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The retarded and advanced Green's functions for massive spin-one particles in an external symmetrical

tensor field are discussed. A method of determining the retarded Green's function for a special case is

outlined. Then, by a limiting process, it is explicitly shown that the equal-time commutators derived from

the equation of motion are in agreement with the canonical commutators.

I. INTRODUCTION

We will begin our discussion with a brief review
of a method by which one can calculate the retard-
'ed and the advanced Green's functions for mas-
sive spin-one particles in a symmetrical tensor
field. The method is that of the propagation of
shock waves along the characteristic surfaces.
When a certain range for the external field is as-
sumed, the wave equation exhibits noncausal be-
havior, that is, it possesses a characteristic sur-
face which lies outside the light cone. This ill ef-
fect becomes clearer when the retarded and ad-
vanced Green's functions do not vanish for all
spacelike separations. This contradicts the can-
onical quantization where the field commutator is
assumed to vanish for all spacelike separations.

Therefore, one is inclined to believe that for the
noncausal equations canonical quantization is in-
consistent with the equation of motion. We will
show that on the plane t = 0 the canonical quantiza-
tion is consistent with the equation of motion but
that the generalization of this result to all space-
like surfaces contradicts the equation of motion.

Our notation is that of Bjorken. and Drell. ' The
metric tensor g "" is defined as g"= 1, g"= g"
=g"= -1. The Greek letters are used as Lor-
entz indices that range from 0 to 3, while the Latin
letters range from 1 to 3. The Einstein summation
rule for repeated indices is used throughout the
paper.

II. RETARDED AND ADVANCED i REEN'S
FUNCTIONS

The Lagrangian density for massive spin-one
particles in an external symmetrical field is
given by

2= —-'G'"G + —'m' p Q+ 2A, p T ~ Q, (2.1)

where P" is the vector field, G"" is defined by
&"Q" —s"Q", and T"'=T"" is a symmetrical ten-
sor. By Q p we mean Q"p„and s" is &/ex„.
The field equation derived from Eq. (2.1) is

[(s'+ m')g ~" —s "s"+AT""j $„=0, (2.2)

[(s'+m')g"" —6 "s" AZ+'" "]D"„„( yx) = g ",5'(x —y),

(2.3)

with the condition that

D"„„(x,y) =0 for (x' —y')( 0 . (2.3' )

with s „G"'+m'p'+ XT' ~
Q = 0 as the primary con-

straint and (m'8 "+As ~ T")$„=0as the secondary
constraint, which is obtained by contracting Eq.
(2.2) with 8 ~.

The retarded Green's function D"„„(x,y) satisfies
Eq. (2.2) with the 5 function on the right-hand
side, 1.e.,

Equation (2.3) does not have well-defined characteristic surfaces since the determinant of the character-
istic matrix is identically zero. To eliminate this problem, we take the divergence of Eq. (2.3) and sub-
stitute the result back into Eq. (2.3). The result is

(s'+m')g~"+, s~s ~ Z'"+AT"" D~„(x,y) = ~g"„+, s~s„) 5'(x-y) . (2.4)
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The characteristic surfaces are obtained by set-
ting the determinant of the characteristic matrix
equal to zero, i.e.,

(&'+m')g""+, T"5'"8"8'+ XT 5'"5')' D„„(x,y)
A.

g P+ 2 8 BP 5 x P ~ 2 10
1

detn'g" +, n"n T =0,.

which yields

-(") (' 'r') =0.
m2

n" is the normal vector to the characteristic
surfaces. There are two distinct surfaces

(x')'=0 xnt( (x'+, x T»)=0.m'

(2.5)

(2.6)

(2.7)

where 6""is the Kronecker 6.
Instead of solving Eq. (2.10), we will consider a

closely related equation

(8'+ m') g""+ T"5'"8"s'+ &T"5'"5'" b (x, y)
A.

m2 CP

= g".~'(x -X) (2.11)

and then relate b,"„„(x,y) to D"„„(x,y ) by

The first factor is satisfied by the u, = t -r=0
surface which is the future cone, where t =x'-y'
and r =~ x-y[. To determine the surface u, =0
satisfying the second factor, we consider a spec-
ial case where T"' has only one nonzero constant
component, T". Then we have u, = Vt -&, where
V is the maximum speed of the propagation of
signals given by

a"„„(x,x)=(x'„+, »'»„)x,„(x,x) .
m ]

The solution to Eq. (2.11) has the form' '
2 0

b, "„„(x,y) =g g 5" (u, )Ey„(r)
00

+ 8(u&) g ' G'& (r)

(2.12)

(2.13)

1

T oo ~x/a
m'

(2.8) where 5" (u~) is the 0th derivative of the Dirac 5

function, and 8(u~) is the step function satisfying

0 we assume that T" satisfies

A.—1& T &0m2 (2.9)

8(u&) =0, u,. & 0

8(u,. ) =1, u, ~ 0.
(2.14)

the signals propagate faster than the speed of
light, and u, = 0 lies outside the light cone in the
spacelike region.

Equation (2.4) with T", the only nonzero compo-
nerit of T"", takes the form

Substituting (2.13) into (2.11) and separating the
coefficients of the different singularities, one ob-
tains the unknown functions, E's and G's, on a
particular suxface. Note that we use spherical co-
ordinates and by x we mean (t, r).

The final result is

5(u,) 8(u, ) 8(u,) 8(u, ) 8(u, ) 1

x»

u, 8(u, ) 5(u, ) 1 u, 8(u, ) m'

m2 m2
+ s „8(u~)5,„+,8 „8„u28(u,)r+ ~ ~ ~

2
(2.15)

From Eq. (2.15) it is clear that D"„„does not van-
ish in the spacelike region bounded by the u, =Vt
-r=0 surface and the light cone.

The advanced Green's function can be calculated
in exactly the same way with

u2= Vg+ r
as the characteristic surfaces.

(2.16)

(2.17)
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III. EQUAL-TIME COMMUTATION RELATIONS

According to Peierl's quantization, ' we have

[e.(~), e&(y)1=-fD..(~,y),

where D „ is defined as

A
Due =Dna &nv ~

(3.1)

(3.2)

Since the integrals are taken near the origin, we
make a Taylor expansion of the test function f.
The first integral in (3.8) becomes

(0) ) f( )
4rm2t- 0 Br-r i Bxi

1, , e'f(0)
+—X'Xk +"- dn

To calculate the equal-time commutators, it suf-
fices to calculate

lim D „= lim D"„„,
t ~+0 t ~+0

(3.3)

since D"„„=8(t)D„„.
To compute this limit, first let us define the

limit of the derivatives of the 6 function 6'(u) as
t approaches +0.' For a small t, 6'(u) is defined

by

(3.9)

where we have substituted x~ /r for s,.r. The
terms with odd numbers of x's vanish when they
are integrated over the angles, and the terms with
r" for n~ 2 do not contribute when r-t -0.
Therefore, the remaining term is

x,.x, sf(0)

6k u r r2drdQ, (3 4)
(3.10)

which, after integration over the angles, becomes
whereu=t -r oru =Vt-r, and dA is the angular
part of the spherical volume element. The function
f is a smooth test function. Using the definition
of the derivatives of the 6 function, we write the
integral (3.4) as

V' 4m sf (0)
4&m2 3 ij B&i (3.11)

The second integral in (3.8) can be written as

Bk
( () f „(~'f)

~ or. =rt
(3.5) lim r B.r

To find the limit, we let t approach +0. We may
generalize (3.5) to define the limit of 6'(u)E(r) by
the integral

ljm k g rr2 dQ
t ~+0 Br' r = t or r = Vt

(3.6)

where E(r) is a function defined on the u = 0 sur-
face.

In calculating the limit of D"„„, we find that all
but one component is nonvanishirig, D,"& . Below,
we wi1.1 show the calculation of Do&.

The highest singular term is the only term con-
tributing to the limit. Therefore, the term which
we are considering is

+2
B

B&r dQ . 3 12
& = Vt

The first integral vanishes when t -0 and the sec-
ond integral becomes

2V' 4m sf (0)
4~m2 3 $f

Combining (3.13) and (3.11), we get

(3.13)

V2
D» (x, y)„o,o = lim D, . =, 8, 6'(x -y) . (3.14)

+O
" m2

The time derivatives of D „on the t = 0 plane can
be calculated in a similar fashion, yielding

lim 2 BoB .V 6(u, )
4m'm r (3.7)

—„D".,(~, y)

Carrying out the differentiation and using inte-
gral (3.6), we get

V2 B
lim —[(s,r)f] dQ4~m2, „„Br

4

+ 5„„+ B B„5„]5„)53 x -y, 3.15

B,.r r dQ . 3.8
where V'= B'B'.
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The above results agree with the canonical quan-
tization on the t=0 plane, where one imposes the
quantization

[g'(x), y'(y)]„p „0=-i~"&'(x -y),

where ~' is defined by n'= G"=O' Q' —80$'. From
the equation of motion, Eq. (2.2), and the primary
.and the secondary constraints, we can calculate

[y'(x), p (y)]„o,o=-~, &~ &'(~-y), (3.17)

which is the same result as (3.14).
The above results show that even though the field

commutator is nonvanishing for all spacelike sep-
arations, the equal-time commutator is canonical.
Although we have shown this for a particular case,
it is probably true for all noncausal theories of this
nature.

IV. CONCLUSION

The canonical quantization is consistent with the
equation of motion as long as it is done on the t = 0
plane, as was shown explicitly in Sec. III. The
examination of the Lorentz invariance of this theory
by conventional methods shows no ill effects if the
generators of the Poincare group are integrals
over the flat t=0 surface.

It seems that in field equations where one is
faced with noncausal behavior, all spacelike sur-
faces are not equivalent and generalization of re-
lations on the t = 0 plane to all spacelike surfaces
contradicts the equation of motion. For example,
the commutation relations on t=0, when general-
ized on all spacelike surfaces, contradicts the re-
sults obtained in Sec. II, Eq. (2.15), which is ob-
tained directly from the equation of motion.
Therefore, the action principle which relies on
spacelike surfaces does not seem to apply to these
theories.
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