inverse of f,

gi'= fdeg(* e)f(e y"=0(* y" ~ (3.11)

Taking functional derivatives of (3.9) with respect
to J and using (3.10), we may easily derive useful
matrix elements of Q between trial vacuum states.
For example,

( g2
&o, ld(RD(„)loe&=l -) ~&oeloe&e}

Q2
eJgJ/4

5Z(x)5J(y) i z.o
= —g(x —y}. (3.12)

Proceeding similarly, we may find the matrix
element(0&lHlo~&=E[f]. Thiswe choose to
express in terms of the Fourier component f(p)
of f, defined as follows:

f(x —y) =f.,(V.)5(x —y),

f(p) =-f.,(V.)

For example, if f„=(p.' —V')'~', then f(p)
=(p'+P)'~' =a&;. This has the advantage that
the Fourier component of the functional matrix
g(x —y) is simply g(p)=1/f(pQ. In terms of f(p),
the energy is

(3.13)

(3.14)

E[f]=(o,
l I,&= 0 dpf(p)l 1+f='

3A.o( dp
+4(2 )3l ( )

5P(0). (3.15)

The 5~(0) = V/(2v)' is simply a divergent constant
proportional to the volume of space, as ex-
pected in the zero-point energy. We now vary
E with respect to f to find thebest trial vacuum:

5E[f] 1 ~I' ' 3A,, 1 dp
5f(a) 4 f(4)'& 2(»)'f(aP f(p)

2+ 6XO dp
(2)' f(p)' (3.17)

First we naturally check the case &0 —0 to see

Here we have suppressed an understood summa-
tion over the indices x, y. Completing the square
in (3.9}gives the result

I

&oelpe) =exp —,
' ffdxdyJ(xlg( xy) (yJ)

(3.1o)
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that we recover the free vacuum (3.3). In this
case we have

f(q) =&; =u +q (3.18)

(3.19)

f(q)'=@+ g'+ 0},~(a„p,). (3.21)

The two constant terms may be identified with a
new mass m:

m' = p,'+ 6x cfp

(2 )3 (~2 + P)1/2 ' (3.22)

The form of f(q} tells us that the best trial vacuum
solution of (3.2) of the general form (3.6) is sim-
ply the vacuum of a free theory with a new mass
m, given by (3.22).

At this point, two questions occur to us regard-
ing the results (3.21) and (3.22). First, we might
ask whether or not the new mass parameter m
which appears in the best trial vacuum wave func-
tional. is equal to the energy of a rest particle
minus the vacuum energy. As m is merely a
parameter in the vacuum state, this is not ob-
viously the case. Second, we might wonder
whether the mass renormalization (3.22) can be
related to some approximation to the Q propaga-
tor in terms of keeping a certain class of Feyn-
man diagrams, The answer to both these ques-

(3.20)

Inserting this in the ansatz (3.6), we see that we
do indeed recover the free vacuum wave func-
tional.

If X, c0, the result we find for f is surprisingly
similar to the free case. The integral on the
RHS of (3.17) is clearly just a constant depending
on p, and X„sowe may write f(q) as

tions, as we shall show explicitly, is in the
affirmative.

Taking the second question first, we ask what
approximation to the propagator results from
(3.22}. An obvious step is to rewrite the mo-
mentum integral in four dimensions:

12iX, d p (3.23)

x dxe "" dy x-y y
—

&

(3.24)

For the free theory one may show that this be-
comes the correct creation operator for a parti-
cle of mass p, , momentum p. The normalization
is chosen so that

(&y(P), &y(P')l = 6(P —P') (3.25)

The expectation value of H between two such one-
particle states is easily shown to be

One may show that this approximates the propa-
gator as a free mass p, line corrected by bubbles
of mass' rn attached sequentially along the p. line,
or equivalently, as all possible growths of non-
overlapping bubbles of mass p, (Fig. 1). Thus,
the Gaussian approximation to X,Q sums all
diagrams without overlapping divergences in the
propagator.

Now we treat the question of the physical parti-
cle mass. As in the quantum-mechanical prob-
lem, we find the one-particle state by acting on
the vacuum with the adjoint of the vacuum annihi-
lation operator

'-, - ' =&0&i&i(p')»j(p)i0, )/&(p-p')
Pgipy

II~I ~
~ ~

I~

~
~ q

~i
2

~
~
0

q )

2
II ~ 0

~
~ II~I I ~

p

~l
2

~

~
~

0

p q
~
~

11~

~

~

p

~
~ ~~

p

~
~

I

~

3X, dqi', &o 3X, dq 6(p —p')
f(q}' 4(27I)' f(q) ' -' f(p)' (2 )'f(p) f(q) 6(p —p') '

(3.26)

There are two contributions to the energy. The
first is exactly the divergent vacuum energy we
found previously, and the second is an additional
contribution to the one-particle-state energy.
Minimizing this expression gives the same func-
tion f(p) we found in treating the vacuum problem
(3.21) and (3.22). If we subtract off the vacuum

Pl —P,=-'m 1+—+ =m.—2 m2 2m
(3.27)

energy and set p= p' =0, the one-particle energy
we find using the f of (3.21) is

E —E=—'m1+ —+p, 3)i.o cfq
m' (2v)'m (m'+ q~)' '
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+ .4 ~ ~

+»» ~

+ a» r

mass m line

mass p line

Lr vertex

FIG. 1. Gaussian approximation to the two-point function in A, op theory.

E,(p) —E =(m'+p')' ' (s.as)

exactly as it should be.
Having constructed the variational vacuum and

one-particle states, we naturally turn to the
bound-state problem. First we look for a posi-
troniumlike state of two quanta of the renormal-
ized mass m,

~»= f&p»(v&&f, —i&. , (s.a9)

where Z(p) is the Fourier transform of the rela-
tive wave function of the two mass-m quanta. In
terms of mass-p, quanta, this is no more a two-
particle state that is the vacuum ~0) a pure
vacuum state. It is instead a superposition of 0,
2, 4, . . . of the mass-p. quanta, chosen varia-
tionally to have the lowest energy. The energy
of the trial state (3.29) is

This shows that the variational one-particle mass
is indeed the parameter m in the vacuum state.
Note that a cancellation must occur between the
contribution of the H, and Lop~ terms in the Ham-
iltonian to bring this about. For a boosted state,
we may also show that

C
(P) =E(E, )

~ (3.32)

Hesubstituting this result into (3.31) gives a rela-
tion between the bare coupling X, and the energy
of the bound state m». The integral in (3.31)
diverges, so we introduce a cutoff /~ =A in the
momentum integral. The coupling X, which
allows a bound state of energy m, =2m@ (q & 1) is

(2 IH I 2)
(2 I 2)

fdpaE~Z(p)'+ [sxo/(acr)'][ fdpZ(p)/Ey]'

fdp Z(p)' (3.30)
Here E;-=(m'+p')'~'. We find the wave function

Z(p) by varying the energy again, this time with
respect to Z(p). We find an integral equation for
Z(p)

"d77Z ~(E;- -,' m, )z(p)+ (,'
J

=0. (3.31)

The Lagrange multiplier m, is just the energy of
the bound state above the vacuum ~0)„. As this
is an integral equation with a separable kernel,
the solution is trivial:
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—8v'/3
1n(Ao/mo) + 2 ln2 + (n'/q) [1 —(1 —7!')' '] —2 (1 —q')' ' sin '(q)/r! + O((A/m) '} ' (3.33)

This constraint on ~, has two objectionable
features. Obviously ~, is negative, which leads
us to suspect that there is no ground state at all
for this value of X,. Another problem is that X,
goes to zero as the cutoff is removed in a fashion
which is independent of the bound-state energy to
the leading order in ln(A'/m'). This unusual can-
straint on ~0, if we are to obtain a bound state,
may be found id the literature; in particular,
both the bound-state wave function (3.32) and the
asymptotic part of the behavior of X, were pre-
viously found in a similar fashion by Schiff. ' One
possible way out of the problems of Xo is to note
that the bare coupling has no direct physical sig-
nificance and could be anything; we only care
about the renormalized, physically measurable X.
This is the point at which Schiff's early work
becomes ad hoe, as his renormalization scheme
is an arbitrary subtraction of the logarithmic
divergence of Xo '. Here we instead construct
the effective potential for this model variation-
ally, as we did for the quantum-mechanical prob-
lem in Sec. II. This allows us to derive the re-
normalized mass ns and coupling constant X in a
unified fashion.

The effective potential V(go) is the expectation
value of the Hamiltonian in a normalized state

~
Qo) which has a constant expectation value of the

field P, (Q) = P„and for which V(((((,) is a mini-
mum:

respect to f, this time with Po a nonzero constant.
Again, we find that the optimal f(x —y; Qo) is the
vacuum f [(3.20)] with a new mass, but this time
the mass depends on the shift (((o. Explicitly, we
find

m'(P, ) = p,'+ 12Xopo' +6XoG(go), (3.38)

1 dK

(2w) [K 2+ m(Q )2]1/2 ' (3.40)

The results (3.38) may be understood as the same
sum of diagrams we found previously for m'(Qo
=0) with the additional complication that the bare
mass is shifted from p' to p,'+ 12kopo' by the
vacuum expectation value of Qo in the interaction
term X.,Q4.

Having found the function f(x —y; Po), we may
resubstitute it in (3.34) to obtain V((!(o). The
result is

and the new function I (Q) we have introduced is
defined by

(3.42)

where the divergent constant G(go) is defined by

1 dK

(2m)' [(T'+ p, '+12k. Q '+6k G($ )]'"
(3.39)

V(((((,) = min((Q, ~H( PQ),

with

(3.34)

(3.36)

To get as far as the four-point function, we need
here the expansion of V(go) only to Qo4. This is
easily carried out, and the mass and coupling con-
stant we find are

The value of this object is that it is the generat-
ing function of connected Green's functions with
no external legs and zero external momenta, so
that we can obtain two- and four-point functions
directly from V(go). As in the quantum-mechan-
ical problem, we choose an ansatz for a set of
states ([$o)j of which the previous vacuum ansatz
(3.6} is a special case. Here we choose

1 d V 1 d V
4! dPo )„4!dboo

1 —6X I(m)' 1+ 3A.,I(m) '

(3.44)

where

m'= . , =, = p, '+6XoG(go=0), (3.43)
d&o ( d4o o =o

xy(x —y; (', ( I('(R —(', l I
(3.37)

1 dK

(2m)' [((:'+ m']' "' (3.45)

The derivatives are evaluated at the value Po
takes on in the physical vacuum state, determined
by

Qnce again, we calculate the expectation value
of H for such a state and minimize E[f, Qo] with

dV
d(!((o, (3.46)
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This is easily seen to be $,=0. The mass we
obtain from this effective potential (3.43) is iden-
tica1 to the mass we found previously in minimiz-
ing the energy of the unshifted vacuum (3.22}.
The renormalized coupling X is new and may be
compared with the expression which we obtained
in treating the X,x4 problem (2.16). It should not
come as a surprise that this value of X is ob-
tained by approximating the four-point function
with zero external momenta by the set of graphs
in Fig. 2. We have no explanation as to why this
particular set of diagrams should be summed by
the Gaussian ansatz, although one interesting
observation is that these are the same sets of
diagrams one sums to leading order in the 1/N
expansion' in models with N internal degrees of
freedom for the scalar field." Some of the
results familiar from the study of these models,
such as the existence of a bound state for negative

X, and the cutoff behavior Xo-C 1n(A'/m') ' (Ref.
9), are clearly due to the close relation of the

two approximations. We suspect that one learns
more about why the I/N expansion is summable

to leading order (it leads to a trivial Gaussian
vacuum wave functional) from this correspon-
dence than one learns about why this set of dia-
grams arises from the Gaussian wave functional.

Returning to the renormalization of -the coup-
ling constant X„we note that the restriction to
zero external momenta in the four-point function
is not a problem in the massive Q theory, and the
renormalization group can be used to determine
values of ) at other values of these momenta.
Had we been treating a massless P theory we

would have a problem here, as the P, =0 'point

is a stable fixed point for this theory and the re-
normalized coupling X is zero there. For the
massive case we expect this X to be a nonzero
constant. "

The relation between X and X, found from the
effective potential (3.44} allows us to determine
the renormalized X which produces the bound

state (3.32) of energy m, =2m@. Inserting the
expression (3.33) in (3.44) and defining I(m) with

the same ultraviolet cutoff K'=A' used for X„
we find

rr~r v + ~ ~ ~

~ ~ ~

mass m line vertex

truncated externa. l line
J

FIG. 2. Gaussian approximation to the four-point function in hop theory. {All mass-m lines have the expansion of
Fig. 1 in terms of the bare mass p.)
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40m2
(3.47)

This A. is positive, unlike X„which avoids the
problem of the existence of the vacuum alluded
to earlier. However, as the. cutoff A goes to
infinity, the renormalized X goes to zero, which
is contrary to our expectations. Although we
have no explanation for this result, we note that
it depends critically on the bound-state wave
function (3.32}. For example, if this were
changed so that X, behaved as

—4m'/3
in(A'jm'}+ f(q) ' (3.48)

we would have a cancellation of the logarithms
when we calculated A. , leaving X a finite function
of the bound-state energy m2 = 2m'. Consequent-
ly, we suggest that the surprising and unphysical

a a
p, —+P(X)—+ny(X) I'&"& =0,

Bp, BA, -.
(3.49)

and approximating the two- and four-point proper
vertex functions by the one-loop results (Fig. 3),

result (3.47) is an artifact of the overly simplified
ansatz (3.6) we originally chose for the vacuum.
It would be instructive to improve this vacuum
ansatz by the inclusion of more functional param-
eters and to observe the effect on the bound-state
spectrum and the renormalized coupling constant

Owing to the mathematical complexity of the
task, we do not consider it at this time.

An interesting point is that the behavior of the
renormalized coupling X bears some resemblance
to the behavior of the one-loop renormalization-
group-improved four-point function in massless
A,,Q4 theory. Starting from the Callan-Symanzik
equation

2
P

, (4)

, 2

+ -~ kn(-p /m )
2 2

m 2

massless scalar line vertex

2 2renormal izat ion counterterms for p = — m

truncated external line

FIG. 3. One-loop approximation to X 0$ vertex functions.
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we may derive the P and y functions to this order
as

p(X)=, &&.2, y(&&) =0 .9 (3.50)

8 the four-point vertex function has been renor-
malized to &&(p,,) at some Euclidean momenta

P . pp P f P) 3 po i cj, the renormaliza-
tion-group-improved four-point vertex at a differ-
ent P2 is given by

As this theory is asymptotically free in the in-
frared, we may smoothly take the limit -p' 0„
starting from some small but finite A.(p.,) at -p'
= &«

'. For l-p'l«p, ,', we find

4 2

(I-p l««&0) ——
91„( p2/ 2)

ier4
81&&(p) ln'(-P'/ g22)

(3.52)

The leading asymptotic approach to the infrared
point with P & =0 is independent of the value of
&&.(i&,0) at the renormalization point; to see the
initial value of &&.(p,,), we have to go to next order
in the asymptotic form. The similarity of (3.47)
and (3.52) is suggestive, but not particularly use-
ful, as we are comparing two different functions
[cutoff and renormalized I'&'&] for two different
theories (massless and massive &&.&p'). Ideally,
we should like to variationally calculate I'&'&(p')

[(3.51)]. This exercise obviously re&luires a
variational treatment of the effective action,
which we shall consider in an upcoming paper.

IV. A FERMI-BOSE COUPLED FIELD THEORY

The really interesting problems in nature in-
volve field theories with Fermi and Bose fields
interacting. To treat the solutions of such theo-
ries variationally, we must introduce wave func-
tionals of classical Fermi fields, ' just as we have
used wave functionals of a classical Bose field to
treat a scalar field theory. These classical anti-
commuting Fermi fields, otherwise known as
Grassmann fields, have a number of important
mathematical properties which may be unfamiliar
to many physicists. Consequently, we have given
some of their more important properties, to-
gether with properties of the wave functionals
of the free Dirac theory, in the Appendix. Other
useful properties of these objects may be found
in the literature. '2

The particular model we shall treat is a scalar

interacting with a Dirac spinor through a Yukawa
coupling:

g =T&&(ql m, )q+ —', [(a„y)' —p,'y'] g—,T&& (4.1)

Next, we need an ansatz for the vacuum state.
We choose a wave functional in which the Fermi
and Bose variables are separated as a simple
first-trial vacuum and we use the familiar Gaus-
sian (3.6) for the Bose part:

~0)=nzexp ——' f dxdy«x&

xf(x y)&t&(y—) Q [g]. (4.3)

The Fermi wave functional is not so easy to gen-
eralize, as the free Fermi vacuum is a 5 func-
tional rather than a Gaussian. ' However, we
shall proceed by taking a cue from the result
found throughout the last section, and assume
that the Fermi vacuum is a true vacuum with the
mass m left as a free parameter:

fl.[4]=6[4,1 (4.4)

Calculating f(x —y) variationally as previously,
we find

f(x- y) =(p,,'- V„')'~'5(x - y), (4.5)

which seems to indicate that there is no mass
renormalization of the Q &luanta„an obviously
invalid result. %hen we consider the effective
potential, however, we shall see that reading the

&t& mass naively from (4.5) is wrong. This is the
first place we have required the effective poten-
tial to obtain the mass renormalization; in all
previous cases it could be read directly from the
analog of (4.5). Shifting the scalar field in (4.3)
by a constant &P„and minimizing the energy
E(f, &t&,], we again obtain (4.5) and the effective
potential becomes

—2, (K'+m')' '
(2&T)2

(m, +g, &t&, -m)ml&
(K

2 + m2)1/2 (4.6)

The unfamiliar second integral is the expectation

The functional Hamiltonian for this model is
easily obtained using results derived elsewhere4:

Q2
H= dX —— +~ V X +2po X

—[ i&&&-v+~ pm, + pg, {&t&(x))]„g(x)
5g, x

(4.2)
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value of the Fermi and interaction parts of the
energy in the Fermi vacuum state with an unde-
termined mass m. Minimizing with respect to
the parameter m gives

ing the condition

d V(Qg
(f40 physical vacuum

(4.10)

& V($0)
'

dK

(2 )3 (~2 + ~2)3/2 ( 0 g040

=0,
so the renormalized mass m((ts0) is

(4.7)

which leads to a value of ((((0 given by

2go dK

P.
( ~0~0 (25) [K + (yll +g y )2]&

(4.11)

(4.8)

With this optimum mass, the effective potential
becomes

Since (t(0 has a vacuum expectation value, there
is a fermion mass renormalization, given by (4.8).
Explicitly,

4ig02m d 4K

p. ' (2ly)4(K2 —m2)
' (4.12)

1 2 2+2 &0 (t'0 ~ (4.8)

The new feature here is that P has a nonzero
vacuum expectation value in the physical vacuum.
This expectation value we find as usual by impos-

Diagrammatically, this corresponds to approxi-
mating the fermion propagator as the sum of all
tadpole attachments with no overlapping diver-
gences (Fig. 4).

The (((( two-point function we find as usual from
the effective potential,

T I

mass m fermion line
g vertex

mass mo fermion line

mass p scalar line

FIG. 4. Variational approximation to the fermion propagator in the Yukawa model go/ P p.
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(4.13)

which is an approximation to the propagator re-
sulting from the insertion of all nonoverlapping
bubbles in the P propagator (Fig. 5). This is
not, however, the mass of the p tluanta with
respect to the vacuum, as there is a wave-func-
tion renormalization in the P propagator which
we have not disentangled from the mass renor-
malization. (See the comments in this regard in
Sec. V.) The actual p mass may be obtained
either by a variational calculation of the one-
particle state, or through the use of the effective
action, as we shall discuss later.

As a final comment on these mass shifts, we
note that the fermion mass may be derived from

V(y„y,) = V(y, ) + (m. +g.y.)q.y.

Clearly, the fermion mass matrix is

(4.15)

=(m, +g.y, )5"=m6" . (4.16)

Higher pure Fermi n-point functions with zero
external momenta vanish in this approximation.

a generalized effective potential V(Q„g,), in
which the spinor field g is given a constant spinor
expectation value g, . This V(P„g,} is derived
using shifted Fermi vacuum states in the trial
wave functional of the form

(4.14}

and for this modelturns out to be

+ 4 4 ~

+ 4 ~ ~

mass )i scalar line

mass po scalar line

g vertex

mass m fermion line

mass m fermion line

pfG. S. Variational approximation to the boson propagator in gP g Q.
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We may also see from V(g„gp) that the Yukawa
coupling constant g, is not renormalized here.

At this point we could proceed to search for
bound states of various types (

~
PP)v

~
g~),

~
gP),

. . . ) in the model, and perhaps compare them
with results obtained from potential problems
describing the exchange of relevant quanta. We
might also learn something about the strange
behavior of A, in the XP' problem by finding the
constraints imposed on the coupling constant g,
by the bound states. These are very interesting
problems which undoubtedly deserve further
attention, However, the much more relevant
exercise of a variational calculation of the vacuum
and bound-state wave functionals of a Fermi-Bose
gauge theory is also possible using this formal-
ism, and it is this topic which we shall introduce
in the next section.

V. QED, QCD, THE EFFECTIVE ACTION,
AND MORE THEORY

There is no obvious reason why the methods
used here to approximate the vacuum and bound-
state spectrum cannot be applied to QED. The
real problem is that the trial wave functionals
used in the Yukawa model are found to be a bad
approximation for QED. For example, consider
the diagrams we sum to give the fermion propa-
gator (Fig. 4). In QED all the corrections are
identically zero. The same is true in QCD. The
photon propagator does slightly better, being the
sum of all in-line chains of e'e loops, but there
is simply no mass renormalization in either case.
What is needed for QED is an ansatz for the vac-
uum functional which sums relevant diagrams,
i.e. , mixed Fermi-Bose and overlapping diver-
gences. The search for such an ansatz is cur-
rently underway.

To treat QCD, we are faced with the problem
of infrared divergences in boson n-point functions
which make the effective potential an awkward
object to use in renormalization. We can get
around this problem by developing a variational
treatment of the effective action, i.e., the gen-
erating functional of connected n-point functions
with arbitrary external momenta. This neces-
sary formal development is also currently under
consideration.

Finally, we note that the effective action is
actually necessary to do the renormalization
calculations presented in the text of the paper,
and we have only been able to use the effective po-
tential through a fortunate coincidence. In gener-
al, we expect a renormalized propagator (for ex-
ample) to have the form

So the mass and wave function renormalizations
are inextricably mixed in the effective potential.
Fortunately, the wave-function renormalization
constant Z(P') due to tadpole attachments, such
as we have often encountered, is unity; we do

, indeed recover the renormalized mass in this
special case. To separate out the Z(P') part of
the propagator generally, we require the effective
action.

One development of the understanding of the
variational approach which would be very valuable
is to establish the connection between the wave-
functional. ansatz and the Feynman diagrams
summed in renormalization. Although we have
shown the connection for the special cases con-
sidered, we have no such general understanding.
This kind of insight clearly would be an import-
ant guide in the selection of a trial wave func-
tional for a given theory.
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APPENDIX

In this appendix we briefly review some of the
properties of Grassmann functions and function-
als which are employed in the text. Grassmann
functions are anticommuting c numbers whose
properties under integration and differentiation
are summarized by

Q'(x), g '(y)j =0,

{, .„-,V (v){ &"&(v v),'=- (A2)

Z(P')
(p') =p.

where Z(P') is the wave-function renormalization.
At zero external momenta, this is

~(0) = —Z(0)/m2 .
The quantity we calculate from the effective po-
tential is'

d'V(PP)
&(0) i

dP ' Z(0)
'
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dg'(x) =0, (A3) H=g J dir —ere„-e„- ).
Xe 1

)t (A11)

xd by —5b6x y

The Grassmann 5 functional is a frequently
encountered object

6[ g] = g'(x)
g X

which satisfies the definition

'x 5 —y =— X'x

The measure Dg is

(A4)

(A6)

(A6)

By inspection, the lowest energy eigenstate of
(A11) is

n [ti]= a-, = '6[a,]=-6[(,],
)i= 1 K )t= 1

(A12)

where the g, refers to the positive-energy
(X=1,2) part of g. In going from the infinite
product to the 5 functional we have used the
Grassmann identity (A5).

The adjoint vacuum functional is easily seen to
be

D4=. .......A'(y) (A V)
K

(A13)

Notice that one must use care in defining the
ordering of factors in the measure and in the 5
functional; once a convention is chosen it must
be adhered to rigorously.

A useful integral representation of the 5 func-
tional is

Ill dj = f exp I f dxrr'(x)d'(x) rrrr, (A8)

where g is also a Grassmann variable.
Fermi state vectors may be easily represented

as functionals of Grassmann variables. First,
the functional Hamiltonian is obtained from the
classical field theory Hamiltonian by the substi-
tution m&

—i5/6g (Ref. 4);

so that we satisfy

(A14)

Qg„
K, l

b- =a-
K, t K, l

(A15)

The correct fermion zero-point energy arises
from the action of If on Q,[g].

To construct excited states of the free theory,
one may use the functional analogs of the electron
(5) and positron (d) creation and annihilation
operators (the d operators given in Ref. 4 are
incorrect);

H= dx -m~x -s(y. T+ m~b bx-
b

5g
Kq2

b- =a-
K~& k, 2

dx(-ic ~ V +

Pan�)„g,

(x)
I ~ I~

~
~

~b b

~

~

~

~
~

i~

~ I (A9)
d- =g

k, t kq4
d-

5

k t Qg
K, 4

(A16)
This operator becomes more transparent when
exhibited in momentum space, with Qrassmann
momentum-space components a„-„defined by

4 l/2
g'(x) =g die „a„.~w„„e'" *. -(A10')

)t=l

The spinor I)„-, is related to the Bjorken and Drell
spinors io ~ (Ref. 13) by m, =we~ . In terms of
the (a„- ] the Hamiltonian is

=-g
K~& Kq3

k, 3

It is straightforward to show that the matrix
elements obtained from this functional descrip-
tion are identical to the matrix elements obtained
using the more familiar second-quantized field
and state-vector description of fermions. Thus,
the two descriptions are completely equivalent.
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