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It is shown using general arguments based on Kahler geometry that supersymmetric o models defined on
manifolds which are (A) Ricci-flat or (B) locally symmetric have the following ultraviolet properties. Class A
theories are finite at one- and two-loop order. Class B theories, which include the O(z) and CP" ! models, (i) are
one-loop divergent, (ii) but have no two-loop divergences. The geometrical argument can be extended to higher
order with new complications which are discussed. It seems probable that class B theories have no higher-loop
ultraviolet divergences and quite possible that class A theories are entirely ultraviolet finite.

The nonlinear o model in two space-time dimen-
sions has been widely studied. The geometric na-
ture of the bosonic model is evident from the ac-
tion

14 [ g ,,)0,640,6760), ®

where the fields ¢%(x), i=1,...,n, are maps from
flat Euclidean or Minkowski space to an n-dimen-
sional manifold M with Riemannian metric g;;(¢).
One can obtain an N =1 supersymmetric extension®
with # two-component Majorana spinor fields ¥i(x)
which transform as a contravariant vector on M.
There is also an important theorem due to Zumino?
concerning extended N =2 supersymmetry. Given
a complex manifold M° with coordinate fields z%(x)
and conjugates z%(x), @,B=1,...,n, and Hermit-
ian metric g ,3(z,%), then the bosonic model with
action

I=f d* g ;3(2,%2)9,2%9, 28 )

has an N =2 supersymmetric extension, withn
complex spinor fields, if-and only if the metric
satisfies the Kahler condition

8,843, 2) =882, 2). @)

Thus Kahler geometry enters the subject in con-
nection with N =2 extended supersymmetry. It is
also possible to have N =4 supersymmetry in non-
linear models,® and it has recently been shown*
that the simplest N =4 models involve Kahler
manifolds with vanishing Ricci tensor.

In this paper we show that Kahler geometry has
very strong implications for the renormalizability
of supersymmetric ¢ models defined on either
Riemannian or Kahler manifolds. We now sum-
marize the results.

Strict renormalizability does not hold for general
metric o models in two space-time dimensions
because there are typically an infinite number of
counterterms allowed by invariance and power

counting. The one-loop counterterm of the bosonic
o model involves the Ricei tensor of the manifold®
together with a noncovariant field renormalization.
The latter vanishes for all Kahler manifolds, and
the former vanishes for all Ricci-flat manifolds
whether Riemannian or Kahler. One-loop bosonic
counterterms do not change when fermions are
added with supersymmetric coupling, so that su-
persymmetric models on Ricci-flat manifolds are
also one-loop ultraviolet finite.

At two-loop order the situation is rather dif-
ferent. All bosonic 0 models have two-loop diver-
gences.® However, using Kahler geometry one can
argue without calculation that invariant diver-
gences cancel in two classes of supersymmetric
models, those defined on Ricci-flat manifolds
(R,;=0) or on locally symmetric manifolds (DR ,,,,
=0). The latter class includes the well-known
supersymmetric extensions of the ” O(z) and® CP"!
models and all other models with instanton solu-
tions.® The general argument allows one two-loop
ultraviolet counterterm of specific tensor form
which is nonvanishing on manifolds with D;R;,# 0.
Explicit two-loop calculations confirm the absence
of divergences for Ricci-flat and locally symmetric
spaces and the presence of divergences associated
with the one allowed tensor for general manifolds.
This divergence appears to be a consequence of the
generalized renormalization-group® pole equations.

Our argument can be applied to the study of ultra-
violet divergences at three-loop and higher order,
but there are new complications. At present the
conclusions are more speculative because they
are based on mathematical results which seem
plausible but are not yet established. It appears
very probable that all higher-loop invariant ultra-
violet divergences cancel in supersymmetric o
models on locally symmetric spaces. This means
that these models are field theories of a new type.
They have ultraviolet divergences only at one-loop
order, even though power counting and general
invariance considerations permit higher-loop di-
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vergences. It is also possible that higher-loop
divergences cancel for Ricci-flat manifolds so that
supersymmetric models on Ricci-flat spaces are
entirely ultraviolet finite.

In this paper the general line of argument lead-
ing to the conclusions above is developed. At one
or two points we must use detailed properties of
the background-field expansion. These will be
more fully explained and detailed two-loop calcula~
tions presented in another planned paper.*°

LOCAL KAHLER GEOMETRY

The local geometry of Kahler manifolds is im-
portant for our considerations.! An n-dimensional
complex manifold can always be regarded as a 2n-
dimensional real manifold with coordinates z*,
where the index A runs through the » holomorphic
indices a=1,2,...,n and » antiholomorphic in-
dices @=1,2,...,n, and we have 2*=2Z% A vector
V, then has 2r components V, and V5. All form-
ulas of Riemannian geometry, such as definitions
of connection and curvature, are valid for complex
manifolds when expressed in terms of 2rn-valued
indices A,B,C,... . In particular there is a real
line element given by ds?=g ,,dz4dz® with g,
=gp4. Reality is ensured by the conditions g,,
=Za5 and g,5=845- S0 far we have made no re-
striction but have simply chosen to describe an
even-dimensional Riemannian manifold using com-
plex coordinates.

Now we make the restriction that the manifold
is Hermitian. This means that there is a preferred
class of coordinate systems in which unmixed
components of the metric tensor vanish (g“:gag
=0) leaving the line element in the Hermitian form
ds?=2g ,zdz*dz®

Finally we make the restriction to Kahler mani-
folds by requiring that the Hermitian metric satis-
fy (3). There are then simplifications in the stand-
ard formulas for connections and curvature, and
many components vanish. For example, all com-
ponents of the connection I'4,, vanish except those
of the form I'§, =f~§7. The nonvanishing compon-
ents of the curvature tensor are of mixed form
R 5,5 together with components obtained using the
usual symmetries. There is also a new symmetry,
R ,z,5=R,543, following from the usual cyclicity
property.

We shall need the concept of a “Kahler tensor”
which is a second-rank tensor 7,5 with vanishing
unmixed components and mixed components T,z
satisfying the covariant condition 8,T ,5=9,T,5. A
Kahler tensor defines a closed two-form T
=T,5dz* adz®, and is locally derivable from a
scalar potential, i.e., T,5=9,955(2,2). The Ricci
tensor R,z =g"R 435, is a Kahler tensor; it satis-

fies R,;=0=Rz; and R,z =9,9;Indet(g,3).

GENERAL RENORMALIZABILITY CONSIDERATIONS

We consider the bosonic o model with classical
action (1). Power counting implies that the counter
terms which correspond to ultraviolet divergences
of one-particle-irreducible (1PI) Green’s functions
are operators of dimension two. There are two
classes of counterterms. The class of major in-
terest in this paper are the invariant counterterms
which represent the “on-shell” divergences of the
theory and take the form

Iy=3 f d’ 8,$8,¢7T,,(¢), (4)

where T,; is a symmetric second-rank tensor
algebraically constructed from the curvature ten-
sor and covariant derivatives of the curvature
tensor. For example, T,;(¢) might involve R,;,
RyumR¥™, DRy pm,D;R®™, or many other possi-
bilities. Inadditionthere are noncovariant counter-
terms which vanish if the classical field equations

%:-(D¢‘+r‘,kau¢fau¢k)=0 (65)
are used. Except at one-loop order we will not
discuss such terms which are compensated by field
redefinitions and are of secondary interest.

In a general Riemannian metric infinitely many
of the counterterm tensors T';; will not be of the
same functional form as the metric g,;(¢). There-
fore strict renormalizability does not hold and one
cannot usually give meaning to a nonlinear ¢ model
on a given manifold M with metric g,,(¢). There
seem to be the following possibilities for defining
quantum field theories:

(a) Exceptional cases where at most finitely
many counterterms differ in form from g;;(¢).
Such an exception occurs for spaces of constant
curvature where the curvature tensor takes the
form R,,,; =c(g;,8;; =g &) and covariant deriva-
tives vanish. All tensors T;; algebraically con-
structed from the curvature must be proportional
to g,,(¢). Such is the case for the O(z) models
which are well known'?!? to be renormalizable
in the traditional sense.

(b) Cases where all but a finite number of count-
erterms vanish. This case is unlikely for bosonic
o models, but in this paper we show that it is very
likely for a broad class of supersymmetric ¢ mod-
els, due to cancellations of boson and fermion di-
vergences required by supersymmetry.

(c) Renormalization-group interpretation. Using
dimensional regularization and minimal subtrac-
tion, Friedan® has derived renormalization-group
equations of the form
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Through two-loop order explicit calculations give

K gij'—:_Bij(g)‘ (6)

1
pulle) R im0 )

for bosonic 0 models. In these equations p is the
renormalization scale parameter and 7% is Planck’s
constant. Integration of these equations yields tra-
jectories in the space of all Riemannian metrics,
so that the initial geometry changes under renor-
malization.

GENERAL STRATEGY

Our approach to the ultraviolet structure of
supersymmetric o models is to combine the uni-
versality of the background-field method® of cal-
culation of invariant counterterms with the theo-
em? connecting Kahler manifolds and N =2 models.
In the background-field method applied to a bosonic
o model the field ¢*(x) is split, ¢'lk)=¢? &)+&i (),
into a term satisfying the classical field equations
(5) and a remainder £:(x). The remainder does
not transform simply under reparametrizations of
the manifold, but using Riemannian normal co-

. ordinates it can be expressed®® in terms of the
quantum field ¢¥(x) which transforms as a con~-
travariant vector. After expansion of the action
(1) as a functional Taylor series in ¢i(x), the cal-
culation of a relatively small number of Feynman
graphs will give the counterterms up to any given
order in perturbation theory in the form

I,=2 fdzx 8,00,07(@,R;; + ;R yy , R
+a R R +e00), ®)

where the coefficients a; are each a series of poles
in the dimensional-regularization parameter €
=d-2.

The universality of this method is most import-
ant; to wit, the calculations can be done for the
most general Riemannian manifold M with metric
g”(qb) unspecified, so that the coefficients
a,,a,,0, ... are universal and correct for all
geometries. In particular results for a general
Riemannian manifold apply immediately to ¢ mod-
els on general Kahler metrics g,,g(z, Z) provided
only that we incorporate the algebraic and differ-
ential restrictions implied by the fact that we are
regarding the Riemannian case as the 2z-dimen-
sional real description of an n-dimensional Kah-
ler metric. For example, the counterterm (8)
would become

I, = f 08,29, (a,R o5 +20,R 3Ry

+a3Ru;R7B-+---) 9)

with the same coefficients a,,a,,a,, ... as in (8).

A further implication of the geometric structure
of (1) [and of (10) below] is that the tensors T;
which can appear as counterterms at /-loop order
in perturbation theory can be characterized as
contractions of products of the curvature which
scale as T;;—~A*™'T,; under the constant scaling
of the metric g;;~A™'g,;. The reason for this is
that the I-loop counterterm has 7! as a factor,
and a change in 7 is equivalent to the scaling of
the metric above. Thus the tensor R,; can only
appear as a one-loop counterterm, while the ten-
sors quadratic in the curvature in (8) are possible
only at two-loop order.

We now turn to supersymmetric models with
classical action

I=3 f dx[ g1;(9)8, 00,07 +4ig,; (0)Ty* O, )
- Ry @)@ 9] (10)

which is the supersymmetric extension! of (1) for
a general Riemannian manifold. The covariant
derivative is (D, ¥)'=8,¢' +T7,,8, 0%, and R, is
the curvature tensor of the manifold.

The background-field method requires splitting
of both ¢*(x) and ¥*(x). However, our general
argument requires only implicit knowledge of the
bosonic counterterms of the form (4) because
supersymmetry requires that these are accom-
panied by fermion terms so that the whole struc-
ture is a generalization of (10) with g;; replaced
by T;;. Strictly speaking this is true only before
auxiliary fields are eliminated.

Let us suppose that the background-field method
applied to the supersymmetric o0 model on a gener-
al Riemannian manifold M gave the bosonic invar-
iant counterterm

I,=% fdzx 8,0%0,07(b,R,;+b,g,, R

+D,R R ™ e es). (11)

Universality then implies that upon restriction to
a general Kahler manifold, one would obtain

I, = fdzx 8,2%0,2°(b,R o5 +b,8a5R

+20,R o R 4eee)  (12)

with the same coefficients b,, b,, b, ... . Since

the classical action would have N =2 supersymme-
try, the bosonic counterterm must be accompanied
by fermion terms with overall N =2 supersymme-
try. However, by Zumino’s theorem? this can
happen only for tensors T,z which are Kahler
tensors. Any linear combination of the possible
tensor counterterms for a given order in pertur-
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bation theory which does not have vanishing curl
cannot occur, and its coefficient must vanish uni-
versally both for general Kahler and Riemannian
manifold models. For example, the tensors R,z
and g,zR are the only possible invariant one-loop
counterterms. The first has vanishing curl but
the second does not for general Kahler manifolds.
Therefore the coefficient b, must vanish for all
supersymmetric o models.

Thus our general strategy is to show that the
Kahler condition is sufficiently restrictive that
many possible counterterms allowed by Rieman-
nian geometry cannot actually be present in super-
symmetric models. However, there are several
qualifications. First, some tensors T,; acquire
unmixed components upon specialization to the
Kahler geometry. As discussed below some of
these can be compensated by field redefinitions,
but others cannot, causing complications in the
general arguments at three-loop order and beyond.
Second, the interplay between Riemannian and
Kahler manifolds implied in our strategy surely
fails for Riemannian manifolds of odd dimension.
However, the universality of the background-field
method is so strong that the coefficient of any
particular tensor counterterm is actually indepen-
dent of the dimension of the manifold. Dimension
dependence could only arise from contractions
g¥g,;,=n and these cannot occur as can be seen by
cursory examination of the action obtained by the
general background-field expansion.'® -

Finally our strategy requires a regularization
procedure which preserves N =1 supersymmetry
of Riemannian-models and automatically gives
N =2 supersymmetry when restriction to a Kahler
metric is made. Dimensional regularization can be
made consistent with N =1 supersymmetry,'*!® and
N =2 supersymmetry is simply a matter of an ad-
ditional SO(2) internal symmetry which is also
preserved. Note that in general an N =2 super-
symmetric theory does not necessarily have SO(2)
internal symmetry, but that this symmetry is pre-
sent here because all Kahler-metric supersym-
metric 0 models on two-dimensional space-time
can be obtained by reduction from four space-time
dimensions.? It is part of our assumptions that
supersymmetric dimensional regularization can be
performed.

ONE-LOOP ORDER

The one-loop counterterm of the general bosonic
o model is obtained from the background-field
expansion through second order in quantum fields
¢*(x). The divergent graphs of the expanded La-
grangian yield the one-loop counterterm for (1)
and are easily calculated. The result is

. . .ol
AI(”:mfdzx[Ru(‘p)auWau‘f’j+gjkrl’kg$7]'

13)

The invariant term has been known for some time®
[and is obviously related to (7)]. The noncovariant
additional term was found'® using a slightly differ-
ent method!® so that AI'Y) actually gives all diver-
gences, both on-shell and off-shell, of 1PI Green’s
functions. Because it is proportional to the clas-
sical field equation the noncovariant term repre-
sents a field renormalization.

For a bosonic Kahler manifold the one-loop
counterterm obtained immediately from (13) is

1
I fdszmE(z, 2)8,2%9,25. (14)
The noncovariant term cancels because g*#=0

and T'* 7 =0 in any Kahler manifold. This curious
result is confirmed by calculations in the O@:)

- model'® where the field renormalization [when de-

fined appropriately, see Eq. (A12) of Ref. 13]
vanishes for »n =3 because the O(3) and CP! models
are equivalent and CP! is a Kahler manifold.
Actually because of the noncovariance of I'!;, the
vanishing of the O(3) model field renormalization
is required only for real coordinates adapted to
the Kahler structure'” such as the conformal co-
ordinates of Ref. 15. The invariant term in (13)
also agrees with O(z) model calculations.!13

We note also that the invariant counterterm van-
ishes for any Ricci-flat geometry, whether Rie-
mannian or Kahler. .

We now come to the supersymmetric model (10).
This action must also be expanded to second order
in quantum fields. We are only interested in the
effect of fermions on the bosonic counterterms.
Thus there are no fermionic background fields,
and the ¥*(x) in (5) can be viewed as quantum fields.
Only the quadratic term in (5) is relevant for one-
loop effects. The fermion contribution is actually
finite which can be seen by referring the Fermi
fields to tangent frames on the manifold in which
case the fermion Lagrangian becomes

£ =319 [0, 97+ 0P (9)o, ¢ '¥?] , (15)

where w?®(¢) is a spin connection on the manifold
and the product w®(¢)d, ¢* transforms like a gauge
potential under rotations of the tangent frame.
Thus one-loop fermion effects are equivalent to
those of a non-Abelian gauge field theory in two
dimensions which are known to be ultraviolet fin-
ite.

Therefore to one-loop order the invariant count-
erterm of a Bose o0 model involves the Ricci tensor
of the underiying manifold and is unchanged by the
supersymmetric addition of fermions. A nonco-
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variant field renormalization vanishes for Kahler
manifolds.

TWO-LOOP ORDER

For a bosonic ¢ model the two-loop ultraviolet
counterterm cannot vanish. This is obvious from
the trace g#/8;; of the generalized 8 function (7).
For supersymmetric models the situation im-
proves dramatically.

The candidate two-loop invariant bosonic count-
erterm involves tensors T;; of weight one under
the scaling g;; ~A™'g,;. After taking into account
restrictions due to the Bianchi and Ricci identities
one finds that the most general possible counter-
term is

IR =4n fdzx 9,00, 07 (bR R ™ +D,R ;R +bsg; R

+byRp RM + bsRile'k

+bcD*D,R;; +b,D,D;R)  (16)

which involves seven independent tensors. The
same answer can also be obtained by inspection
of the background-field expansion of the action (10)
through fourth order in quantum Bose fields §‘(x)
and fermion fields ¥*(x) [and the expansion of the
supersymmetric extension of the one-loop counter-
term (13) through second order in quantum fields].
We establish a lemma below which shows that
the tensor D;D;R is compensated by a field re-
definition and is not an on-shell divergence of the
theory. Upon restriction to a general Kahler
manifold, the first six tensors all have vanishing
unmixed components. The remaining task is to
examine whether any linear combinations of the
six are Kahler tensors. The detailed calculation
is presented in the Appendix. The result is that
one linear combination has vanishing curl and is
an allowed counterterm. This is the tensor

T, =D*D,R;, +2R,, ,R*+2R R,
=D*D,R,;+2[D,, D JR?,. amn

Thus the two-loop ultraviolet counterterm in a
supersymmetric ¢ model must be a universal
multiple of this tensor. Since T;; vanishes for
Ricci-flat and locally symmetric manifolds we
conclude that these two classes of 0 models are
two-loop ultraviolet finite. It is curious to note
that T;; coincides with the generalized Laplacian
of Lichnerowicz!® applied to second-rank symme-
tric tensors.

EXPLICIT TWO-LOOP CALCULATIONS

Several calculations of two-loop diagrams have
been performed to check the results of the general

argument of the previous section. There is a sim-
ple form of the background-field method called the
moving frame method*® which is applicable to the
bosonic O(z) models® and which can be extended
to include supersymmetrically coupled fermions.
For the bosonic case one works with the Lagran-
gian and constraint

£=30,0?,
(9)2=1.

Given a classical solution ¢/,(x) one defines a
set of n — 1 unit vectors e{(x) which are mutually
orthogonal and orthogonal to ¢, (x). An arbitrary
field is then referred to this frame, i.e., we ex-
pand ¢ (x) =uyp., (x) +u e, x). The constraint im-
plies u, = (1 —u,u,)*/?, which can be expanded to
provide a simple expansion in quantum fields u,(x).
The calculation further simplifies due to consid-
erations of SO( — 1) gauge invariance and power
counting. By this method we have reproduced the
results of Ref. 12 for the two-loop coupling-con-
stant renormalization of the bosonic model and
have then shown that fermion effects cause the
two-loop divergence to cancel.

We have also completed the two-loop background-
field calculation of ultraviolet divergences for o
models on general Riemannian manifolds. We first
make the simplification to a Ricci-flat metric.
Here we reproduce the result of Ref. 6 for the
bosonic case and then show that fermions cancel
the divergence found there. For a general super-
symmetric o model we find an additional diver-
gence with tensor form given by (17) and a co-
efficient which is a second-order pole in €.

In a standard renormalizable field theory two-loop
double poles in counterterms are determined from
one-loop single poles by renormalization-group
pole equations.® One would also expect such pole
equations in the generalized renormalizable
framework® for nonlinear ¢ models. Indeed a sim-
plified analysis suggests that the tensor T';; is the
exact two-loop divergence predicted from the one-
loop counterterm (13) by the generalized pole
equations. We hope to discuss this situation fur-
ther in Ref. 10.

(18)

A LEMMA

‘ We now show that any invariant counterterm of
the form

Ict=§1€- fd2x 8,9%,6'D,V,(¢), (19)

where V,;(¢) is a vector field on the manifold can
be canceled by a field redefinition of the form

¢ (x)=¢!(x) - (1/2€)V¥(¢ (x)). The infinitesimal
effect of this redefinition on the initial bosonic
action (1) is simply
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1
ol=-5c fdzx(au Vo, 00z, +30,0%,0 0,0,

1
=-5c [ams,0%,0'D,7, (20)

which cancels (19). We have not studied the ef-
fect of this field redefinition on fermionic terms
of the supersymmetric action. However, it seems
clear from the superspace formulation® that a
fermionic field redefinition of the form ¥’*(x)
=9*(x) - (1/2€)D,V¥(¢ (x))¥’ (x) will also be required.
Terms quadratic in V and effects of the field re-
definition on the one-loop counterterm (13) must
also be considered. It appears that these induce
higher-order poles in € which must cancel consis-
tently due to the renormalizable structure. This
lemma is easily interpreted in the language of the
renormalization group. We are interested® only

in changes of the metric g”(cp) under renormaliza-
tion which are actually changes of the geometry
and therefore must exclude diffeomorphisms of

- &4;(¢). A field redefinition is a poor man’s diffeo-
morphism.

Note that this lemma applies to any counterterm
of the form D,D,S where S is a scalar. When re-
stricted to Kahler manifolds such tensors have
both mixed components 8,9;S and unmixed com-
ponents D,8,S. A Kahler tensor has mixed com-
ponents which can be represented as 9,98;S but
unmixed components vanish. Such a tensor cannot
be canceled by a field redefinition.

HIGHER-LOOP ORDER

Let us consider tensors T,; which are algebrai-
cally constructed from products of curvature ten-
sors with no derivatives. On a Kahler manifold
the curvature tensor has an equal number of barred
and unbarred indices, so that tensors T, con-
structed from them have vanishing unmixed com-
ponents. Tensors with nonvanishing unmixed com-
ponents can appear when derivatives of curvature
are included and in general they cannot be com-
pensated by field redefinitions. For example, the
tensor DR, . D,R*¥™ has this property, and is a
candidate three-loop counterterm for nonlinear
o models. At present such tensors cannot be ex-
cluded by N =2 supersymmetry since Zumino’s
theorem requires a Hermitian metric by hypothe-
sis. However, such tensors could be excluded
by a stronger form of the theorem to the effect
that N =2 supersymmetry is not possible in a mani-
fold which is genuinely non-Hermitian, i.e., not
diffeomorphic to a Kahler manifold. We think that
this extension is plausible and hope to pursue it
elsewhere. Independently of this, however, the
tensors in question vanish for locally symmetric

spaces and it may be possible to establish higher-
loop ultraviolet finiteness for this class of super-
symmetric ¢ model without confronting the prob-
lem of non-Hermiticity. ‘

The key problem is still the question of Kahler
tensors, that is, tensors of the form

Typ=R¢e+DReeeRevs),p : (21)

with all indices but two contracted, and with T,
=0 and 8,T,5=9,T,5. The discussion at the two-
loop level suggests that the vanishing curl condi-
tion is very restrictive but does not eliminate all
possible tensors. At least those required by the
renormalization-group pole equations are al-
lowed. It is also clear that the proof by exhaustion
which eliminated all but one two-loop tensor must
be replaced by a more general argument. Toward
this end it appears useful to discuss the Kahler
tensor question in terms of the potential S for
which T,5=98,8;S. If S is not a true scalar or only
locally defined on the manifold, as in the case of
the Ricci tensor R ,5=29,9;51ndetg,; or the metric
8q5=0,9,F, where F is the Kahler potential, the
tensor T,; defines a 2-form which is closed but
not exact. It may be possible to use cohomology
theory to show that the Ricci and metric tensors
are the only closed inexact 2-forms algebraically
constructed from curvature on a general Kahler
manifold. If so, one can restrict one’s attention

to tensors for which S is a true scalar constructed
from curvature as in the case of the two-loop
tensor T; for which T, =0 and T ,5=98,9;R. All
such tensors vanish for locally symmetric spaces.
One might also hope that further geometrical argu-
ment can establish that the only such tensors which
appear are those required by the renormalization-
group pole equations. In this case the tensors will
vanish on Ricci-flat manifolds. .

The discussion of this section is speculative, but
we would summarize it by saying that it appears
probable that higher-loop counterterms can be
excluded by general argument for supersymmetric
o models on locally symmetric manifolds and pos-
sibly excluded for Ricci-flat manifolds also.

CONCLUSIONS

We have demonstrated that there is a powerful
connection between the ultraviolet properties of
supersymmetric ¢ models and Kahler geometry.
This connection is not exhausted by present re-
sults but can probably be pushed further to derive
stronger results on higher-loop finiteness. In
four-dimensional field theories it is well known
that there is improvement of the ultraviolet diver-
gence structure in global supersymmetry and sup-
ergravity. What is discussed here is the ahalog
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in two-dimensional nonlinear theories. It is sur-
prising that there is no improvement due to super-
symmetry in one-loop order, but remarkable con-
sequences in higher order. '
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APPENDIX

In this appendix we will show in detail that the
tensor T;; of (17) is the only linear combination
of the first six tensors in the two-loop counterterm
(16) which is a Kahler tensor. We start with the
manifest Kahler tensor

To5=09,9;5R
=20,0;579, 95 Indetg . - (A1)

We move the 8, and 9z derivatives to the right
using the relations

Rgg’=0950",, T%,=¢%0:0,7, (42)

5 A2
aagys = _geﬁrae
which are correct for general Kahler manifolds.!*
After using R,;=9,9;zIndetg, we find

T o5 =D"D R 45 +2R ;555R™ +2R R5 (A3)

asgyﬁ = _grerb o

which is the restriction of (17) to a Kahler mani-
fold.

To show that T;; of (17) is the only curl-free
linear combination, we study the five independent
tensors

TW 5 =Ra7&ﬁR§;ﬁﬁ ,

T(Z)as' =Ra§R y

T(3)a§ =gu§R2’ (A4)
T(é)aa =Ra76§R;5 ,

T(S)aé' =RQ;R;§

obtained by restriction of the tensors of (16) to a
Kahler manifold. Since only T’ contributes for
Ricci-flat Kahler manifolds (R,z=0) we can study

this tensor alone, independenf of linear combina-
tions with others. Taking the trace of the curl and
using the Bianchi identity, we find

geﬁ[aeT(l)aE - BaT(l)eE] =Ra?ﬁf'1D7Raﬁ - %am(RemBRE;&E) .

(A5)
The second term is nonvanishing for general Ricci-
flat Kahler manifolds, so that 7' is not a Kahler
tensor.

The most straightforward way to show that there
are no curl-free linear combinations among the
remaining four tensors in (A4) is to compute these
tensors for one explicit Kahler metric. With bad
luck one might choose a particular metric where
these are allowed linear combinations but this does
not turn out to be the case. A suitable metric is
defined by the Kahler potential F(u, %) =e*? with
uw=2u%%%, a,B=1,...,N and u, =0,uf, W,
=3,#". For this manifold

Zap =€ " (0op+Uoup),

a8
a o uu
gO‘B _e-uu(aaﬂ >’

l+u-@

‘a -B (AG)

a _ _sa ]
R ,5=0%0,5+0 +08s
U T, U

uu
— (04670, + Oysl05) + M +u-m?"

“1iu-m
Each tensor of (A4) has the generic form
T(i)a5=5aaf(i)(x)—ﬂaueg(i)(x)a (A7)
where x =u +#%, and curls take the form
8,TV 1z =8, TV 5= (8,47, — 8,,7,)C P (x),

C(i)(x)=£_f(i)(x)+g(i)(x). (A8)

Using (A6) we explicitly compute the functions
F(x) and g'?(x) for i=2,3,4,5 and then compute
C‘9(x) which appears in the curl. We find that
each C‘¥(x) can be written as C‘¥(x) =¢™*P'¥)(y)
where the P’(y) are polynomials in the variable
vy =(1+x)7, three polynomials being of 5th order
and one of 7th order. One readily tests that these
polynomials are linearly independent which shows
that no linear combination of 7'?, T‘®, T or
T is a Kahler tensor.
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