
PH YSICAL RK VIE% 0 VOLUME 22, NUMBER 4 15 AUGUS T 1980

Suppression of ultraviolet infinities in gravity-modified field theories

M. S. Sri Ram* and Tulsi Dass
Department of Physics, Indian Institute of Technology, Kanpur, India

(Received 8 February 1979)

Ultraviolet infinities in quantum field theories are regularized by including the gravitational interaction
and applying nonpolynomial Lagrangian techniques to it in a certain approximation which greatly simplifies
calculation and gives the same expressions for the regularized amplitudes as the full tensor gravity in the
lowest order in the gravitational coupling constant. The approximation is better than scalar gravity and
works for all field theories, including exact and broken Yang-Mills theories and other renormalizable and
nonrenormalizable field theories. Special consideration is given to regularization of theories with
spontaneously broken symmetries (taking the cr model as an example) and of Yang-Mills fields.
Renormalization constants for the general Yang-Mills field and for quantum chromodynamics are explicitly
calculated in the lowest order in the gauge coupling constant. Gauge invariance (both Yang-Mills and
gravitational) are shown to be preserved.

I. INTRODUCTION

It is by now well known that nonpolynomial
Lagrangians have remarkable convergence prop-
erties' and that, in particular, the nonpolynomial
character of the gravitational interaction can be
exploited, employing superpropagator methods, '
to regularize ultraviolet infinities in quantum
electrodynamics" and other field theories; the
inverse of the gravitational. coupling constant K

provides a natural ultraviolet cutoff. This reg-
ularization procedure has at least two advantages
over others4: Firstly, it is not ad hoc but quite
natural in that it recognizes the regularizing role
of the gravitational interaction which is always
there but is usually ignored due to its small
strength; secondly, it is universal because gravi-
tation couples to all fields —in fact, it is not
difficult to see that its regularizing effect is
sufficiently strong to take care of the ultraviolet
infinities of even the so-called unrenormalizable
field theories.

The complications of tensor gravity, however,
make it very difficult to put this scheme of reg-
ularization in practice. As a remedy, it was
proposed in Ref. 5 to employ exponential eou-
plings of a massless scalar field o so as to make
a Poineare-invariant Lagrangian conformal in-
variant and, after appropriate field transforma-
tions, exploit the exponential eouplings to obtain
infinity suppression. This method has, un-
fortunately, a drawback in that, if one insists,
as was done in Ref. 5, on having canonical scale
dimensions for various fields, the method does
not work for the important ease of Yang-Mills
fields' because the Yang-Mills Lagrangian is
conformal invariant' by itself. Even for spon-
taneously broken gauge theories, s where the ex-

ponential a couplings can be introduced in the
mass terms for the Higgs fields and taken to
other terms by field transformations, it is gen-
erally not possible to regularize all ultraviol. et
infinities. One approach to remove this draw-
back coul.d be, for example, to employ noncanon-
ical scale dimensions for various fields; this,
however, does not appear to be a very attractive
proposal.

In the present work we explore in some detail
an approximation' to the usual tensor gravity
couplings which has all the simplicity of scalar
gravity and works for all field theories. This
approximation consists in retaining the ~g
factor in the action integral with appropriate
exponential parametrization, replacing the metric
tensors g„„and g"" eLsewhere in the couplings
with matter fields by the Minkowski metrics
g„„and g'", respectively, and ignoring gravita-
tional self-interactions. This approximation
greatly simplifies calculations while it retains
all the effectiveness of the regularizing role of
full tensor gravity.

In the next section some general features of
amplitudes regularized aeeording to the above-
mentioned scheme are discussed and illustrated
with examples: viz. , the A4" interaction (which
is unrenormalizable for N& 4) and quantum elec-
trodynamics. It is noted that, when a class of
gauges for the graviton propagator (containing the
rock-de Donder gauge as a special ease) char-
acterized by a parameter $ is employed, the $
dependence goes into the renormal. ization con-
stants and the "physical parts" of amplitudes
remain $ independent. Section III is devoted to
the discussion of regularization of theories with
spontaneously broken symmetries with the 0
model as an example. The main new feature here
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is the regularization of bubble diagrams. In
Sec. IV we discuss regularization of non-Abelian
gauge theories. Renormalization constants in
lowest nontrivial order are cal.culated. Due
consideration is given to problems associated
with gauge invariance. The last section contains
some concluding remarks.

II. REGULARIZATION SCHEME VfITH
{APPROXIMATED) GRAVITY

In this section we shall introduce the approx-
imation to the full gravitational interaction
mentioned in the Introduction, discuss important
features of amplitudes calculated by applying non-
polynomial Lagrangian techniques to this ap-
proximated gravitational. interaction, and il.—

lustrate these with simple examples.

gab and g
(iv) Each term in the Lagrangian is to be

multiplied with an appropriate power of 4-g
where g —= det(g„„) to make it a scalar density.

(v) To the Lagrangian modified as above, one
has to add the Einstein Lagrangian for gravity

1
@~gy = R V gK

(2 4)

L"' = [exp(-,' «P)]"', (2.5)

which implies

and an appropriate gauge-fixing term for the
gravitational field.

For the gravitational field we shall employ the
exponential parametrization'

g = -exp(-«Trg) = -exp(-2«X) . (2 6)

A. Gravity-modified field theories

The fundamental objects in terms of which
the gravitational interaction is to be described
are the vierbein fields" L~ which relate the
Riemannian metric tensor g„„to the Minkowski
metric q„ through the relation

a b
gPv LPLv lab

Here Q is the symmetric 4 x 4 matrix field of
gravitons. Vife shall generally work in the Fock-
de Donder gauge' in which the graviton propaga-
tor is given by

& ol r(y"'(x)q "'(o))l o)

= a(rl "6' +0"'0"' —'ll"'8" )D(x), (2.7)

ab=L„,I vbq (2.1) where D(x) is the propagator for a massless
scalar fiel.d:

where L„,=g,b L"„. Both the general tensor
indices p. , v, . .. and the Lorentz indices a, b, ...
take values 0, 1, 2, 3 and the summation conven-
tion has been employed. It is convenient to as-
sume that the vierbein field is symmetric:

Lpa = Lap t (2.2)

the relation (2.1) then fixes L„,uniquely for a
given g„„. The inverse L"'=L'" of the vierbein
field matrix L„, satisfies the relations

LPa L gP
va

L" L„b=5b.
(2.3)

As is well known, ' when couplings with the
gravitational field are introduced in a Poincare-
invariant Lagrangian, the following modifications
are to be made:

(i) Ordinary derivatives of fields are to be
replaced by "covariant derivatives" employing
the coefficients of affine connection.

(ii) The Dirac bilinears, which are tensors
with respect to the Lorentz group, are to be can-
verted into tensors with respect to the general
coordinate transformations with the help of the
vierbein fields.

(iii) All contractions of tensor indices are to
be done with the Riemannian metric g„„and its
inverse g"" instead of the Minkowski metrics

1
D(x) =— (2 8)

(our metric has signature +- --). The effect
of employing a more general class of gauges will
be considered at the end of this section. We shall
be interested only in the regularizing effect of
gravity on other interactions and will not consider,
for example, processes involving gravitons in
the initial and/or final states.

=20+4, +$2+8~,y, (2.9)

B. The approximation

Our approximation consists in ignoring, for
most practical purposes, all gravitational inter-
actions except the v-g factor with the coupling
terms in the Lagrangian; the gravitational self-
interactions are also to be ignored. As we shall
see later, some effects of the discarded terms
have to be taken into account to preserve gauge
invariance and to regularize the bubble diagrams.

To see how it works, we shall consider a
simple example —the self-interaction XC"(¹3)
of a massless scalar field which is unrenormal-
izable for N& 4. The Lagrangian including
gravity is

2 = v-g (~g""&„4&„4 —&4«) +2„,„
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( N- I ) Scalar lines

Scalar self-energy supergraph. The shaded
double line represents the graviton superpropagator.

where

Z, = -A. ~g 4 ~ = -A4" exp(-zg),

'(~-i g"" n'"—)s.c's.~ .
(2.10)

dz I'(-z)(z')'[D(x)] "" ', (2.12)
2wz Jc

where Cp is a contour parallel to the imaginary
axis with -1&Rez &0. To be able to apply the
Gel. 'fand-Shilov formula"

s -&1(2-z) d 0 -cq g

16w'I'(z) (2w) 16m

(0 & Rez & 2)
(2.13)

we shift the contour in (2.12) to the left so that
0&Re(z+N-1)&2 and obtain

Ot+4

II(k') = . dz I'(-z)II(k', z),
2%~ Q $OQ

(2.14)

where -N+2& u&-N+3 and

-iAA.', gI'(3 -N- z) (-k'
16m I'(N+z-1) (16

(2.15)

In our approximation 8, and terms in 2„„
other than the bilinear ones are to be neglected.
We shall consider the supergraph for scalar
self-energy in the lowest order in & (Fig. 1),
which gives

II (k') =Ah. ' Jt d'x e"'*[D(x)]" ' exp[-K'D(x)],

(2.11)

where A. is a numerical constant. Now

[D(x)]" ' exp f-z'D(x)]

g (-&')"
[D(x)]"~-i

~-p Ã1

pole at z =0 gives terms in in~ and zeroth power
of a. The poles at z =1, 2, . . . give terms of order
~ and higher. The negative powers of a and lnx
terms are reminiscent of the ultraviolet diver-
gences in the self-energy graph without gravity;
~ ' has appeared as an ultraviolet cutoff.

It should be noted that the regularization works
even for N&4 corresponding to a nonrenormal-
izable interaction; no new ambiguities appear
for this case.

It is important to note the correlation between
the ultraviolet singularities of the amplitude
in (2.11) with z = 0 and the poles in the integrand
(2.14) for z =-N+3, -N+4, . . . , -1,0. This is
because, by employing the Sommerfeld-Watson
transform in (2.12), these singularities have been
translated into those of the distribution [D(x)]"" '
which are" simple poles at (z +N —1) =+2, +3, . . . .
This particular feature would persist even if the
field X were massive, because the singular part
of the Feynman propagator is independent of
mass. The ultraviolet finiteness of amplitudes
is realized in the general case in the same man-
ner, as in the above example. We note that the
finiteness of II(k') above comes about essentially
because of the presence of the exponential term
(the graviton superpropagator) in (2.11) which is
guaranteed" to be a decaying exponential by the
Euclidity ansatz (which is a part and parcel of
the nonpolynomial Lagrangian method). In the
general case, every Feynman graph of the origi-
nal theory is replaced by a supergraph in which
there is a graviton superpropagator between every
two vertices providing a convergent factor as
above. These convergent factors are sufficiently
powerful' to take care of all ultraviolet diver-
gences including those due to derivative couplings.
For closed loops involving more than two ver-
tices, it is, in fact, sufficient to consider only
one superpropagator between any two vertices
and ignore the other superpropagators. This
follows from the fact that a single superpropa-
gator is enough to provide the necessary con-
vergent factors for the loop integral; inclusion
of others will not harm this property and will
only produce additional terms of O(tc) and higher.

As another example, we consider gravity-
modified quantum electrodynamics (QED). The
Lagrangian is '

& =~z [-'fCgy. g;. 0;.y.0)f."—
On folding the contour in (2.14) to the right on
the real axis, we obtain contributions from simple
poles at z =-N+3, -N+4, . . . , -1 and double
poles at z =0, 1, . . ., etc. The simple poles give
terms of order (z') ",. . . , z ' and the double where

+ eP y.,PL"'A „—~ &p, &~,g"'g"']

+2~„„+S„„g,, (2.16)
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0;~ =sett' —~f&~a~c

F„„=~A. „—8„A.~,

B„,g = —(L",&„L„g—L",& L„,)
—2(L,"&„L„b—Lasv L~a)

'L, (& —L'„-8„L'„)L,L",
c"=

4
[r', r'].

Employing the pa'rainetrization (2.5), we are
left with, in our approximation, the interaction

2, = eely, gq'"A„e "", (2.17)

which is the same as 8, of Ref. 5, where non-
polynomial Lagrangian techniques were applied
to this interaction to remove ultraviolet infini-
ties from QED. It is interesting to note that,
in Ref. 5, the lnw terms in the self-masses and
renormalization constants (calculated in the
lowest nontrivial order in e), which replace the
usual logarithmic cutoff-dependent terms, were
the same as in the theory with full tensor gravity. '
This, in fact, is a general feature —the in' terms
in the self-masses and renormalization courtants
are the same (at least for graphs with one loop)
in our approximation as with full tensor gravity.
A formal proof of this is presented in Appendix
A where it is al.so shown that, in the case of
(gravity-modified) renormalizable theories,
the finite parts of the amplitudes (ignoring terms
vanishing with z) obtained after the usual sub-
tractions, are the same in the theory with full
tensor gravity as well as in our approximation as
in the conventionally renormalized theory.

A remark about normal ordering is in order.
In this section as well as in the following sec-
tions we shall take the exponential X field term
[see, for example, Etl. (2.IV)] normal ordered.
As naive normal ordering is known to interfere
seriously with gauge invariance, justification
for this is required. Since

propagator is given by (2.'I). We now consider
a class of gauges in which the graviton propagator
is

& Ql &(0"'( )0"'(0))I o&

,'(q"—"q' + q q"' —$q"' q"")D(x), (2.19)

where ( is a constant parameter. This gives

(QI T()((x)X(0))( 0) = 4(0] T(Try(x) Try(0)) ( Q)

= (1 —2$)D(x) (2.20)

and therefore
/

(0~ T( e- x(.)::e "x(o).
)~ 0) =exp[-IP(2( —1)D(x)]

(2.21)

The net effect is, therefore, to replace a' by
a'(2$ —1) in the amplitudes. The physically
relevant w-independent terms will, therefore,
remain unaffected. The renormalization con-
stants will, of course be 8 dependent in general.

We conclude this section with some remarks
on the role of terms in Lagrangians like 2, in
(2.10). It is formally of order z and, in our
scheme, cari be ignored to the extent that, in any
supergraph rendered already convergent through
the exponential factor in Z„additional insertions
due to 2, only change terms of order ~ or higher.
As is well. known, ' however, 2» acting by itself
or with Z„can produce divergent supergraphs
which can, in general, be rendered convergent
by including some", supplementary" graph (or
supergraphs) in which 2, has been put into service
at appropriately chosen "kinetic energy kinks"—
this finally amounts to treating 8,+Z, together.
To give an illustration which will be useful later,

2

e ""=exp —,'D(0), : e "":,
~X

(2.18)

we have, in effect, taken' D(0) =0. It may be
possible to give a formal proof of the consistency
of this procedure along the l.ines of, for example,
Ref. 12; we have, however, not attempted this.
We shall examine the Yang-Mills gauge covari-
ance of amplitudes at appropriate places. The
effect of change of gauge of the graviton propa-
gator on our amplitudes is discussed below.

C. Remarks on gravitational gauge invariance

In all our calculations, we have employed the
Fock-de Donder gauge in which the graviton

(b)
FIG. 2. (a) Supergraph for scalar (N —2)-point func-

tion. {b) Kinetic energy kink in the bubble diagram for
the scalar (1V-2)-point function.
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Z,'= —,'(e ""—1)(~„y)'. (2.22)

we replace, for simplicity of argument, 2, by employing the parametrization (2.5), and per-
forming the field shift

To first order in 2, and 2,', there arises a con-
tribution to the (N-2)-point function [see
Fig. 2(a)]

(2.23)

-A. d4x &~D 2 (2.24)

in which there is trouble resulting from the
second term in the square brackets. This is
remedied by adding to (2.23) the contribution from
the graph in Fig. 2(b} (arising from 2, in first
order}

o =(v), +o'—= V+o',

we have the Lagrangian

2'=80+8, +2, +Z3+Cg„„,

where

2 = —'[(~ Tr)' —m, '7P]+ —'[(8 o')' —m 'o'"],

g e &x'[ gVol(ol2+'2) 1g(gI2+P)2]

2, =(C —Vm, ')o',

', = g(e ""—1)[(~„o')'+(s„p)']

+(e ""—l)(C —Vm, ')o',

(3.2)

(3.3)

(3.4)

which precisely cancels the troublesome term
in (2.23). The cross in the second part of Fig.
2(b) indicates a kinetic energy kink which means
that, in the internal propagator of Fig. 2(b), one
has to make the replacement

1 1 ~1—- —Pu"—p' p' p' (2.25)

so that the sum of Figs. 2(a) and 2(b) is equivalent
to the operation of (20+2,') at the upper vertex
in Fig. 2(a). This example has a lesson in that
the "bubble diagrams" like that in Fig. 2(b) can
be regularized by putting 2, into service and
including supergraphs like Fig. 2(a); this will,
indeed, be done in a later section.

nz =rno +3k.V

m '=m 2+AV2
0

(3 5)

We now consider regularization of various
amplitudes in the lowest nontrivial order in A, .
The part 2, will be required only in the regular-
ization of the bubble diagrams and will be ig-
nored in all other calculations.

A. Vertex correction

We consider the lowest-order corrections to
the o'4 vertex. Other vertices can be treated in
the same fashion. The relevant supergraphs
are shown in Fig. 3; they give

r...(a) =r",.&(a)+r &!',(u)
III. REGULARIZATION OF THEORIES WITH

SPONTANEOUS SYMMETRY BREAKING: 0 MODEL 18K'
=

2 ), [3'(k, m, )+f(k, m, )], (3.8)

In this section, we consider infinity suppres-
sion in gravity-modified theories with spon-
taneous symmetry breaking, taking the o
model" "as an example. Some new features
appear. The regularization of the bubble dia-
grams (which arise because the o-model. La-
grangian is not to be normal ordered"), for
example, cannot be achieved by the mechanism
discussed in the preceding section and requires
the inclusion of some of the terms which are
usually discarded in our approximation; it is
then nontrivial to verify that the usual nice
features"'" of renormalization of the o model
persist, at least to lowest order, in our scheme
of regularization.

With gravity included, the o-model Lagrangian
(without nucleons) is

Z = v'-Z [—'g""(8 o',o+'„ri ~ '„rT) ——,'m '(W+ w')

where

and [see Eq. (A3)]

P

qk ~ pxrgggggi-rZrrSrZrS

k-p-q

vxzxzxzwxizzzszA

k-p-q

(3.7)

——,'A, (o'+w')'+co]+2„,„. (3.1)

Replacing g"" in the square brackets by q"",

(a)

FIG. 3. cr' vertex correction. The dashed lines are
cr' lines and the solid single lines are g lines.
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we have

I(k, m) = . dz I'(-z)(«)'
2sz 16w'il z

0

I(k, m; z), (3.9) (a&

where

As expected, the integrand in (3.9) has a double
pole at z =0; evaluating the residue, we get

t'«'m')
I(k, m)=-8w'i 21n~ 4, ~+f(k, m) +0(«'In«)4w' j

(3.11)

where

f(k, m)

d I'(-,')I"(2-z)[I'(2- z)]'
r(-,'-z)

x,z, (I - z, -z, 2- z; —,'- z, 2; k'/4m')
g=p

(3.12)

Finally, we obtain, to order K,

-9Q.' ' «'m, ')1.,4(k)=, ln, ' )+-,'f(k, m. ) + O(X').2w' 4m' )

(3.13)

Now, defining the vertex renormalization con-
stant Z, by

-6i«+I'. ..(0) =Z, '(-6i«), (3.14)

we obtain

((k, m; z) = I d'P d'q, , (, , (I'(' '

, ,r(z)r(-z)1(-,')r(I —z)= —,'w4 -4m' '
I'(-. -z)3

x,F,(1-z, -z, 2 —z; —,
' —z, 2; k'/4m') .

(3.10)

FIG. 4. (a) Bubble diagram. The thick line represents
either two external meson lines or a single (T' line; the
thin line represents a 7t. propagator or a 0' propagator.
(b) Bubble diagram with a graviton superpropagator;
this represents the diagram (a) plus diagrams with one,
two, . . . graviton exchanges between A and B arising
from the operation of g3 at the vertex B.

proportional to

1 p ~ (q+P)-m' -
)( }=(2,) 9 p ~ (q.p), ~ '(

dg . IP
1 1 I'(-z)I'(2 —z)

(2w)4 2wi o 16w'il (z)

T m, z

(3.17)

where m is the mass of the particle represented
by the thin line, E(I. (3.8) has been used (to
achieve convergence we have shifted the con-
tour Cp to C, which is parallel to the imaginary
axis with -2& Beg&-1), and

p ~ (p+q) —m'
( ' )= "~"'(p )[(p,q) ](')

[I'(1-g)] I (z)I'(-g -1)
(I'(1 - 2z)

(3.18)

Evaluating the residues of the simple pole at
z = -1 and double pole at z =0 in (3.17}, we obtain

. , 16m', I'~'m'~
T(m') =-iw', +m'In~

, d [I'(1-z)]41'(2-z)
dz I'(1 —2z}(z +1)

Z, =1+, ln —~+O(«0)
3A,' 2v )
2g' km, )

The lowest-order correction to X is

(3.15} +0(«' ln«) .

C. Meson self-energies

(3.19)

6A. = ——.I', .~(0)=, ln ' + —,f(0, m, )
1 3&2 am 0
Gi ' 2w' 2I"

B. Regularization of the bubble diagram

(3.16)

For o' self-energy, the four diagrams shown
in Fig. 5 give

II,(k') = II',(k') + ~ ~ ~ + II,(k')

, [T(m,') +T(m, ')]Sik,

To regularize the bubble diagrams (see Fig. 4),
we bring into service the Lagrangian 8, in (3.4).
The amplitude for the diagram 4(b) will be

6 jap~
+

( }8 [3I(k, m, ) +I(k, m, )]. (3.20)
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(a) (b)
(a) (b)

supergraphs for corrections to (o') p in the
lowest order.

r
Ij' j'///ll /////J

~ me

(c)

FIG. 5. cr self-energy supergraphs.

This gives

that, to one-loop order, they are finite in the
conventional theory.

D. Goldstone theorem

The vacuum expectation value V =(o), is de-
termined from the equation ((r') = 0 which gives

5m.' = 11.(0) C —Vm, '+S(V) = 0, (3.27)

where

= 5m'+3(5A. }V'+0(z' Inc),

6iA.
2x'

(3.21)

(3.22)

where S(V) is the sum of one-loop and higher-
order diagrams in which a o' line vanishes into
the vacuum. The lowest-order diagrams con-
tributing to S(V) are shown in Fig. 7; these
give

is the self-mass in the symmetric theory. The
wave-function renormalization constant Z, is,
to this order,

3jX
S(V)= —

(2 ), [T(m,')+T(m, ')]. (3.28)

Keeping only terms of order A.
' in (3.28) we obtain

&II,(k')
Zfy —1 +

QQ2 A2=p

3/2+2=1+, , [3f(k, m, ')+f(k, m, ')]
16m ~k 42=p

S(V) = -5m, '+0(~' Inx) .

Equation (3.27} now gives

(3.29)

+0(IP Ina) . (3.23) C —V(m, '+ 5m, ') +0(z' Inz) =0 . (3.30)

For the m self-energy, the three diagrams shown
in Fig. 6 give

II (k') = ll ' (k') +ll (k') +ll ' (k')

iA. 4 sr'V'
, [5T(m,')+T(m, ')]+

(
s f(k, m, ),

(3.24)

where a contribution of 0(&'} has been ignored
in II,' . This gives

To order aP, we therefore have the usual situa-
tion: When C =0 either V =0 (no spontaneous
breaking) or m, '+5m, '=0 thereby verifying the
Goldstone theorem in the lowest nontrivial order.

E. Partially conserved axial-vector current (PCAC)

Defining the axial-vector current A„(x), the
pion propagator &'(k'), and the pion-axial-vector
vertex I'~(k} through the equations

and

5m, ' = 5m'+(5X)V'+0(z' InK) (3.25) A„=g &„o'-a'~~m, +=1,2, 3

il a'(k') = f e' '*(OI T(v (x)w (0))I 0),

(3.31)

(3.32)

A.2&2
g, = 1+ f(k, m) +0(/P In@) . (3.26) "'"0 T x 0 Od4x=j.' k 4'k'5

Note that the self-masses are consistent with
(3.5). The absence of inverse powers of a and
lna terms in Z, and Z, corresponds to the fact

/
I

~ / I

FIG. 6. 7t self-energy supergraphs.

(3.33)

we obtain, after the usual manipulations, "the
PCAC relation

k„I"(k) =-V[&'(k') ' —4'(0) ']+0(z).
(3.34)

We shall verify (3.34) to the lowest nontrivial
orcter in perturbation theory; the relevant super-
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k-P-q

WaW
r

p

~~xrrs r r s r r r xrxr xr~ppp '4WL~&xxxr wwwx xr xwwAV~

(b)

FIG. 8. Lower-order supergraph for the pion-axial-
vector vertex. The wavy line represents the axial-vec-
tor current.

FIG. 9. Lowest-order supergraphs for gauge particle
self-energies. Wavy lines represent the gauge particles
and dashed lines the ghosts.

graph is shown in Fig. 8. To this order, we have

I""(k)=iVk"

uV ii„, , (2p —k+q)"
'(2&}8& p ~(p'-m, m}[(k-p-q)m-m, ']

x x)(q) . (3.35)

Evaluating the integrals, one finally obtains

k„i'~(k) =iVk' —i [II,(k') —II,(0)]+0(x' In@) .

where

and the semicolons represent covariant deriva-
tives with respect to general coordinate trans-
formation; the gauge group 6 is assumed, as
usual, to be a compact simpl. e Lie group.

Replacing g„„by q„„ in the parentheses in (4.1)
and employing the exponential parametrization
(2.5), we have

(3.36}

In fact, the relation (3.36) can be established
without evaluating"' the integrals in (3.35). In
the relevant order, (3.36) is equivalent to (3.34).

IV. REGULARIZATION OF NON-ABELIAN
GAUGE THEORIES

g gb;h„,~ +8, +2,
where

8, =e ""(-gf,~,&"A'"A~~A„'

—4g'f, ~,f,I,...A„A'„A "A' "

+gf,~,&"Ct'A~„C')

(4.2)

(4.3)

We now proceed to consider the regulariza-
tion of non-Abelian gauge theories. These re-
quire special consideration because maintenance
of gauge invariance is a nontrivial problem in
such schemes of regularization. " Indeed, it
will be seen that the "point-separation method"
for the definition of the current operator has
to be employed to maintain gauge invariance
appropriatel. y.

A. Pure Yang-Mills fields

We shall first consider pure Yang-Mills fields,
i.e., without any other &atter fields. With
gravity included, the Lagrangian is (with the
usual notation")

+g""s„c 's,c'+gf„,g""&„Ct'A'C' ~+2„,„,
(4.1)

and

(4.4)

D„„(x)= (ol r(A'(x}A (0)}I0}

8 8=-5,~ q „-(1-a} "," D(x),

& Oi r(C'(x)C"(0)}i0& = 5.,D(x) .
(4.5)

We shall now consider the primitive divergents
of the Yang-Mills theory, calculate the renor-
malization constants to order Inc (in the lowest
nontrivial order in the gauge coupling constant
g), and verify that they are consistent with Ward
identities. "' For the time being we shall
ignore g'.

8'=(e ""-1}--'(8 A'-& A')'- —(8 A"'}'2'
1s

gPgtag

As before, e "" is understood to be the normal-
ordered expression: e "":. The propagators are

l. Self-energy of the gauge particles

(4.6)

A direct momentum-space calculation gives a non-gauge-invariant result with a longitudinal part in the
self-energy function II""proportional to x '. (This is analogous to the situation regarding photon self-
energy in QED."")Following Ref. 3, we shall present a coordinate-space calculation employing the
"calculus of derivatives" and the normal ordering for 2,. The relevant lowest-order supergraphs are
shown in Fig. 9. After a straightforward calculation, we have

11""(x)=11"~'(x)+II"""(x),
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where

II"" ' (8) =-BP'C(G)( 8 8""(D BB)'+8 8 (D'D)+BB(8 DDD)- BB""8 (8 DDD)-B(BBD)DDBBBDBDD

n"BPD ' & q""-B'DI " '8"8 D „ t'8 8 D
B2 ( B2

+ C2I ~)BPB)8BvD~ 2 D 80 ~2 )8 BPBvD )( P BD ~)( PBPBVD 1 P BD +~ )Bv B)(BPD h P Q
I'8 8D 8 8D 8 8D BBD

B2 82 82 82

(4. |)

and

II"" ' (x) =i g 'C, (G)B"DB"DX)(x) .
Here we have put n =1- c(, $(x) is defined in Appendix A, and C, (G) is defined by

Qf-3f3.3 = C.(G)~.3 ~

C34

(4.8)

Employing (A3), the formulas of the calculus of derivatives given in Appendix. B and proceeding as in
the previous sections, we finally obtain

D""(8)-=J 8 "*D'"(B)B'8

C lgb n'
16m 3 2 16m ]

d [I'(1-z)]2
1

8- n"z (2-3a') „„,„k,)dz I'(z+2) 4(z+2) (z+2)(z+3)

1 (3 o.' —2)z
( 1)( 2)( 3)k g +0( ln ). (4.9)

We note that, whereas the in' term is gauge in-
variant, the K term is not. This shows that,
contrary to the conjecture made in Refs. 3 and
22, normal ordering plus calculus of derivatives
do not, in general, ensure gauge invariance. We
shall do what is needed to restore gauge invari-
ance later in this section. We note, however,
that II""(0)=0 (to order z') so that masslessness
of the gauge quantum is ensured even in the
present calculation.

To O(g2), we have the unrenormalized gauge
particle propagator as

D' „„(k)=D'„„(k)-iD'„'„(k)II (k)D;„(k). (4.10)

Defining the renormalization constant Z, by

2. Ghost self-energy

The relevant supergraph is shown in Fig. 10.
This gives

IIo(x2}= ig2C2(G-) B" q„„-o(' "," DB"Du9~8

(4.13)

which, following the above procedure, finally
gives

I

(4.14)

Defining Z, by

~ ab k„k„
2 3 IVP 2 BD(B (4.11}

grab 3 ab
k2 /k28 2 3855 8-IIg y

(4.15)

(the superscript tr indicates the transverse part),
we obtain

2
Z 31 + C2( 2)G(

—", —a) In~ +O(z') . (4.12)
16m ( (z p.

388%XA K BB' / X Xr K/ XA

FIG. 10. Lowest-order supergraph for ghost self- en-
ergy.
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ultraviolet convergence. Proceeding as above, we
obtain, after a fairly lengthy calculation, "

c,k)

(A)

b, kg

/
/

/
c,k) b, kp

A""'(ki~ «~q)l«, =«««=« =-~«

-e
, C,(G)f,«, k«~ ln — ~+O(t(0)

D fining ~1by
I'"' '(k„k«q)l«2 «2= 2=-g«

(4.17)

FIG. 11. Supergraphs for lowest-order corrections to
the ghost-ghost-vector vertex.

we obtain

(4~&
Z, =1+,C, (G) (—'- —,'a)ln~ ~+O(x')

we obtain

(4.18)

=uk«fa«.

+~'"'(k„k„q)I««-««=a-

= (Z.) 'rk«f. «.

(4.16)
Z =1 — ' ln —+O(x')

16@& gp,
(4.19)

3. The ghost-ghost-vector vertex

The relevant supergraphs are shown in Fig. 11.
As discussed in Sec. D, it is sufficient to include
only one superpropagator in each graph to. secure

4. Vector-vector-vector vertex

The relevant supergraphs are shown in Fig. 12.
Denoting the correction to this vertex by
A"«'„(q„q„q,) and defining Z, by

Aul y(qadi q«y q«)lap=a««=q &= y& = (Z, —1)(-a)f «.[n.«(q, -q«)y+'q«y(q«q«)a + Qua(q«&q)8Jl

we obtain

Z =1+ '
(———,n) ln —+O(x').g C, (G) g7, 4w

16@ ' ay,

(4.20)

I

where P is the g-ordering operator, A~=/t'„t„
and t, are matrices for the generators of C in the
adjoint representation normalized as Tr(t, t«)= 5,«.
The desired field tensor matrix F„'„(which

(4.21)

The renormalization constants calculated above
agree with the conventional ones" with the ultra-
violet cutoff A replaced by w

' and satisfy, to
order g', the Ward identity

~z =~z.
1 ~1

a,of,q,
+ Cl OSSQd g)"QptlS.

C,T', q3

B. Gauge invariance

To make up for the lack of gauge invariance, as
reflected in the l.ongitudinal part of the gauge
particle self-energy (in order (co), we shall
follow a procedure analogous to the one adopted
in Ref. 5, namely, to employ gauge-covariant
point separation of field operator products and to
incorporate appropriately some effects of the
Lagrangian 2' in (4.4). Gauge-covariant Yang-
Mills field tensors have been constructed in

Ref. 23 which should replace E'„„above. These
are conveniently expressed in terms of the gauge-
covariant phase factor s"

(B)

(C)

b, p~qj

/

,Y, q3

/
/

/

b, p, qz

T,q3

(~ " &l
Y'(x) =P exp~ ~ A„($)dg"

~
(4.22) FIG. 12. Supergraphs for lowest-order corrections

to the vector-vector-vector vertex.
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q J'w

q'

replaces F,„=F'„„—t, above) is defined as

F,'„(x)= —,'Y '(x, x —e)D„(x—e)(Y(x, x —e)A.„(x))

——,'Y '(x, x —e)D„(x —e)'(Y(x, x —e)A„(x))

where

+H.c. , (4.23)

FIG. 13. A "gauge-covariant" supergraph, for gauge
particle self -energy.

FIG. 14. Vector-vector-graviton supervertex.

that to order t(0, the property (4.26) is pre-
served. With lowest-order supergraphs as in

Fig. 9, we will now have

D(k', e) = . dz I'(-z)D(k', e;z)1
2'gz c

B+g~

=D(k', e; 0) + . dz I'(-z)D(k', e; z),
B~s~

0(P(1 (4.27)

D„(x)=8„-~A„(x)

and

Y(x, x —e) =Y '(x —e)Y(x)

= I - -e'A, (x —e/2) + 0 (e') .
2

(4.24)

Taking into account the extra &-dependent terms
and going to the limit c- 0 in the end, it has
been shown" that in the radiation gauge, II,„
has a gauge-invariant structure in the one-loop
approximation; one expects the same in a general
Lorentz -covariant gauge.

To convince oneself it is useful to recall that
with the modified Yang-Mills Lagrangian con-
structed as above, one could follow Mandelstam's
procedure" employing path-dependent gauge-
covariant objects maintaining manifest gauge
covariance at every stage. More precisely, writ-
ing

II„„(k,e) = (k„k„—k'q „)C(k', e)+q „D(k', e),
(4.25)

one has

(4.26)

This situation is analogous to the one in @ED
where a similar gauge-covariant point separa-
tion ensures" vanishing of D(k') in the photon
self- energy.

When this modified Yang-Mills theory is
coupled to gravity, the functions C(k', e) and
D(k', e) (now free of UV infinities) are also
functions of a and it is again nontrivial to verify

I

where the first term on the right-hand side is
nothing but the quantity D(k', e) calculated in the
theory without gravity and satisfying (4.26). Now,
if the quantity D(k', e;z) in the second term were
finite for Res) 0, we will have, on folding the
contour on the real axis, terms of order a'lnI(:
and higher, thereby ensuring (4.26) to order z'.
This, however, is not so; the contour in (4.27),
in fact, has to be shifted to the left of the imag-
inary axis to secure ultraviolet convergence of
the momentum integrals in D(k', e;z). Following
Ref. 5, we will now show that by suitably in-
corporating effects of 8' in (4.4), we can secure
convergence of D(k', e; z) for Hez) 0, thereby
eliminating the need of shifting the contour to
the left and ensuring (4.26) to order (&'.

To incorporate these effects, it is sufficient"
to replace the supergraph in Figs. 9(a) by the
one in Fig. 13; a similar replacement should be
made for the supergraph in Fig. 9(b). The
supergraph in Fig. 13 represents the sum of
diagrams with and without the indicated modifica-
tions due to 2' so that each of the superpropagator
lines with momenta q', q", and q"' represents
the sum of zero, one, two, . . .graviton exchanges
(and not merely one, two, . . .graviton exchanges
as the structure of g' might suggest). In the
language of Ref. 3, "kinking" and "cradling" is
supposed to have been done.

To discuss the convergence of the supergraph
in Fig. 13, we follow the traditional approach"
and examine the large-momentum behavior of
the integrand with respect to various subinte-
grations. First, we consider the "supervertex"
in Fig. 14; the corresponding amplitude may be
written

B+ jco

M(iq") = dq(q')'h(q) f, d q i(i —q')', ', (i —q') ()+q"—q')
B-i

x (I yq" —q') ~ (I+q")(q' )* (4.28)
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where -1&P& 0 and the Feynman gauge for the vector propagator has been used for simplicity (the con-
vergence arguments are clearly unaffected by a different choice of gauge). The function h(z) includes
various z-dependent factors and constants. The q' integration is clearly convergent. Moreover, setting
)q") =s' and j l [=t', we have, for -1&P&--'„

limM(l, s, q") &s '(lns}"&,
S~oo

lim M(t, l, q") & t(lnt)"',

(4.29)

(4.30)

(4.31)

where n, and n, are non-negative integers. Finally, to find the behavior of M(l, q') when both l and q"
tend to infinity, we put q" = aPq", 1 =a&a'/ where a is a fixed positive number, then, for -1&p& -—,',

lim M(~, al, g") & u(into)"~.

/

Now, the amplitude corresponding to Fig. 13 may be written
p+ joy g + $00

D(k2) ' dz h(z)(/( )2dz 'h(z ')(g2) d p d4q "d4q[a, p + hi(P +q'- k)]"—2M(P, -q~)
P- joo y~ $oo P' ' (P+q")'

(P+q-k)' ' ' (P-q" +q-k)'
x [a2(P+q")+$2(P -q" +q -k)]z(q )' (q" )

0&P&1, -1&y&0 (4.32)

where a„a„b„b2are fixed numbers. By power
counting we can see that q", P, and q integra-
tions are all convergent provided we take
0 & P & —,

' and -1&y & —4. No shifting of any con-
tour past an integral value of z is required.
This ensures (4.26} for D(k')1'1; a similar
argument works for D(k') '1. We expect that
similar procedures will ensure gauge invariance
in other amplitudes; however, we have not
attempted a formal general proof of gauge in-
variance in the theory.

C. Renormalization constants in quantum
chromo dynamics

In this section, we present the calculation of
renormalization constants in quantum chromo-
dynamics, "the theory of strong interactions
based on unbroken SU(3) (color) gauge-invariant
interactions of fermionic quarks and octet fluons.
The Lagrangian of Eq. (4.1}(when now a, h, . . .
= 1, 2, . . . , 8) is to be supplemented by the quark
terms (for simplicity, we will consider only one
quark flavor) giving

= &-g [-.t(Vy. P;. 0;.y.4)LI'™— m44—
+ggy &'„T.gL" ]+g(4.1), (4.33)

where T, are the matrices representing the

I

SU(3} generators in the quark representation. In
our approximation, g, „will be replaced by
&„g and L""by q

The renormalization constants Z, and Z, are
the same as those given in Eqs. (4.16) and (4.19)
with C, (G) =3. The relevant details for other
renormalization constants are given below.

12m' g z'm'j

D~(k') = —,g'T(R)+ O(lnz) .
K '

(4.34)

Here T(R) = Tr(T,'); for triplets T(R) =-,. Again,
there is a longitudinal part in the self-energy,
which can be removed by the procedure discussed
in Sec. IVB. (The gauge-covariant "point-
separated" fermionic current operator in non-
Abelian gauge theories is discussed in Ref. 29.)
Including the fermionic contribution -C (0) to Z„

1. Gluon self-energy

The gluon (gauge particle) self-energy has
an additional contribution from the fermion-
loop diagram shown in Fig. 15, which, except
for the factor T(R), is the same as the ex-
pression for photon self-energy in Ref. 5, giving,
for the functions C(k') and D(k'), the additional
terms

FIG. 15. Fermion-loop supergraph for gluon self-en-
ergy.

2

Z, =1+,C, (G) (—,
' —tx) ln —+O(z')

ls

2 2',T(R) ln +O(~')
6@2 . mK

(4.35)
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li sp'

a, g, 3 s,p' T,'p

FIG. 16. Fermion-loop supergraphs for the vector-
vector-vector vertex.

FIG. 18. Supergraphs for fermion-fermion-vector
vertex.

Z. Vector-vector-vector vertex

The additional fermion-loop supergraphs are
shown in Fig. 16. By manipulations with Dirac
matrices similar to those in the proof of the
Ward identity in @ED, one easily finds that the
contribution of these diagrams to Z, is equal to
the contribution Z~~ of Fig. 15 to Zs [namely,
-C (0}]giving, finally,

2

Z, =1+ +6, C,(G)(-8'-2u) In —+O(a')

stant is given by

Z2 =(I -A(m2) —2m2[A. '(m2) +B'(m2)]}

=1—,C, (R) In +O(z')
8m' ' am (4.41)

4. Fermion- fereion-vector vertex

The relevant supergraphs are shown in Fig. 18;
their respective contributions to the vertex cor-
rection are

3~""'"'(P,P') = . (T.),.7"[C,(R) —-'C, (G)]

g' 2w&,T(R) ln l+O(a')

3. Fermion self-energy

(4.36) ~'m'
X ln 2 +O(zo)

lm

J oars(B) (P Pt)
3 I+ &4

C, ( )(T,)„,

(4.42)

T(P)„=5„[y PA(P')+mB(P')],

with

(4.37)

g2 (g2m2
A(P') =,C,(R)n inl, +O(~'),

The relevant supergraph is shown in Fig. 17.
This gives, for the fermion self-energy function,

Defining Z,' by

~No rS~ EEv unl v 'P=v 'P'=a

(~'m'
x lnl, +O(zo)

(16m (4.43)

(4.38)

g 2 (g 2m2)
B(p') =- C2(R)(3+ n) Inl 16 2 I+O(&')

16@2 I,16m j

where C,(R}, the quadratic Casimir invariant in
the representation of the fermions, is defined by

=i@(T,)„y"

+ [IEEV (PtP ) ++FEV (PtP )]y'0=V ~ 0'=m

= (Z,')-'ig(T. ),.r,
we obtain

(4.44)

Z,'=1-, [2o.C, (R)+-,'(n+3)C, (G)]In l+O(t&') .1 16+2 2 zm)
Q (T,')~, = C2(R}5~„ (4.39)

(4.45)

5m =m[A. (m'}+B(m')]

=3m ', ln l+O(z ')
8@2 Km]

(4.40}

in the triplet representation of SU(3), C,(R) =—,.
From (4.38) we obtain the fermion self-mass

The expression for the various renormalization
constants in the lowest order in g given above
correspond to the usual ones" with the cutoff A

replaced by w '. To order in', the following
Ward identities are satisfied:

The fermion wave-function renormalization con- Z, Z,'' (4.46)

b, p

p-k
c,p

FIG. 17. Fermion self-energy supergraph.

D. Theories with spontaneously broken gauge symmetries

Spontaneously broken gauge theories (SBGT's)
combine the features of both —the unbroken gauge
theories and the theories with spontaneous sym-
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metry breaking —which we have already con-
sidered separately. No new difficulties are
expected to arise in the regularization of these
theories in our program.

It should be clear from the general discussion
in Sec. II that, in our regularization scheme, all
amplitudes will be finite in the unitary gauge
as well as in any other gauge. Corresponding
to higher divergences of the usual unitary gauge
amplitudes, our amplitudes will contain higher
powers of K"', however, renormalized ampli-
tudes (to order «0) would be the same as in any
other gauge. We believe that, in our framework,
it should be possible to evolve a consistent re-
normalization program in the unitary gauge al-
though we have not attempted that.

SBGT's appear to provide the basis for unified
field theories of weak, electromagnetic, and
strong interactions. The ultraviolet cutoff pro-
vided by gravity has some interesting implica-
tions for such unified theories. Using renormal-
ization-group arguments, it appears possible to
understand the different strengths of these inter-
actions if one assumes that at energies of the
order K"' =10"GeV the coupling constants for
these interactions are the same. ' '" Successful
implementation of this idea puts some constraints
on the possible models. '

V. CONCLUDING REMARKS

The main strong points of regularization by
gravity are its naturalness and universality. Its
main weak point is its mathematical complexity
which has been shown in the present work to be

greatly reduced —without sacrificing any of its
good features —by employing a suitable approx-
imation.

An important test for any acceptable regular-
ization scheme is that it should respect various
global and local symmetries in the theory. In
our formalism, whereas there is no problem
regarding Poincarb invariance and global internal
symmetries, including spontaneously broken
symmetries and chiral symmetries (where the
dimensional regularization scheme has prob-
lems"'", local. gauge invariance poses special
problems. While we have found a way to solve
these problems, it is clearly desirable to have a
simpler alternative.

When fermions are present in a gauge theory,
the axial-vector Ward identity has anomalous
terms. " A regularization scheme should re-
produce these anomalies correctly. Our scheme
satisfies this requirement. " Instead of pre-
senting detailed calculations" verifying this,
we would like to present a simple argument why
it should be so. The point is that, once one
has ensured that well-defined, gauge-covariant
objects are being employed (after point separa-
tion, etc.), even equations of motion give the
anomalies correctly. '" The possibility of a
perturbation-theoretic calculation betraying such
authentic equations of motion arises only when
the calculational procedure employs ill-defined
objects (e.g. , divergent integrals) or breaks some
symmetries. With our amplitudes always finite
and gauge invariance, etc., correctly incor-
porated, both possibilities are eliminated.

APPENDIX A: FULL TENSOR GRAVITY VERSUS THE APPROXIMATED GRAVITY

With full tensor gravity, the following superpropagator"'" appears in calculations:

~- (*)-=(0'r('"'") "')')
o)l,detL(x) detL(0) &

= Q [n"'n"'&'"(n)+ ,'(n""n" +n "-n"'- n"n"')S "(n)]—[-&&'D(x)]"

d I'(- )[n"'n"'&'"( )+-'(n'"n"+n"'n" n"'n"'&'"—( )][ 'D(x)]',
2wz c

(A1)

where detL =- det(L""). It is clear that

S (0)=l & ' (0)=0 (A2)

I

gator is replaced by n"'n"'$(x), where

g(x) —
(0[ Zr(, s )cx(x), , e +x (0&, )[ p)

whatever the parametrization for L"'(x). De-
tailed expressions for these functions may be
found in Ref. 13 for the exponential parametriza-
tion (2.5) and in Ref. 2 for the rational param-
etrization I."'=q"'+ —,

' zp"'; we shall, however,
require only the property (A2) in our discussion.

In our approximation, the above superpropa-

= exp[-«'D(x)]

. J) d I'(- )[ 'D( )]'. (AS)
0

This clearly corresponds to replacing S& &(e) and
&&'&(s) in (A1) by their values at s = 0.

We now consider the regularization of a general
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amplitude through the graviton superpropagator.
We shall restrict ourselves to graphs with one
loop only. As stated in Sec. II, it is sufficient,
for loops with more than two vertices, to in-
clude only one superpropagator. The amplitude
A(P) corresponding to such a one-loop graph
with one superpropagator may be written as

A(P)=f dqdkf„„„(P,q, k)B (q')",' (A4)

which is infinite if the amplitude has ultraviolet
divergences. (We ignore infrared divergences
to simplify the argument. ) As explained in Sec.
II, these ultraviolet infinities are reflected in the

where P symbolically represents all external
momenta, q is the superpropagator momentum,
and k is an appropriately chosen loop momentum.
Using (A1} and (2,13), we have

X(p) =
2

. Jt dz r(-z)(~')'Z"""(z)E„„.,(p, z),
1

Cn

(A5)

where E"""(z)stands for the (luantity in s(luare
brackets containing St'~(z) and G~'~(z} in (Al) and
the contour C, of (A1) has been shifted appropriate-
ly to the left to guarantee convergence; more-
over,

. r(2-z)(4w)' "
h4Pab 0 r( )

x I d'qd'kf„„„(p, q, k}(-q'}' '.
(A6)

In the unregularized theory, one would have

singularities of E„„,(,(P, z) in z which are simple
poles at z =-n, -n+1, .. . , -1,0. Here n denotes
the degree of ultraviolet divergence in the original
amplitude.

To evaluate A(P), one folds the contour C„ in
(A5) towards the right so as to enclose the part
of the real axis with Bez & -n and evaluate con-
tributions from the simple poles at z =-n, -n
+1, . . . , -1 and the double pole at z = 0. The in'
term in A(P) comes from the double pole at z =0;
the equality of this term in the theory with full
tensor gravity with that in our approximation
is guaranteed by E(l. (A2).

We note that, when the amplitude .(A7) of the
unregularized theory has no ultraviolet diver-
gences, the function E„„,(,(P, z) will not have any
singularities at z =0, -1, -2, . .. , and in Eq.
(A5), the contribution of the simple pole at z =0
will now give precisely the amplitude (A7).

Now, in a renormalizable theory, when the
usual subtractions are made in'(p) (assumed
divergent, as above), the integrand in (A5) will
contain, instead of E„„,„(p,z), a function
E„„,(,(P, z}which will not have singularities at
z =0, -1, -2, . . . (for the same reasons as in
the preceding paragraph); the contribution from
the simple pole at z =0 now gives the usual finite
part

(A8)

both in the full tensor gravity theory as well as
in our approximation. Indeed, it was verified in
second-order calculations in Bef. 5 that, after
the usual subtractions, the w' terms in the elec-
tron and photon self-energy functions were the
same as their usual finite parts in conventional
QED.

APPENDIX B: CALCULUS OF DERIVATIVES

Salam and co-workers"" have proposed the following formulas which one gets after naive manipulations
and which conserve the number of derivatives for products of distributions containing derivatives (the
idea is to avoid encountering worse singularities by actually carrying out the differentiations in expres-
sions like S~S„[D(x)]'and then taking products of the resulting objects with other similar distributions):

DZyg DZ2 2 g DZ~+ Z2
z

z+z1 2

DZgg g DZ2

Z QZ2

(z, +z, )(z, +z, +1) ~ " 2(z, +z, —1)"""

z2

(z, +z, )(z, +z, +1) )(
' " " 2(z, +z, -1)"""

(S2)

These are supposed to be valid for all z, and z, except when they are obviously meaningless. They have
coined the term "calculus of derivatives" for this procedure. The equalities above should be understood
in terms of the equalities of the Fourier transforms of the two sides. Some formal justification for these
may be found in Bef. 12.

In our gauge theory calculations the above three formulas are sufficient to cope with the derivatives if
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one works in the Feynman gauge (a=1). In a general gauge we employed, besides the above formulas,
the foll.owing additional ones:

g sos„1 z 2(z —1) s~sp g~g82" —2,g+1n"- 8+1 82" "'
t

&8"8 Dls" (O'D)~,' ~D' =- 8"s"D"'
2(z+2)

8"8
( BP 8&

D)
P 4 sllsI' + Ivs2 Dg+2

8' 2(z+ 2)(z +2), 2(z + 1)

'(s s 't e BDI (a~a D &se D&
Sl SP

]

A PD
(

~DI
~

I
~ )

P (DS (8 PS& P&S2)ZP+2
4(.+2)
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