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Quantum theory of a strong electromagnetic field: Semiclassical representation
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The operators of the classical amplitudes of an electromagnetic field and the complete orthonormal system
of their eigenstates are introduced. The properties of these operators allow us to transform from a quantum-
mechanical description of a strong field to a c-number semiclassical description, both in the case of a free
field and in the case of a field interacting with a quantum system. The latter allows one to use equations of
a semiclassical theory as a calculating apparatus of quantum theory.

I. INTRODUCTION

'The mathematical foundations of the semiclassi-
cal representation method whose contents are the
derivation from the quantum theory of the semi-
classical approximation equations and their use
for calculating the quantum averages have been
introduced in Refs. 1-5 and described in detail
in Ref. 6. The method of semiclassical repre-
sentation uses the commuting operators of a
classical field and their eigenstates (eigenfunctions
of the vector-potential operator') and the operator
of quantum fluctuations introduced in Ref. 2. How-
ever, the version of the method used in these
papers does not allow one to consider the situa-
tion with a finite number of modes and does not
permit direct calculations of average values of
contributions due to the operators of the first and
second type. Therefore, to verify the correct-
ness of the interpretation of the classical field and
fluctuation operators, it is necessary to take into
account additional physical considerations.

In this paper we give the generalization of the
approach developed earlier, free from the limita-
tions mentioned above. This generalization allows
one to simplify essentially the calculation of quan-
tum averages, for the case of a strong field inter-
acting with a quantum system.

The mathematical contents of this paper can be
defined as the use of the canonical conjugate opera-
tors of reducible, instead of irreducible, repre-
sentations resulting, for the case of a strong field,
in relations between commuting operators, i.e.,
in the description by equations for ordinary func-
tions.

In this paper we do not specify the Hamiltonian
of the quantum system and do not confine ourselves
to linear interactions between the field and the
system. Therefore one can assume that the re-
sults obtained can be used in the case of quantum
electrodynamics of a strong field and in the case
of a strong boson field, and in statistical physics.

In Sec. II, the classical amplitude operators
and their eigenstates, which form the complete

orthonormal system, are introduced. These
operators allow transformation in a simple way
from a quantum to a classical description. 'The

equivalence of the use, in the problem of the
transition f rom the quantum to the classical de-
scription of the field, of the classical amplitude
operators and the procedures of normal ordering
in the coherent-state representation is shown.

In Sec. III, we consider the description of the
evolution of a free field, and a comparison is made
with the use of coherent states. Section IV is de-
voted to consideration of a field interacting with a
quantum system and its semiclassical limit. The
problem of the semiclassical limit assumes a
solution without a concrete definition of the Hamil-
tonian of the quantum system and the interaction
Hamiltonian. 'This section shows that in the case
of a strong field, given by an appropriate choice of
initial density matrix, the creation and annihila-
tion operators in the Heisenberg representation
are determined by relations for commuting opera-
tors of classical field amplitudes. These relations
result naturally in equations for ordinary c func-
tions and it becomes possible to use equations of
the semiclassical theory as a calculational ap-
paratus in quantum theory.

In Sec. V we introduce and study the semiclassi-
cal representation which is characterized by the
fact that the time dependence of operators in it is
determined by the formulas of an appropriate
semiclassical theory. Time evolution of states is
defined by the Schrodinger equation, describing,
strictly speaking, differences of quantum theory
from semiclassical theory.

Section VI is devoted to the methods of solution
of the quantum problem, using the algebra of
operators of classical field amplitudes andquantum
fluctuation operators, as well as the operator re-
lations for the evolution of a strong field.

In Sec. VII we discuss the connection of the sug-
gested approach and our preceding results, ob-
tained for quantum electrodynamics. " It is shown
that when satisfying the condition of real fields,
an approach suggested in the paper leads to the
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results obtained previously. In Sec. VIII we dis-
cuss briefly the main results of the paper and
possibilities of using the semiclassical repre-
sentation method in the problems of statistical
physics of intermolecular interactions.

function of a~, a, then we have

Trpf(at, a) = T rRf(a~, a ) .
Now we rewrite (2) in W:

a =a, + ~a, a~ =a0+ ~a~,

(8)

(2')

II. OPERATORS FOR CLASSICAL AMPLITUDES

Let us introduce the creation and annihilation
operators a~ and a, operating in the Hilbert space
H, for which the Bose-Einstein commutation rela-
tion is satisfied,

[a, a']=1.
We write, still formally,

where a„a~„&a, and &a are now operators in
W. It is clear that ~|c&,) are now the states in W.

In W the relations (1) and (2')-(5) are consistent,
and after calculations analogous to those made in
Refs. 2 and 6 one can determine the operators a„
a0t, na, ha~, and the states ~g, ) in the following
way".

a0 = a g}I+IQ a, a = a~ I +I a,

a = a0+ ~a, at = a~~+ ~at, (2) &a=-I@a~, ~at=-Ia, (10)

where

[a„a,'] = 0, (a,)' = a', .
From Eq. (3) it follows that the operators a, and
a', should have the same system of eigenstates:

a (4)

Here and in the following an overbar denotes com-
plex conjugation. It is easy to make certain that
from Eqs. (4) and (3) it follows that the states ~(,)
must be orthogonal.

Further, we want to use a, and a~ for the de-
scription of a classical field. Therefore, we add
one more condition on the eigenvalues a and a,
whose realization allows us to call the operators
a, and a', the classical field amplitude operators.
We require that

a=&a(a)a), a=&a)a'[a), (5)

where ~a) is a coherent state in H: a ~a) =a ~a).
After making simple calculations one can verify
that the conditions (l)-(5) cannot be satisfied in
H. Therefore, we proceed to the extended Hilbert
space 5'= El SH, where is the direct-product
sign. In the space %' the operators a and a~ are
written as'

a =aI, at =a~I, (6)

where I is the unit operator in H.
If the state in H is given by the density matrix p,

it is natural to determine the state in W by the
density matrix R:

R= p~ ~0)&0~, (I)

where ~0) is the vacuum vector in H. Such a de-
finition of the state keeps all the properties of
density matrix in R (Hermitian character, positive
definiteness, finiteness of trace, etc. ), and makes
it possible to calculate average values both in H
and in W, In this case, if f(a, a) is an arbitrary

Simple calculations show that for the operators
a„and a~0 and for the states ~ g,) determined in
Eqs. (9)-(11), the relations (3)-(5) are fulfilled.
It should be noted that the fulfillment of condition
(5) is due to a choice of the state in W, Eq. (I),
and to the following property of

~ g,):

where )0) is the vacuum state from the right H,
and ~a) is the coherent state from the left H.

Owing to the completeness of states ~g,), an
average value of an arbitrary function of a, and
a0~ is of the form

(13)

TrRf(at„a, ) = daR, j(a, a)

cPa a p a a~a (14)

Equation (14) is an average value for a classical

e-""'fe"" ="[n&e [y&v-'
vm

x e-(I0' I + I&& & &/ &dr(y d~P

In Eq. (11)
~
a) and

~ p) are the coherent states,
~n) is from the left H, and ~P) is from the right

H.
It should be noted that the states obtained are

similar to the eigenstates of the vector potential
operator. "' It is known that such states. appear
when discussing the problem of quasimeasurement
of the amplitude and phase of an electromagnetic
field The spectrum of operators a, and a, is
continuous. Direct calculations show that the
states ~g,) form a complete orthornormal system,

&g, ~g,) = 6(Rea —Ref&)5(Ima —Imb),
(12)

~ g,)&g, ~

da = E I, da —= d Head Ima.
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random process.
Based on Eq. (8), the determinations (2') and (7),

one can obtain the following expression:

When deriving this relation we took into account
that the definition (7) resulted in the following
form for an average of the operator AB,

TrRA8& = TrpA(0 ~B ~0), (i6)

and we sometimes transferred from averaging in
H by p to averaging in 8'by R and vice versa.
Writing the trace in Eq. (15) in an obvious form,
we obtain

I

(f) = ' daR„[f(a, a)+ &'f(a, a)/&a aa+ ~ ~ ]

d'a(a
~ p ~

a) [f(a, a) + ~~f(a, a)/&a &a+ ] .

(17)

The right-hand side of Eq. (17) is the ordinary
quantum average value of the operator f, calculated
by means of subsequent normal ordering and cal-
culation of appropriate intermediate integrations.
It is known"-" that in the case where p is the den-
sity matrix of a strong field with sufficiently large
amplitudes (~a ~» 1), then on the right-hand side
and consequently on the left-hand side of Eq. (17),
one can be restricted only by the first term, and
we obtain Eq. (14) as the definition of the average
value. Now it is clear that the operators a, and at

are really connected wi. th the classical description
of the field and, according to Eq. (4), they can be
called operators of classical amplitudes.

HI. FREE FIELD

Now we consider the problem of description of a
free field in the representation introduced. 'The

Hami)tonian of the field has the usual form

H~ = S(data.

The creation and annihilation operators in the
Heisenberg representation are written as

a(t) = e '"'a, a~(t) = e'"'at.

(18)

(19)

Converting the Hamiltonian HR in the space 8' it
is easy to calculate the operators a, and &a in the
Heisenberg representation. We have

g —e(t t "~ R~ t3Ig e (~f")HR I3$OH 0

a e gait+ ga(e ftdl ] ) (20)

(f(at, a)) =TrR f(a„a,)+ " ' ~a+
Iso 0

I

= TrR f(at, a, )+
&

&' t (O~aa ~0)+

(is)

Ag = 8 ~~" +R jg)I/ac ~i") R gy= ga (2i)

and the Hermitian conjugate relations for ao~ and
&a~. It should be noted that the equations of mo-
tion for a(t) and a» coincide with those for the
amplitudes of a classical field:

g
i = vaoH, aoH(0) =a, .

ag
(22)

a, (t)
~ q,) = a(t)

~ q, ) = ae-'" '
~

ttt, ),
a(t) = (a ~a(t)

~
a) .

(24)

(2s)

In this case, one can obtain an analog of Eqs. (15)
and (17) for an average value:

S'f(ao(t), a, (t))(f), = TrR f(a', (t), a, (t))+
( )

', '(
)

+ ~ ~ ~

da R„ f(a(t), a(t))+ ' +
~'f(a(t), a(t))

It is clear that, as before. the case of a strong
field (classical limit) results in consideration of
the first term only in Eq. (26). Simplicity of
transition to the classical limit in the case of a
strong field is due to the form of the Hamiltonian
(18).

It is evident that the transition to the classical
limit by means of the operators a, and a„analy-
zed here and in Sec. III, is merely illustrative and
can be made, as usual, in the representation of
coherent states without extending the Hilbert
space and introducting new operators. However,
in the case of the field interacting with the quantum
system, the use of the operators a, and a, and the
orthonormal basis (g,) leads to the appearance of
simple calculational schemes for a quantum pro-
blem, especially for the case of a strong field.

IV. THE FIELD INTERACTING WITH THE QUANTUM
SYSTEM

Let the Hamiltonian of the problem be of the form

H =H~+H, (x)+H„(at, a, g), (27)

From Eqs. (19) and (2') it follows that in W, one
can formally represent. a (t) as

a (t) = a, (t)+ &a(t), a, (t) = a,e '"', &a(t) = &ae '"'.
(»)

It is clear that in this case a, (t) and aa(t) are not
the operators a, and &a in the Heisenberg repre-
sentation. However, such a representation will
be useful below. The latter is due to the fact that
the operators a, (t) and ao~(t) commute, and their
eigenvalues in the basis ~g,) determine the ampli-
tudes of a free classical field, depending on time:
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where H, (x) is the Hamiltonian of the quantum sys-
tem, H» is its interaction with the field, and x
denotes a necessary set of the quantum system
operators. Let the total density matrix in the
initial moment of time be given by

PO=P& y (28)

where T is the initial density matrix of the quan-
tum system and p, as before is the initial density
matrix of a field.

'The Schrodinger equation for the evolution opera-
tor U in the interaction representation over the
field is

written as

U 'av„(t)U = U 'av(t)U + &av(f),

U -'a (t)U =U -'a, (t)U +&a(t).
(32)

Thus, the main problem of quantum electro-
dynamics, i.e., the calculation of time evolution
of the operators a~ and a, is the problem of time
evolution of operators ato(t) and a, (t). For solving
this problem it is necessary to calculate the opera-
tor U . After transition into the space 5 the
Hamiltonian H„ in Eq. (29) is written as

H„=H, (x}+H»(aov(t), a, (t), x)

ih =—[H, (x)+ P„(a'(f},a(t), x}]U, U(t, ) = 1. (29)

(30)

The operators a, and &a in the Heisenberg re-
presentation are

In the space 8' the density matrix is rewritten as

H = po S
i 0)(0 i

.

sH„(at(t), a, (t), x)
(ea, (t}

eH„(a', (f), a, (i), x)

Let us introduce the designation

a,„(t)= U -'(f)a, (t)U.(t)

(33)

(34)

&aH= &a,

(U ls( /h)HRt) a (e-(f/h)PRE)
tfv 0 W

'a, (t)U(t)+ &a(e-'"' —1) (31)

Here we use Eqs. (2'), (10), (20), and (21). Now,
using the designations of Eq. (23), the operators
a~ and a in the Heisenberg representation can be

and rewrite Eq. (34) using the Schrodinger equa-
tion (29):

ao//(t) =ao(t) +— U„(v)[H(v), ao(f)] U„(v)d v .
(35)

Having now substituted the expansion (33}into
Eq. (35), we obtain the following expressions:

, ) (
i '

( )
BH,v(a, (v), a,(v), x) 8 H„(a,(v), a(, (v),x),

)
to

$2 0( ) t 0( ) t ~ t(v) +, , U (v) &to(t Y)dv-8 H (av(v) a (v) x)
Bavo'(v) Qf (36)

Here in brackets we wrote out the terms depending only on ao, ao and proportional to M and 4at. It is
clear that, furthermore, we should write out the terms proportional to (4a), (&av)v, naAav, etc.

It should be noted that

U„'na(t)U~=Ea(t) .
Therefore Eq. (36) may now be rewritten as

i t' ~H&z(a»(v), a,„(v)Ix„(v)) 8 H&&(a„„(v),a&»(v)Ix„(v))
'0-

H12(atH( }iaoH(v) ~xH(v)) ti x . . . 4(y(tw}~& (»+ ~ ~ e" "d7-, (38)

where

3H&v(})
U -&( )

8Htv(ao(v)~ao(v)~x)
U ( )

& aqv„(v) 8 aov(v)

and

8'H„/8 a',„'
are determined similarly.

It should be mentioned that the presence of the operator x// in the expansion (38) does not allow one to
interpret it as a series in powers 4a and 4a. Therefore this operator should be considered in detail.
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From the Schrodinger equation (29) and the expansion of the Hamiltonian H„ in (33) it follows that the
evolution operator U„(t) can be represented as

U (t) =C(ap, ap, t)Q(t),

where C is the unitary operator depending only on the operators of the classical amplitudes a, and ao.
The operator C is required to be connected with the evolution operator in semiclassical theory, i.e.,

aC
iR =[Hp(x) +H&p(a, (t),a,(t),x)]C, C(tp) =1,

(39)

(40)

where the operators a, and a, are the functionals of ao~ and ao being undetermined.
The equation for the operator Q follows from Eqs. (29), (33), (39), and (40):

il) P=IH„(a'(l) a,(()~x.(t)) H„(a'(t)-, a)(t)(x.) — " ' ' ' ' c 'ba())c

C 'tea(t)C+' ' Q=H Q x —= C 'xC
B a(~)(t

%e represent the operators C '~aC as

C 'naC =((C 'naC)„—na) +(C 'naC -(C 'b. aC),)+6a,
where

(C ~haC), =TrTC '&aC

(41)

and we can see that the operator (C 'naC) —na is the functional based on the operators a&~ and ap. Now

Eq. (41) can be rewritten as

ik
B

——H&2(a„a, IIx,) -H(&(a()+(C b, a C)„-b, a, ap+(C 'naC), —6a
~

x,)
BQ

8f

BH(z(a()(t) ap(t)l'x. )
[ n (t)q

BHi2(ao(t) ap(t)lx. ) (-5 (+ n ( t ~ +. . . Q (42)

where

6a, =C 't). a(t)C —(C 't) a(t)C), .
Assuming

a,(t) =ap(t) +(C 'tp. a(t)C)„-n a(t), (43)

(44)

we obtain from Eq. (42) the following expressions:

BQ BH,p(a, (t),a,(t) I x,)
[ ]

BH„(a(,(t), a,(t) I x,)
[ ~,

)]

The form of Eq. (44) shows that the choice of a„namely, Eq. (43), results in the field fluctuation struc-
ture in the Hamiltonian of the Schrodinger equation for Q, i.e., in fast series convergence of the pertur-
bation theory for Q.

Now, using Eqs. (39), (43), and (44), we obtain for xH

xH =x~+ Q (T)[H@(T),x~(t)]Q(T)dT

=x, +— ',x,(t) [Ba,+ na(T)] + g
', x,(t) [Ba,+ 6a (T)]

-BH„( I x.(T)) BH„(Ix, (T))
h,

p
Bap T Ba,' T

+ )
' (aa. + La(v), x,(t))+, ' [i!a,'+ca'(v), x,(t))Id

BH&2(Ix,(T)) BHf2(I x,(T))
Bap T Bap T

=x.+ q,(x,)+ y,(x.)na+ y,fx.)aa'+ "~ . (45)

In this case the sum of the terms, depending on ao, ao only, is denoted as y&, the coefficient at ~a is de-
noted as y2, and the coefficient at &a~ is denoted as y3.

Substituting the expansions of the operator x„ in (45) into BH, 2/Ba» one can obtain for this operator the
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following expansion:

aH (Ix.) aH (Ix.)+ad"(Ix. ~)+aH (Ix. ~ ~) ~.+aH (Ix. y ~') n. + ~ ..
~aQH ~aQH ~aQH ~aQH ~aQH

(46)

The meaning of the expansion terms is clear because in the first term only x, is retained from xH, in the
second term p& is taken into account, and the third and fourth terms are the coefficients of 4 a and 4 a .

In this case the operator a in. the Heisenberg representation can be written as

U a U„=ao„(t}+na(t)

(f)+n (f) +i '
aH(2(at&H(2), apH(r)IX, (2)) + aH'1'2'(Ix„+()

aaoH(r) aaoH(r}
))

„(Ixc)(i'()A) ~ H(2(lx, ) + H'12(txc) %()A) H(2(IX,) ~ 2 („(t~&d
8 8 8 8 8

=A(ap, a,') +B(a„ao)t2 a+D(ap, ap)(2 a + ' ' ', (4V)

A( 't) (f) + 12( c) + 12 (' c) 0 1) t)c(tw &

' aH ()x) aH(&(&x
d7'.8 t Ba QH BaQH

(48)

(f)1=TrR(f(A, A J+ 1 +
Aa 2 (BB +DD )

a 2f
+ t (DB+BD)

p2g
(BtD2+D2B2) P ...

aA t~

It is evident that if o is the density matrix of a
strong field, then for a polynomial function f all
the terms (except the first one} in Eq. (49) may
be neglected and the average value for this case
1s

(49)

(f), =TrRf[A, AQ,

where A and At depend on the field operators aQ

and a~Q only, i.e., they have classical analogs.
To determine A and At we have Eqs. (48), (43),

and (40). I et us rewrite the determination (43)
as an integral equation:

(50)

2 aH(2(a (r) a (7') Ix ) 1 &2

Q

(51}

Thus, to calculate the operators a and a~

in the Heisenberg representation in the case
of a strong external field we have a set of rela-
tions (40), (48), and (51), operating only with
commuting field operators. Because we need
matrix elements from A and At in the basis ~(O,)
when calculating the trace in Eq. (50), we re-
write these relations in the representation

Our final aim is to calculate the average values
according to the density matrix R, Eq. (30). For
an arbitrary function of the operators a~ and a one
has, taking into account Eqs. (IV) and (4V), the
following expression:

i " ' aH(2(A(r), A(2') [ x,)"
ax(')

aHI2'(A(r}, A(r) ~ x„q,)
aA(7 )

jip2 (t -T )d & ) (52)

(53)

(54)

(f) + 12 H) H c e()c&t t&di ' aH (a' a }X.)

(55}

Then Eq. (52) can be rewritten as

aH12 (a H) aH~ Xc) 9 1}
A~a, a~ =a~+-

tp aN

~ 5 o) ( t'- T )d 7 + ~ ~ ~ (56)

i.e., the solution of the self-consistent problem
a& is the first approximation for A and correc-
tions can be found by perturbation theory. It
should be noted that with such a determination of
a„Eq. (42) for Q will certainly be changed, i.e.,
in the expansions (45) and (47) the coefficients

ac
iK =[H2(x) +H(2(a„a„x)JC,

at
H12(ac) ac ~Xc) 1()ct - ) &d T(f)+~ a(} e d

Q

In fact, the set of Eqs. (52)-(54) consists of a
self-consistent set of nonlinear equations (53}-
(54), which are similar to equations of semiclas-
sical electrodynamics and Eq. (52) solved for the
calculated a, and a,.

It is simple to transform this set of equations
to the ordinary nonlinear Hamilton's equations. '3

For this purpose it is sufficient to suppose in the
Schrodinger equation (40) that
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are to be changed. Relations of this type, written
for the vector-potential operator, were used for
the determination of the applicability limits of
semiclassical electrodynamics and the definition
of quantum values by solutions of semiclassical
equations.

V. SEMICLASSICAL REPRESENTATION

The field density matrix is introduced in the
usual way:

R = Tr„QRQ (58)

The average value of an arbitrary field operator
is now written as

R@——QRQ (57)

The evolution operator in the form of Eq. (39),
in principle, introduces the semiclassical repre-
sentation in quantum electrodynamics. In this
case the evolution operators with time can be des-
cribed by the operator C, and the state evolution
by the operator Q. It should be noted that C apC
=ap i.e., in the semiclassical representation
the time dependence of operators is varied only
for the medium operators x, =C ~xC. For the
state we have

Equations for R can be found by the standard
method for nonequilibrium statistical physics. '4

For this purpose we write R~ =R 7 + DR and from
Eqs. (57), (58), and (41) an equation is calculated
for R~(t) with an accuracy to the second order of
perturbation theory according to Ho from Eq. (41).
Converting to the matrix elements in the states
~)l),) we obtain

BR~.(f) 1 8 6H„(a(t),a(t) I xg) ); & &H/2(a(&) pia(t) I xg)
Bt ih Ba(t) Ba(t) „" Ba(t) &a(t)

a 8H„(f) 3 &H (i) 8 BH () 3 PH„()Ni, &a(t) &a(&) 3a(&) Ba(t) ' &a(r) Ba(r) Ba(7) Ba(&)

((A, B)),=-(A)„(B)„-([A,B],)„.
(60)

Equation (60) is a generalized Fokker-Planck
equation for the distribution function of strong
field amplitudes. In fact, instead of solving the
quantum problem for a strong field or its semi-
classical analog (52)-(54), the semiclassical
representation allows one to solve the semiclas-
sical self-consistent problem, Eqs. (53) and (54),
to determine the coefficients in Eq. (60) and then
to solve this equation. The semiclassical repre-
sentation removes the direct dependence from the
strong field of the Hamiltonian II~ and results in
the appearance of the coefficient's dependence in
the. Fokker-planck equation on the solutions of a
corresponding semiclassical problem. There-
fore, the use of Eq. (60) for application is of
greater interest than the use of the Fokker-Planck
equation obtained using the coherent states. "

As was mentioned above, instead of Eqs. (53)
and (54), one can use the analog of the nonlinear
Mmvvell equations. " In this case the semiclas-
sical representation is introduced by the equa-
tions

(61)

VI. OPERATOR SOLUTIONS

The fact that the evolution of operators a and a~

is determined by Eqs. (32) as well as the simplici-
ty of the algebra of operators a„a„Aa, ha~ allow
one to hope for a possibility of using the operator
methods of solving the time evolution problem for
a strong field. Here we give two methods which
allow the solutions of the quantum problem to be
obtained. First of all, let us represent the evolu-
tion operator in the form

&.= CoQO

where

(64)

i I' sH)2(a~t(7), a„(7) I xa(~)), (, ,)d

(63)

The equation for Q follows from Eqs. (61)-(63)
and (29). We shall not cite this equation and the
corresponding Fokker-Planck equation for the den-
sity matrix and discuss them, because such con-
sideration was given previously. "'

ijf—„=[H, (x) + H„(at, a„,x) ]G',
~G

(62)
N -' = [H, (x) +H»(aot(f), a,(t), x)]C„C,(t,) =1.
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The equation for Q, is determined from Eqs. (29),
(64), and (65):

ih '= " " C, 'aa(t)co+H. c. q„

Qo=QQ1

where

Q 12( I 0) t1a(t)
at aa, (t)

aa(t), " ' +H.c. Q,
a H„( I x,)

(67)

(68)

and consider the time dependence of the operators
I

x, = Co 'xC0. (66)

In Eq. (66) we use the Hamiltonian (33) with an ac-
curacy up to terms proportional to Aa and 4a~.
The latter can be obtained as we are interested in
the strong field behavior. It is clear that consid-
eration of the higher orders in Eq. (33), as follows
from Eqs. (32) and (38), can result in the appear-
ance of small corrections only.

Now we introduce the operator Q, as

due to C, and Q. We have

a=q 'a, (t)q

=a, (t)+—
( Q '(T) " Q(T)e' (' "dTaH„(q.)

i2. , aalu (q.)

(t) — " ' ' '"" "d1 (69)" 'k, aa' (7)
0

x, = q-'C, -'xC,q = q-'x, q = x,&n', n) = C-'xC, (VO)

e—„=[H, (x)+ H„(nt, n, x)]C:

+ ", ' q-'[~ (t), C,]q+H. c.a' (Vl)

Equations (69) and (70) show that the evolution
of Qp in the introduced representation is described
by the Hamilton equation, and the evolution of me-
dium operators is described by the Schrodinger
equation (71).

To make clear the connection of 5 and x, with
a«and x~, it is necessary to obtain from Eqs.
(66)—(68) an equation for Q, . We have

.nnq, )l„(n'S, nl )'0s'n (S)0 0 — Sn„(l) q, n (l)q 0, (l)
Sll„(s,'(S), s,(S)(s,)

I0

(V2)

Simple calculations show that

q g (t)q t( (t) It q-1(~) 12 0 l 0 0 q(7)e((d(( — ) )de

+—
Q '(v) aa(q), ",Aa(t) Q(7)dq

+ —
Jl Q '(r) ha1 (q), t' . , ba(t) Q(7)dT, '

0

q-o-n(000=0-(n(l). -' -' '' '' ~ .- -)qi ('aH (a'( )aT(~) ix

q 1~ (t)q+ q 1(t) 12 0 (~)"0( '
0 q(t)e(-(( r&dT-

Omitting the termS Of higher OrderS (Of the type a2H»/aa02, a2H»/'aa02) theae eXpreSSianS Can be reWritten
as

i ' aH12(n'(q. ), n(~) Ix,);„(,„)d
.t BQ (TJ

0

i t' aH„(a'(2), n(q) Ix,) H„(n' (q), n(7) Ixo),„(, ,)„
0

Now Eq. (72) is rewritten with. the same degree of accuracy:

sq,
"

sH„(ns, nls) Hl„(ns,

sin�)

() ssl„(n', nln, ) s' (',(sq„(s) . ssl„(s) ),
aH»(nt, a I%0) i " ' aH»(a (1),a(7') IX;)

aa „I1., aa'(T)
(V3)
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The Hamiltonian form in Eq. (73) shows that Eqs.
(65), (68), and (69) describe evolution quite well in
the case of the interaction of a strong field with a
quantum medium. If the density matrix R is in-
troduced in this representation,

Ro-—Q, RQ, ', (74)

then for average values the following formula is
fulfilled:

(f(a~, a, x)), = TrRo(t)f(a~ (t), a(t), X;(t)) . (75)

In this case if f is the field operator only, then
while determining R~ the first term only in Eq.
(73) should be taken into account, as the contribu-
tion of subsequent terms will be negligibly small,
and in this case Q converges very rapidly.

The above relations assume a simple calculation
scheme. The Schrodinger equation (65) is by its
meaning the Schrodinger equation for a quantum
system in an external classical field, which in
some cases can be solved. In the general case
the perturbation theory solution can be used. The
solution obtained allows one to determine the Ham-
iltonian in Eq. (68). The simplicity of the algebra
of the operators permits the approximate operator
solution of Eq. (68) to be calculated. Now calcula-
tion of the operators a and xp presents no difficul-
ties. More precise determination of the values
obtained can be made using Eqs. (73) and (67) or

calculating the density matrix (74) and averaging
according to Eq. (75).

The second method of operator solution of the
problem is based on the representation (61) and
the Schrodinger equation (62).

The operator 8 is chosen as the solution of the
equation

~Qp

(76)

In the representation defined by G and 8, the op-
erators are of the form

e-'a, (t)e = n(t)

() i (' Btr„(a'(v), n(v )x,())
aa~ (~)

x e'~" "'dv (77)

q=ee, . (79)

The equation for 8, is obtained as in the case of
Eq. (73):

e-'G-'xce = 8-'x, e = x,&e-'a', e, e-'a, e)=X,. (78)

We now determine the operator Q. from Eq. (61) as

se„H„(a',a lx ) sH„(a~, alx )
(t)

BH»(a~, a lxa) i I' &P»(a', a IRa) sH»(a', a le) ); «,)d

0

+
sH»(a, a le) i "' &H»(a', a lx, )

Bg „hh, QX 0

(80)

The relations (62) and (76)-(80) can also be used
for calculating quantum operators. In this case it
is necessary to know any solution of the nonhnear
Hamilton equations, i.e. , the operator G. Let it
be calculated approximately by perturbation the-
ory. Then it is necessary to find an approximate
solution of Eqs. (76) for 8 and to calculate a
=8 a08. The average values in this case can be
calculated by the formula

VII. A MULTIMODE CASE

We consider the connection of the suggested ap-
proach to the description of a strong field inter-
acting with a quantum medium and our preceding
results. ' ' It should be noted that previously we
considered the case of an infinite number of
modes. In this case the vector-potential opera-
tor of the field is as follows:

(P, =TrR (t)f(a~, a, X ),
Rg= 9~R6~

and calculation of R8 allows the average values
to be defined more exactly.

(81)
X(r) = Q T(g „(ay „e' '" +ay „e ' ''),

(2mhc
e~(k) .

(82)
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Standard designations are used.
Generalization of the preceding results for a

multimode case is trivial. It is sufficient to ex-
tend the Hilbert space connected with each mode
and to introduce the operators a,g z, a~g z, hag &,
ha)„. It is clear that the operator X„determined
according to Eq. (82) as

Xo(r) = g ~x,.(aox..e' ' '+ ao~..e ' '),
%.x

can be called the vector-potential operator of a
classical field and the operator aX is

aX(r) = Q ~g „(nag „e' ''+H. c.).
If, X

It will be connected with quantum properties of
the field and will be called the vector-potential
operator of quantum fluctuations.

Converting to the interaction representation and
taking into account that

X(r, t) =X,(r, t) + aX(r, t), .(83)

we obtain

X,(r, t) = Q icy ~I'a,g ~(t)e'~" "+H.c.],
K, x

(84)

aX(P, t) =Q TTg g[ag ~(t)e' ' '+H.c.].
K, x

(85)

It should be noted that the relation (83) was in-
troduced previously, ' but for X, and M other def-
initions were suggested; in particular, Xo was rep-
resented as an expansion only by cos(d, t. It is
clear that these differences are due to the fact that
in Ref. 2 in evident form the realness of the clas-
sical field vector potential was taken into account,
which decreases the number of independent ampli-
tudes by a factor of 2. The condition of realness
ag z =a y ~ results in coincidence of the matrix
elements of operators (84) and (85) with the ma-
trix elements of operators X, and hX from Ref. 2.
This fact explains why in a general multimode
case it became possible to make analogous analy-
sis without extending the Hilbert space.

VIII. CONCLUSION

We have introduced the mathematical apparatus
which allows one to obtain naturally and easily the
derivation of the- semiclassical schemes for the
description of field and matter interaction from
quantum theory. The fact that the suggested meth-
od allows one to consider the model problems of
quantum electrodynamics, i.e. , the interaction of
the final number of modes with a quantum system,
and the fact that such problems in semiclassical
electrodynamics can be solved, has made it pos-
sible to use semiclassical electrodynamics as a
calculational apparatus of quantum electrodyna-
mics. Besides, the simplicity of the algebra of
operators and the structure of relations for evolu-
tion of a strong field enables one to obtain the
simple operator solutions of the quantum problem.

It should also be noted that the scheme of in-
troduction of the operators a, and ao~ allows a nat-
ural generalization for the case when a particle
close to a classical system is considered. In this
case the momentum p, and the coordinate q, op-
erators are determined as follows:

. 2m'~'~',
Po= t ~ ~

(a.' —a.),
2@ ~

~12

q, =
~

(a~+a,).
mO&

Here a, and aot are defined by Eg. (9), m is the
particle mass, and 0 = (0 )H ~8)/I', where ] 0) is the
vacuum vector and II is the particle Hamiltonian.
It should be noted that such a determination of A

allows us to describe an arbitrary particle, but
not to hmit ourselves to the case of a harmonic
oscillator.

It is clear that all the preceding results can be
reformulated for the introduced operators, and we
obtain a convenient apparatus for the problems of
the statistical physics of intermolecular interac-
tion. In this case the external degrees of freedom
of molecules will be the system for which the
transition to a classical limit takes place, and the
internal degrees of freedom, interacting with them,
will be the analog of the quantum system. Some
preliminary results of such an approach are given
in our work. " A more complete description will
soon be published.
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