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Some examples in both quantum mechanics and quantum field theory are used to demonstrate the fact that a given

equation of motion can have more than one inequivalent Lagrangian and hence can admit two difFerent quantization
procedures.

I. INTRODUCTION

The Lagrangian formulation of dynamical sys-
tems is one of the most important principles in
physics. It is a general belief that a Lagrangian
is more fundamental than the resulting equation
of motion, as we may see, for example, from
Feynman's path-integral formulation of quantum-
mechanical systems. However, since a Lag-
rangian itself is not a physically measurable quan-
tity in the usual sense, one may adopt a some-
what unconventional view that the equation of
motion is what really counts and that a Lagran-
gian, if it exists, is simply a convenient mathe-
matical tool of no a priori physical significance.
Such a view may be justifiable perhaps for classi-
cal mechanics and for some classes of quantum
field theories where the Yang-Feldman formal-
ism~ 3 is applicable to enable us to compute the
S matrix directly from the equation of motion
itself without any recourse to a Lagrangian at
all. If we adopt this point of view, then we may
raise many interesting questions of the following
nature: For simplicity, let us label dynamical
variables collectively as q, and write the equa-
tion of motion as a second-order differential
equation of the form

q=f(q q)

where f(q, q) is a function of q and its time de-
rivative q = dq/dt. —

(1) Given an equation of motion of the form of
Eq. (1.1), can we always find a Lagrangian
L = L(q, q) which leads to Eq. (1. I)'? If the reply
is yes, is the Lagrangian unique or can we find
more than one inequivalent Lagrangian giving
rise to the same Eq. (1. I)'P In this note, we call
two Lagrangian L and L' inequivalent if any non-
trivial linear combination of L and L' cannot be
written as a total time derivative of a function.

(2) If a Lagrangian (or Lagrangians) exists,
does it possess all the symmetry properties sat-
isfied by the original equation of motion'P

(3) Does the equation of motion determine ca-
nonical commutation relations uniquely'P Are
there many different ways of quantizing the equa-

tion of motion'P Here, we are, of course, im-
plicitly assuming that a quantization of the sys-
tern is possible. Note that a consistent quantiza-
tion may not always be possibles even for a dy-
namical system with Lagrangians.

The first question is called the inverse problem
and has been answered by Santilli. ~ He finds that
a Lagrangian always exists for any classical sys-
tem with only one degree of freedom but that it is
not always so for more complicated systems.
Moreover, if a Lagrangian exists, it is not in
general the only one.

The second question as well as some related
problems have been investigated by many authors. ' '
It is now known that a Lagrangian is, in general,
invariant only under symmetries smaller than
those enjoyed by the equation of motion. The
third problem was originally raised by signer'
some years ago in a paper with the same title as
the present one. He has shown there that the
answer is negative at least for a one-dimensional
harmonic oscillator with the standard Hamil-
tonian. Also, a quantization based upon para-
statistics'~ may be regarded as another uncon-
ventional quantization procedure for a harmonic-
oscillator system.

The purpose of this note is to show that all these
problems are mutually interrelated on the basis
of some new examples where a given equation of
motion admits more than one Lagrangian. We
are especially interested in quantizing a system
in several different ways for both quantum mech-
anics and quantum field theory, although examples
may be rather unconventional and somewhat un-
physical. In Sec. II, we shall consider cases of
one-dimensional quantum- mechanical systems.
A case of relativistic quantum field theory will
be discussed in Sec. III.

II. EXAMPLES IN QUANTUM MECHANICS

Here, we restrict ourselves to discussions of
systems with one degree of freedom for simplicity.
First, let us consider an equation of motion

j+yq=0 (2 1)

for a constant y. Classical solutions of (2. 1) are
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qo+ c exp(-yt), y & 0
q =q(t) =

Q'p+ vpt) y = 0
(2. 2) q = —„—[H, q] =. + exp' —f(q) —1],

for some constants qp c, and vp. Therefore,
Eq. (2. 1}represents a decay state for y&0, but
a free particle for y =0. Santillie has discovered
the following two inequivalent Lagrangians I. and
L' which give Eq. (2. 1):

e'Yf (q)
2

L ' = —,
'

q ln(q)~ —yq + qf(q),

(2. 3)

(2. 4)

i31 '
p = . = —', ln(q)'+f(q) + 1,

Bg

so that the Hamiltonian H is determined by

H =qp —I.' =q+yq.

(2. 6)

(2. 7)

Note that the conservation law dH/dt = 0 is au-
tomatically satisfied in view of the equation of
motion (2. 1). Eliminating q in terms of p and

q, we find

where f(q) in Eq. (2. 4) is an arbitrary function of

q. Note that the last term in (2. 4) is actually a
total time derivative of a function of q. The first
Lagrangian L in Eq. (2. 3) depends explicitly upon

the time t for y40, so that it is unsuitable for the

standard quantization procedure except for the

free case of y=0. Hence, we shall consider
the second Lagrangian L' of Eq. (2. 4). First,
we note the equation of motion (2. 1) is invariant
under a scale transformation (X being a constant)

(2. 5)

while the Lagrangian L' of (2. 4) does not trans-
form covariantly under the transformation, but
L -X~ L for L of Eq. (2. 3).

The canonical momentum P is given by

P =&2 exp 4IP —f(q) —II}.
Then, Eqs. (2. 9) and (2. 10) become

H =yq+ pg)',
[In(P )', q] = —ih.

(2. 12)

(2. 13a)

(2. i3b)

Again for the special case y=0, this may be inter-
preted to offer another example of the Wigner's
problem of finding nonstandard commutation rela-
tions for the free equation of motion

q=0 (2. 14)

with Hamiltonian H = —', (p)~.
For free-particle equation (2. 14), we can find

infinite numbers of Lagrangians as follows. Let
f(x) be any real function of the real variable x such
that

, f(x) ~0. (2. 15)

q=
@

[H, q]= rq-

from Eqs. (2. 9), (2. 10), and (2. 11}. These are
precisely Eqs. (2. 8} and (2. 1}, respectively.
Since Hamilton's equation reproduces the original
Lagrange equation, we may say' that our quan-
tization is consistent. Of course, our demon-
stration is mathematically ad hoc, since we ignore
questions of domains and ranges of unbounded
operator s.

At any rate, the special case y =0 is interesting,
since this example offers an alternative quanti-
zation of a free particle in comparison to the
standard procedure based upon the free Lagran-
gian (2. 3) with y=0. Let us now choose the upper-
sign solution in Eq. (2. 9) and set

q =+ exp' -f(q) —1],
H=yq + exp/-f(q) —1].

(2 6)

(2. 9)

In other words, f(x) is either a convex or concave
function of x. Then, any Lagrangian of form

(2. 16)

[P, q]=- ih (2. 10)

and demand the validity of Hamilton's equation

Actually, two solutions corresponding to two

signs in Eqs. (2. 8) and (2. 9) represent two dis-
joint solutions so that we may choose any one of
two possible signs.

In order to check that our system is quantizable,
we impose the standard canonical commutation
relation

is easily seen to give the desired free equation
of motion (2. 14). A special choice of

L = p a In(q)' (2. 17)

for any nonzero constant n is of some interest,
the reason 'of which will be explained shortly.
Note that the Lagrangian (2. 17) is not invariant
again under the scale transformation (2. 5). The
canonical momentum p and the Hamiltonian H are
now given by

(2. 11)

for any observable Q. Choosing Q to be q and/
or q in Eq. (2.11), we find

p ~ ~ p

aI. e
Bq q

H =pj—I.= constant+
&

n lnp
~ .

(2. ia)

(2. 19)
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We can again easily check that our system offers
a consistent canonical quantization with canonical
commutation relation (2. 10}and Hamilton's equa-
tion (2. 11). Changing the variable p into p by

Note a similarity of Lagrangian (3.4) to that of
(2. 4}. The variational principle

d4xf, (x)=O

(2. 2o)

for any nonzero real constant p, Eqs. (2. 10) and
(2. 19) are transformed into

gives an equation of motion

—,
'- a. in[a" A, (x)]' = u.„(x).

Defining (t)(x) by

(s. 6)

[p, q]=+p(p)',
H = —

2 o. ln(p)'+ constant.

(2. 21)

(2. 22)

(t)(x) =-', ln[B "A„(x)]',

Eq. (3. 5) is then rewritten a,s

(s. 6)

In this form, we recognize Eqs. (2. 21) and (2. 22)
as the quantum-mechanical analog of the classi-
cal Poisson-bracket relations which have been
proposed by Mukunda et al.' Note that the
right-hand side of Eq. (2. 21) is now a q number.

In ending this section, let us consider

A„(x)= —a. y(x)
1

and hence we recover the original Eq. (3. 1),
l. e. ~

oy(x) =+ & exp[y(x)],

(3. 7)

(s. 6)

dq+ -- v(q)=o.
dq

(2. 23)

I.=F(q) exp[- Xa(q}],

where E(x) is given by

" dyX(x) =x -x exp ——ye)2

(2. 24)

(2. aS)

and X is an arbitrary constant, Xc0. However,
quantization based upon this Lagrangian is in-
volved in view of ordering problems of oper-
ators p and q, and will not be discussed here.

III. EXAMPLES IN QUANTUM FIELD THEORY

Let (t)(x) be a spin-zero field in four-dimen-
sional Minkowski spacetime. Suppose that (t)(x)
satisfies an equation of the form

or
o (j)(x) = X exp[(t) (x)]

'4( }=~[4(}J'

(3. 1)

(3. 2)

for a nonzero real constant X. Consider first
the case of Eq. (3.1). The usual Lagrangian for
it is evidently given by

This equation admits the following unconventional
(classical) Lagrangian:

(s. 9)

which is equal to (t)(x) given by (3.6), apart from
some additive constant. The canonical commu-
tation relations at equal time xp pp are

[Ao(x) A()(y)]= [vo(x) vo(y)] = 0 (3. 1oa)

[Ao(x), m'0(y) J = i63(x —y) (3. 10b)

in the .natural unit 8 =c = 1. In contrast, the
spatial components A&(x) (j= 1, 2, 3) are not in-
dependent canonical variables, since Eq. (3. 5)
demands

from Eqs. (3.5) and (3. 6). Again, two possible
sign cases in Eq. (3. 8) represent two disjoint
solutions and we may choose any one of them.
Therefore, the new Lagrangian with new variable
A~(x) effectively describes the equation of motion
(3. 1) for the scalar field (j)(x). In this sense, the
same equation of motion may be said to admit two
inequivalent Lagrangians. Note that if we insert
the expression (3. 7) into L', then it will contain
second-order derivatives of (j)(x) so that L'(x) is
not identical with L(x) given by (3.3).

The canonical variable 7)0(x) corresponding to
Ao(x) is given by

7)o(x) =& =P+1+2 In(a"A„)',
|)L '(x)

p X

L(x) =~ a" p(x)a(„(t)(x) + X exp[(t)(x}J (3.3}
A~(x) = —a, )70(x) (j& 0)

1
(3. 11)

However, there is an alternative way of obtaining
Eq. (3.1), as follows: We introduce an auxiliary
vector field A (x) and consider a Lagrangian of
the form

which may be imposed as a subsidiary constraint
condition. The Hamiltonian is now calculated to
be

f.'(x) =-,' a' A. (x) in[a "A„(x))'+pa' A„(x)

+p AA" (x)A, (x), (s.4)

H(x) =AD (x)&0(x) —I (x)

where the repeated indices on p, and v imply an
automatic summation on values 0, 1, 2, 3, as usual
and where P and X (X 00) are some real constants.

a'x, (x)a,v, {x)——,A'(x) A, (x)

+ exp[)) 0(x) —(p+ 1)] (3. 12)
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after dropping a totally spatial divergence term

+ —8'[n, (x) 8,m'(x)].

We can easily verify that Hamilton's equations

Ap(x) = l
J~

d y H(y) Ap(x)
xp Qp

7lp(x) =i day H(y) Fp(x)dt ~Xp=yp

become

(3. 13)

Ap (x) = —
&

8'aywo (x) 6 exp[era(x) (P +—1)],

+ Y'. M'(x) A„(x),
which leads to

Setting

Therefore, noting Eq. (3.11), these reproduce
the desired Eqs. (3.5)-(3.8). In this sense, our
quantization can be said to be self-consistent,
although the Hamiltonian (3. 12) may not be positive
definite.

Next, let us briefly discuss the equation of
motion corresponding to Eq. (3.2). This can
again be recoverable from another unconventional
Lagrangian,

L'(x) =/[8 "A„(x)] +P8"A, (x)

all operator algebras obey the associative law
as usual. However, for the purpose of consistent
quantization, this requirement may be relaxed~3
to a class of nonassociative operator algebras
satisfying both flexibility and Lie-admissibility
laws. This would enlarge the category of uncon-
ventional quantization procedures. However, since
the reason behind this possible generalization has
been explained elsewhere, ~s we will not go into
details here.

emote added:
(1) Several of the expressions in our paper are

not globally differentiable [Eqs. (2.4), (2. 17),
(3. 8), and (3. 15)]. This is likely to affect the
topology of the tangent/cotangent bundles.

(2) A quantization of the time-dependent Lagran-
gian, Eq. (2.3), has been attempted by R. Santilli
[in Had. J.2, 1883 (1979)], who uses a nonasso-
ciative Lie-admissible algebra.

(3) The most general time-independent Lagran-
gain reproducing Eq. (2. 23), i. e. ,

q+ v(q) =0,
dq

xs found to have a form

L, =L(q, q) =q ~2 f (-,' P'+ v(q)),
p

where f(x) is an arbitrary function of a real, "vari-
able x such that f'(x) 40. The usual canonical
Lagrangian corresponds to a choice off(x)-—x,
while Eq. (2. 24) is a special case f(x) = exp(- Xx),
x~0.

P(x) =[8"A„(x)]'~' (3. 17) ACKNOW LEDGMENT
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