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Can we undo quantum measurements'F
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The SchrMinger equation cannot convert a pure state into a mixture (just as Newton's equations cannot display

irreversibility). However, to observe phase relationships between macroscopically distinguishable states, one has to
measure very peculiar operators. An example, constructed explicitly, shows that the classical analog of such an

operator cannot be measured, because to do so would violate classical irreversibility. This result justifies von

Neumann's measurement theory, without any hypothesis on the role of the observer.

The measurement process in quantum physics
was analyzed long ago by von Neumann' who showed
that it could formally be described as the trans-
formation of a pure state O' =Zc„p„ into a mixture
p =Z Ic„I'P„. Here, the Q„are eigenstates of the
dynamical variable being measured, and the P„
are the corresponding projection operators.

This irreversible transformation, commonly
called the "collapse of the wave packet, " cannot
follow from the Schrodinger equation, since the
latter generates a unitary mapping of the Hilbert
space of states. In fact, the coupling of the eigen-
states of the measured system to those of the mea-
suring apparatus is a perfectly reversible pro-
cess' 4 as long as we are willing to measure cor-
relations between the two. For these reasons,
von Neumann's theory has been considered un-
satisfactory, or at least incomplete.

There have been several attempts' ' to prove
von Neumann's conjecture by supplementing quan-
tum theory with superselection rules forbidding
the measurement of operators of a certain type
(those which connect macroscopically different
states of the apparatus). The purpose of this paper
is to show that systems with many degrees of
freedom are indeed subject to such superselection
rules. A general proof of this assertion would
be very difficult, but the following model is typical
enough to convey belief in the result.

Consider a macroscopic apparatus designed to
measure the z component of the spin of an elec.—
tron. This apparatus has a pointer (center-of-
mass coordinate q, conjugate momentum p) ini-
tially localized around q =0. The pointer is to
move through a macroscopic distance L to the
right or the left depending on whether s, = —,

' or
This can be achieved by the coupling H

=2V(t)s, p, where V(f) is a large velocity, so
large indeed that we can neglect all the other terms
in the Hamiltonian during the brief duration of the
coupling. '

Before the measurement, the state of the elec-

tron is ( ) and that of the apparatus is 4'(q, q„q„
. . . , q„) where q„q„.. . , q„are the other, "ir-
relevant, "degrees of freedom. Naturally, N is
a very large number, say 10". (It would be more
realistic to assume a density matrix instead of
the pure state g, but this refinement is not needed
at the present stage. )

After completion of the coupling, the combined
state is

where L = f Vdt. Since g is peaked around q =0,
e"~~/ is peaked around q =vL. Thus, the sign of
q is correlated to that of s, and

(&,) =(-,' »gn(q)) =-,'(In I' —
I P I') . (2)

A. , =s„sin2Lp -s, cos2LP . (3b)

[To measure A, and A, we divide the electrons in
two identical but disjoint ensembles. After each
electron passage through the apparatus, we first
measure p (modulo m/L) then the component of
s in the direction of tan '(2Lp) or cot-'( —2Lp).
Note that the eigenvalues of A, and A, are +2.]

These operators can conveniently be combined
as

A. =A. +iA = e"0 0

1 0
A straightforward calculation yields (A) =nP*

We have performed what von Neumann calls a
measurement. (As we shall soon see, a better
word would be "premeasurement. ")

The question is whether this process is revers-
ible and, in particular, whether the relative phase
n/P is still observable. At the present stage, it
is, as can be seen by measuring the expectation
values of the operators,

A, =s„cos2LP +s, sin2LP
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which, together with Eil. (2), gives ci and p sep-
arately, up to a common phase.

However, if we wait some time, the state (1)
wiQ evolve into

e ttH e ALP + efLP (5)

But e'~i'e~'~e" ~i' is simply e ' '" i'+~' (i e. , H with
the q coordinate shifted by L) and (6) can be writ-
ten as

(A) —oiPg(ei tsiq-L)e-if/l (q+L)) (7)

The coefficient of nP* would still be one if H did
not depend on q, but there is no reason to expect
that. As the pointer moves with respect to some
fixed scale on the apparatus, its energy may vary
somewhat from place to place and the coefficient
of ~iP* may be less than one in absolute value.
For small t we get

~
(e' i& ~-~ e-i « ~+~') [2 = j P6H2 + ~ .. (8a)

where

6H' =([H(q -I,) H(q+L) -(H(q -I.) -H(q+L))-] ). 2

(8b)

Moreover, if the other degrees of freedom of
the apparatus are in a mixed state, this coefficient
will quickly fall to zero, ' because of the random. -
ness of the phases. The time needed to erase
(A) is of the order of 1/5H. It is therefore in-
versely proportional to the strength of the coupling
of the macroscopic degree of freedom q, used
for the measurement, with the other degrees of
freedom of the apparatus. In the present model,
this time could be of the order of the size of the
pointer divided by the speed of sound (a few micro-
seconds).

This neat distinction between the reversible
premeasurement —Eil. (1)—and the ensuing ir-
reversible process is admittedly unrealistic in
most instances. In practice, a macroscopic ap-
paratus has almost always an amplification mech-
anism based on a metastable initial state" and
irreversibility appears at the very outset of the
process. However, the amplification requirement
is not essential and it obscures the true nature
of the irreversibility of quantum measurements,
which is explained below. (The reversal of an
idealized premeasurement is illustrated in Fig.

where H is the Hamiltonian of the electron and
apparatus. Assuming for simplicity that the two
spin states have the same energy, we obtain

iA) =np%(!'"e' ~i)"e" ~e ''"e ' ~itd"q. (6)

1.)
The above discussion of Eil. (7)—or some simi-

lar argument'o'" —i.s usually considered as a proof
that the relative phase of the two branches of Eq.
(5) is "lost" after some finite time. However,
such arguments are not convincing, because Eq.
(5) represents a pure state (what else could it
be?) and this can be shown by measuring the ex-
pectation value of another operator, namely,

A'=e "~Ae"~.

Indeed, we trivially have (A ') =aP*, since the
e"'~ factors inA' cancel those of the wave func-
tions.

However, the operator A' has very peculiar
properties. (It is not of course the Heisenberg
picture of A, the latter being e"~Ae "~. K fact,
we are always working in the Schrodinger picture. )
This A' operator is exP/icitly time dePendent and
is also a constant of the motion.

To verify that it is a constant of the motion, it
is enough to observe that its matrix elements be-
tween any two Schrodinger states are constant, or
simply to go to the Heisenberg picture, where
A~ looks like As, without any time dependence.

Now, these explicitly time-dependent constants
of the motion are very familiar in classical me-
chanics. For example, for a free particle, q
—tP/m is such a constant. Its meaning simply is
the initial value of q. For an harmonic oscillator,
such a constant would be tan '(m&uq/p) —+t, the
meaning of which is the initial value of the phase.
In general, for a system with N degrees of free-.
dom, there are 2N constants of the motion, 'a few
of which may be explicitly time independent (the
total energy, momentum, etc. ), but almost all

FIG. 1. Idealized premeasurement, using the recoil
of a rigid double mirror. If a particle is reflected from
the first mirror, a correlation is established between
the momentum of the particle and that of the instrument
(this is the premeasurement). That correlation is then
reversibly destroyed when the particle is reflected from
the second mirror. (Note that if we wish to complete
the measurement and to observe the recoil of the double
mirror between the two reflections, the latter must be
prepared with Ep «0/A, . If this device is part of a dou-
ble-slit experiment, it allows to determine through
which slit the particle p.assed only at the expense of
destroying the interference pattern, because Qq» A,.
But if we' forego observing the recoil, the interference
pattern is restored because the same bq is added and
subtracted at both reQections. )
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of which include the time explicitly. Their phys-
ical meaning is to give the 2N initial positions and
momenta as explicit functions of the positions and
momenta at some future time t. The structure
of these constants of the motion is of course hope-
lessly complicated for large N and finite t. It
leaves us no choice but to replace Newtonian me-
chanics by statistical mechanics. It is our in-
ability to make use of these constants of the mo-
tion which is the cause of irreversibility.

In the present case, we must measure, instead
of A given by Eq. (4),

where p' = e "~Pe"~ is the value of P immediately
after the premeasurement, expressed as a function
of P and 2N —1 other variables at a later time t.
In classical physics, we would say that this is so
complicated that only a "Maxwell demon" can mea-
sure all these variables and then compute P' (as-
suming H is known). In quantum physics, the task
is even more difficult because the 2N variables
do not commute. Therefore, the Maxwell demon
must contrive a single measurement" for P',
which is an incredibly complicated function of 2N
noncommuting variables and of t.

In other words, we see that not every self-
adjoint operator corresponds to an observable,
simply because not every classical dynamical
variable is observable. It is the inobservability
of these operators which makes pure states appear
as mixtures and causes the irreversibility of quan-
tum measurements.

In conclusion, let us summarize the assumptions
used in the derivation of this result. First, we
note that the macroscopic degree of freedom used
for the measurement —here, the center of mass
of the pointer —is not completely isolated from
the other degrees of freedom of the apparatus. "
(We could, of course, have treated these other
degrees of freedom as an external reservoir, but
then our result would have been trivial. It is es-
sential that our system be a closed one. )

The second assumption is the impossibility of
measuring the classical analog of the operator p'.
(There is also a. tacit assumption that if a classical
measurement is impossible, the same is true for
the corresponding quantum measurement. ) Here,
it may be objected that as long as the number of
degrees of freedom is finite, it is not impossible
to measure p', only very difficult. In principle,
a measurement of p' should always be possible
at the cost of a great increase of entropy of the
rest of the world. " From this point of view, as
long as we are able to pay the price, "we definitely
can undo quantum measurements, ' except in the

APPENDIX: A MORE REALISTIC MODEL

The simple model discussed above involves an
explicitly time-dependent coupling V(t), supposedly
switched on and off by an external agent. This may
give the impression that we are dealing with an

-open (i.e. , incompletely described) system, for
which the transformation of a pure state into a
mixture would be trivial.

In a real-life Stern-Gerlach experiment, this
time dependence is of course due to the trans-
lational degree of freedom of the electron, which
was arbitrarily ignored in our model. A more
realistic description of what happens follows.

We write the complete Hamiltonian as

H =H, +H, +2VsPu(x2 —x)u(x —x,), (Al)

where H, refers to the apparatus, H, to the free
electron (mass m, momentum k, position x), V
is a coupling constant, u is the unit step function,
and x, and x, are the entrance and exit points of
the electron as it passes through the apparatus.
The pointer is assumed massive enough so that
its velocity P/M is negligible when the electron
is outside the apparatus. When it is inside, the
pointer velocity is + V.

The measurement process can be described as
a scattering of the electron and the apparatus.
Before the "collision, "the electron has momen-
tum k. When it reaches the apparatus, it meets
an energy barrier of height + VP and thickness
x, -x,. Inside the barrier, its momentum is 0'
= (k'+2mVP)' '= k amVP/k, where we have as-
sumed that k'» 2m Vp, so that most electrons are
transmitted (a reflected electron would mean an
unsuccessful experiment). The outgoing electron
still has momentum k, but has been subject to a
phase shift (k' —k)(x, -x, ) =+ rVP where r =m(x,
—x,)/k is the classical time of passage through
the apparatus. We now identify I = 7 V and the

unattainable mathematical limit of an infinite
apparatus. " IIowever, if we admit that a finite
system may appear irreversible (if the time needed
for a Poincare recurrence is longer than the
Universe lifetime}, the present pa. per shows how
the irreversibility of quantum measurements is
rooted in the familiar classical irreversibility.
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The University of Texas at Austin, Austin, Texas
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final state of the combined system is

Qf 0
eflux e-ILL + el'Lt (A2)

whence the discussion proceeds as before.
However, several remarks are in order. First,

we have treated P as a constant during the colli-
sion, i.e. , we assumed that p =SH,/Sq =0. This
is of course incompatible with a nontrivial 6H
[see Eq. (8b)]. However, we can make the change
in P arbitrarily small by increasing V and k
(keeping their ratio constant, so that L remains
unchanged). This does not affect P, but makes
v arbitrarily small. The condition is easily seen
to be r «1/5H, i.e. , the premeasurement must
be very brief, compared to the time required to
make the measurement irreversible.

To avoid a possible misunderstanding, it must
be emphasized that 6II is much smaller than the
energy uncertainty nH =((H') —(H)z)~~'. Indeed
there must be many different energy eigenstates
involved to make the measurement possible. "'"
In particular, the incoming electron must have
AH» 5H because the two branches of the outgoing
electron will not interfere if 5H & &H (that is, we
would need an operator much more complicated
than A to display their interference").

The above remark is closely related to overall
energy conservation. We have assumed hitherto
that the outgoing electron had the same energy as
the incoming one. This cannot, of course, be
rigorously exact if H(q -L)oH(q+L) Amore.
correct treatment follows.

First, assume that initially the apparatus is in
an eigenstate of energy E, and that the electron
too is monochromatic with energy K=k'/2m.
Then obviously there is no irreversibility since
the operator e ""in Eq. (A2) becomes a phase
factor exp[-it(E, +K)] and (A) is constant. The
energy picked up or released by the electron ex-
actly compensates the energy difference in the
final state of the apparatus. It is thus important
to understand why I (A.) I may decrease if we have
a superposition (or mixture), rather than an ener-
gy eigenstate.

Even if I E,) is an eigenstate of H„ the states
e"~~

I E,) usually are not. We can write

e"*e!E)= f c,(E„E,E) I Z)dE,

where the coefficients c, depend also on K, because
L =mix, —x, I/O. By virtue of energy conservation,
the scattering process can therefore be written
as

E„Z) f-c,(E„E,E)l EE+E,, —E)dE,

where the + subscripts refer to s, =+ —,'.
Now let the electron. be initially in a superposi-

tion Jg(K) I K)dK (the apparatus may still be ini-
tially in an energy eigenstate"). The outgoing
states become

g(K)c (Eo, E,K) I E,K+ED E)dEd—K.

In order to compute (A.), we first note that

(E', K'+E, —E'
I
e"'&

I E,K+E, —E)

=(E'
I
e"~~

I E)5(K' —E' K+Ej,-
so that

(Z) cg"fg (Ã)g*=(E')c,(E„E,E)c"(E„E',E')

x (E'I &" ~l E)&(K' E' K+E-)dE-dE'dKdK'

We now make two essential physical assump-
tions. One is that 4K«K (otherwise, L is ill-
defined) so that in c, we can replace K by its aver-
age value E,. The second one is that 5H «&K,
i.e. , c,(E„E,K,) is very small unless I E —E, I

«AK (as explained above, IK,„, K„l must b-e

much smaller than &K to allow the two "branches"
of the electron to interfere). We can therefore
replace gd'(K+E' —E) by g~(K). Integration over
K and K' gives

(a) cg fc,(E„,E, E=.)c"(E„,E',E.).

x (E' I
ezg~&

I E)dE dE'.

We see that the electron energy no longer appears
in the formula (except as an average). The result
looks as if the final state of the apparatus were
J c,(E„E,K,) IE)dE. Therefore, the energy shift
of the electron cannot prevent (A) from having a
nontrivial time dependence, due to the factor
e ' + " in (E'I e"~('I E).
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Technology, Haifa.

~J. von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton,
1955).

P. A. Moldauer, Phys. Rev. D 5, 1078 (1972).
3A. Peres, Am. J. Phys. 42, 886 (1974).

J. S. Bell, Helv. Phys. Acta 48, 93 (1975).
SH. Wakita, Prog. Theor. Phys. 23, 32 (1960).
A. Komar, Phys. Rev. 133, B542 (1964).
E. C. G. Sudarshan, Pramana 6, 117 (1976); T. N.
Sherry and E. C. G. Sudarshan, Phys. Rev. D 18, 4580
(1978); 20, 857 (1979).

8A more realistic model with no explicitly time-depen-



CAN WE UNDO QUANTUM MEASUREMENTS& 883

dent coupling is discussed in the Appendix.
alt is not necessary that (A) be "rigorously" zero be-

cause it is an average value, not an eigenvalue. The
eigenvalues are +a and the probable error on (A) after
n measurements is I-lv n N. ow n cannot exceed s2a00,

say, because of cosmological limitations. Therefore,
after 1000 lifetimes (A) is indistinguishable from zero
as a matter of princip/e, not only as an approximation.
A. Daneri, A. Loinger, and G. M. Prosperi, Nucl.
Phys. 33, 297 (1962); Nuovo Cimento 44B, 119 (1966).
These authors assume that the initial state of the ap-
paratus is metastable. This is often true in practice
but, as shown in the present paper and in particular in
the Appendix, this assumption is not necessary.
K. Hepp, Helv. Phys. Acta 45, 237 (1972).

12For example, it is not the same thing to measure s„
+ s„(eigenvalues +1/~) or to measure s„and s sep-
arately and sum the results.
A macroscopic superconducting current is not accept-
able as a measuring instrument, unless it is coupled
to some monitoring device with numerous degrees of
freedom.
Here again, we may encounter cosmological limita-

tions IA. Peres and N. Rosen, Phys. Rev. 135, B1486
(1964)]. If we assume that the Universe is finite, there
must be an upper limit to the amount of entropy which
may be generated in it. It is then plausible that if N is
large, irreversibility sets in after a finite time t.
However, I do not wish to enter deeper into this sub-
ject: The purpose of this paper was not to explain
classical irreversibility, but only to clarify its rela-
tionship to the quantum measurement problem.
This is the only place where the human observer has
any role. He decides (perhaps subjectively) which ex-
periments are feasible. For a fuller discussion, see
A. Peres, Found. Phys. (to be published).
B.Whitten-Wolfe and G. G. Emch, Helv. Phys. Acta
49, 45 0976).
E. P. Wigner, Z. Phys. 133, 101 (1952).

SH. Araki and M. M. Yanase, Phys. Rev. 120, 622
(1960); M. M. Yanase, ibid. 123, 666 (1961).
If the apparatus or part of it is in thermal equilibrium,
we have ~—kT and in most realistic situations v'~
»1. This does not hamper the measurement as long
as v'QI« 1.


