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Anisotropic fluids with two-perfect-fluid components
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A two-perfect-fluid model of an anisotropic fluid is presented. The energy-momentum tensor associated
with the sum of two perfect fluids, one perfect and one null fluid, and two null fluids is examined. Special
attention is devoted to the study of the stress tensor. The special case wherein the two perfect fluids are
irrotational is studied. A relation between the Einstein equations. for this particular case and the Einstein
equations for a massless complex scalar field is found. The general solution of Einstein equations for an
anisotropic fluid constructed with two-null-fluid components in the plane-symmetric case is discussed. The
energy-momentum tensor of a cloud of strings and the energy-momentum tensor of an anisotropic fluid
formed by two null fluids are compared.

I. INTRODUCTION

The energy-momentum tensor associated with
a perfect fluid has been widely studied in general
relativity (GR) as a source of the gravitational
field, mainly to describe models of stars, galaxies,
and universes. " Imperfect fluids have seldom
been studied as a source of the gravitational field
because of the mathematical difficulties associated
with such models, i.e., the field equations cannot
be solved exactly even for the most simple cases.
In most astrophysical applications perfect-fluid
models appear to be adequate. '

We believe that the study of imperfect fluids and
particularly the study of anisotropic fluids in GR
has value if the model possesses some of the fol-
lowing characteristics: (i} The model must be
simple enough that it can be solved exactly for
some important particular cases. (ii} The physi-
cal interpretation of the model can be easily per-
formed and the relation of this model with the per-
fect-fluid model can be studied in a simple way.
(iii) The model can be used to better understand
some of the open problems in GR, e.g. , to serve as
a model for a Kerr metric interior' or to serve as
a source for a radiating metric, ' or both.

In this paper we study a model that possesses
some of the above-mentioned characteristics. The
model shares some common features with the two-
fluid model studied in plasma physics. ' It has the
sum of two "currents" (energy-momentum tensors)
as the source of the field equations and two "mo-
mentum-transfer equations" (energy-momentum
conservation equations) as closure relations.

In Sec. II we present a two-perfect-fluid model
of an anisotropic fluid. The energy-momentum ten-
sor (EMT) associated with the sum of two perfect
fluids, one perfect and one null fluid, and two null
fluids is examined. Special attention is devoted to
the study of the stress tensor.

In Sec. III we examine the special case wherein
the two fluids are irrotational. Particularizing the
equation of state of each fluid we find a relation
between the Einstein equations for this particular
type of anisotropic fluid and the Einstein equations
coupled with a massless complex scalar field.

In Sec. IV we solve the field equations for the
special case of two null fields with plane symme-
try. The solution found is the general one for the
special case under consideration.

In Sec. V we discuss some of the possible gen-
eralizations and applications of the model. In an
appendix we compare the energy-momentum ten-
sor of a cloud of strings with the energy-momen-
tum tensor of an anisotropic fluid formed by two
null fluids.

II. THE MODEL

1
+tjv pgpp ~ ~Vv (2.1)

where all the symbols in (2.1) have their usual
meaning and T~" is given by one of the following
expressions:

&'"(~, v) = t '" (u) + t""(v),
T'"(u, l) = t'"(u) + t""(t),
T "(k, t) = t "(k)+t""(l).

(2.2)

(2.3)

(2.4)

The tensors t'"(u), t"(v), t'" (l), and t~" (k) are de-
fined as

In this section we study some of the algebraic
properties of a stress-energy tensor formed from
the sum of two tensors, each of which is the EMT
of a perfect fluid or a null f)uid. We also study the
integrability conditions for the Einstein equations
coupled with the above-mentioned stress-energy
tensors, in other words, we study the integrability
conditions for the system of equations'
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t'"(u) = (p+u)u"u'-pg'",

t "(v) = (q+e)v" v' —qg"",

t'"(a) =u k" 0",
t'"(l) = el" l',

(2.5)

(2.6)

(2.7)

(2.8)

tary conditions, respectively:

t""(l).,= 0,
t""(u)., = 0,

(2.13a)

(2.13b)

F,(P, tv, e) =0 or h, (P, m) =0, (2.13c)

where

u~up vuv =1 vy ~uy

u"a =l"l =0, i'~a .
(2.9)

(2.10)

The EMT (2.2) is the sum of the energy-momen-
tum tensors of two perfect fluids of pressures p
and q and rest energies gg and e, respectively. The
EMT (2.3} represents the sum of.the EMT of a per-
fect fluid and the EMT of a null fluid of energy so.
And the EMT (2.4) describes the sum of the ener-
gy-momentum tensors of two null fluids of ener-
gies zo and e, respectively.

The integrability conditions for the system of
equations (2.1) is

t "(k)., =0,
t'"(l).„=0.

(2.14a)

(2.14b)

T "=p U" V'+ S
"

with

(2.15)

(2.16)

(2.1'7)

Note that in each case we have a well-defined
mathematical problem. Now we shall analyze the
physical meaning of each'of the energy-momentum
tensors (2.2)-(2.4). To do so we need to cast them
in the general form of the EMT for a single fluid, '

V"".,=0, (2.11) p) 0. (2.18)

t""(Q).„= 0,
t""(v)., = 0,
F,(P,u, q, e) =0 or @,(P,~}=o,
F', (p, u, f, e) =0 or h, (q, e)=0.

(2.12a)

(2.12b)

(2.12c)

(2.12d)

Conditions (2.12a) and (2.12b) are the most simple
conditions sufficient to satisfy (2.11). Note that
they are a type of minimal coupling condition for
the two fluids, a more general conditinn will be
discussed in the last section of the present paper.
The conditions (2.12c) and (2.12d) are state equa-
tions for the two fluids, in particular we shall as-
-sume that each fluid has its own equation of state
of the form h, (p, m) =0. Note that the system of
Eqs. (2.1), (2.2), and (2.12) gives us a well-defined
mathematical problem with the same number of
equations and unknowns.

For the systems of Eqs. (2.1), (2.2) and (2.1),
(2.3), we choose the following set of supplemen-

where the semicolon denotes a covariant deriva-
tive. Note that Eq. (2.11) is not enough to deter-
mine all the unknowns in the system of Eq. (2.1)
when T,„ is given by any of the expressions (2.2)-
(2.4). In particula'r, for the Einstein equations
coupled to the EMT given by (2.2) we have as un-
knowns g„„,p, sg, q, e, u", and v", i.e. , 20 unknowns
[Q~ and v" have only three independent components
due to (2.9)]. And we have 14 equations, the 10
Einstein equations (2.1) and the four Bianchi iden-
tities (2.11). So we need to add new conditions to
have a well-defined problem. For the system of
Eqs (2.1) an. d (2.2) we shall add the supplementary
con ditons

p U" U' represents the EMT kinetical part. p is the
rest energy density and 8 " is- the stress tensor.

I et us start by analyzing the EMT (2.2). First,
we notice that the "quadratic form"

(P +u )u"u'+ (q+ e) v" v' (2.19)

is invariant under the transformation

( + e)z/2
u" -u+" =coseu" + ~ sinav",

(P +EU )
Z/2

sino. u" + coso. v" . (2.20b)q+e

(2.20a)

Thus

T'" (u, v) = T'"(u*, v*) . (2.21)

gP g 0 ~ (2.22)

From (2.22) and (2.20) we get

p+K-g -e (2.23)

Note that Eqs. (2.9), (2.20), and (2.23) and the fact
that u" and v" are future oriented imply that u*"u„*
&0 and v„*v~" &0, i.e. , u„* is a timelike vector and
v„* is a spacelike vector.

Now, defining

Now we shall "rotate" the vectors u" and v" in
such a way that one becomes timelike and the other
spacelike. This condition is implemented by re-
quiring that
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U" -=u2'"/(u2' u2')'/',:Vgg /( Vg+V )1/2

p —= T""Uo U„= (p +w)u*"u*„—(p + q),
o—:T XoXp~P +q —(q+ e)v* v~ q

7T =P +Q'
p

we can cast (2.21) as follouts:

7""= (p + o) U" U" + (o —v) X"X' —vg
'

=pN U" +S"",

(2.24a)

(2.24b)

(2.25a.)

(2.26a)

(2.27)

(2.28a)

(2.28b)

where

S'"= (o- v)X"X"-v(Z"'- U" U').

Note that

U" Uo =-X"Xo =1,
X" U =o
S'"U, =0,

X, =-OX ~
WV fl

A direct computation shows that

(2.29)

(2.30a)

(2.30b)

(2.31)

(2.32)

p = + -,' (w -p + e -q) + 2'Op +w + q + e)' + 4(p +w) (q + e) [(u"v~ )' - 1]}'/',

o =--,'(w -p+e-q)+2'[(p+w -q- e)'+4(u„v")'(p+w)(q+e)] /'.
(2.25b)

(2.26b)

Thus p and 0 are positive quantities.
Now let us write the matrix whose elements are

S givenby Eq. (2.29) in the tangent space (g„„
=2l„„),when U" = 5", and X" = 6", ,

o = 2' -w+ [(w+p)'

+4e(P +w)(u"l„)']'/') & 0, (2.39)

(2.40)

r0 Finally, we have that EMT (2.4) is invariant
under the transformation

(2.33) k*" = coso.k" + (e/w)'/' sinai",
I*"= —(w/e)'!' sino. k" + coso. l" .

The condition

(2.41a)

(2.41b)

So the EMT (2.28) describes an anisotropic fluid,
i.e. , we have a pressure o along the 5", direction
and a pressure g on the perpendicular plane to 5,".
Note that from (2.26) and (2.27) we have o & v.

The EMT (2.3) can also be cast in the form
(2.28). But now the transformation that leaves
(2.3) invariant is

( e 1/2
u+" = coso.u" + sinai". ,

k~ +P

u+p '/' .l*" = — sino. u" +cosnl".
e

(2.34a)

(2.34b)

The condition

gives us
1/2

tan(2o. ) = 2u l~.
20 +P

(2.35)

(2.36)

lgo/( lglgn)1/2

p = (w -p + [(u +p)'

+ 4e(P + w) (u"I„)']'/2}& 0,

(2.37)

(2.38)

From (2.36), (2.34), and (2.35) we get that u*2 and
l*~ are a timelike and a spacelike vector, respec-
tively. Now the quantities that appear in (2.28)
have the following values, U" is defined as in
(2.24a), and

gives us

0 (2.42)

tan'n =1. (2.43)

The null vectors l" and k" are assumed to be fu-
ture oriented, i.e. , each one represents the veloci-
ty of a bona fide null fluid. Thus, from (2.41) and
(2.43) we have that k*2 k22'& 0 and l*"l„"(0.

The EMT (2.4) reduces to

T (k, l) =pU" U'+vX" X",

where

p = cr = &me l" k& )0,
U" = k*"/(k*"k*)'/'

l2 o/( ignl2)1/2

(2.44)

(2.45)

(2.46a)

(2.46b)

Now we shall discuss a property common to the
fluids described by the EMT (2.3) and (2.4). First,
we notice that since the null vectors k" and l" are
not restricted in any way they can be replaced by
A. k" and yl", where A. and y are arbitrary scalar
functions different from zero. Then m and e be-
come w/A.

2 and e/y2, respectively. Under these
"gauge" transformations the EMT (2.3) and (2.4)
are invariant, as well as the equations of motion
(2.13a), (2.13b), (2.14) and the relations (2.36),
(2.38), (2.39), and (2.45). If we transform k*" and
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l*" in the same way a,s k" and l", hence as well as
the transformations (2.34) and (2.41), the relations
(2.37), (2.44), and (2.46) are invariant; in other
mords, the complete theory is invariant under the
above-mentioned gauge transformations.

In the case of a fluid described by the EMT (2.3),
we can use this gauge invariance to "normalize"
l" by requiring u" l„=constant. And for the fluid
described by (2.4) we can partially normalize l"
and 0" by requiring 0"l„=constant, i.e., it is al-
mays possible to find a X and y to achieve these
types of normalizations.

To end this section we want to add that instead
of using transformations like (2.20) to cast each
of the energy-momentum tensors (2.2)-(2.4) in
the form (2.15), we could have used the equivalent
method of solvirig the eigenvalue problem for each
of the above-mentioned tensors. It happens that
in this case the method that we have followed is
simpler.

III. ANISOTROPIC FLUIDS KITH
IRROTATIONAL FLUID COMPONENTS

In this section we study the model of the aniso-
tropic fluid presented in Sec. 0 in the particular
case that each of the perfect-fluid components
used to describe the model are irrotational, i.e. ,
their rotation tensors are zero,

z(M& =f
From (3.1) we get

/'(y y, tx) &/2

v„= (& „I(g „P'")

(3 7)

(3.8)

(3.9)

where I' is a function of the indicated variables. '
Equation (3.10) tells us that

Z(u&) -In(P „P'")'/'

is a function only of P. And from the fact that
(3.8) is invariant under a transformation of P of
the form P -f(P), it follows that there is no loss of
generality in choosing

Z = —,
'

ln((II& „Q
'

) .
From (3.11), (3.8), and (3.6) we get

[e "'"'(p+~)4,&Z""&-/." J,.=o.

(3.11)

(3.,12)

One of the most important particular cases of state
equations of the form (3.5) is"

where Q and (I& are arbitrary functions subject to
the conditions &t&'"P „&0and &I& „(I&'"&0.

From (3.4), (3.7), and (3.8) we have

[E((v) -»(4.~4'")' 'l,
&

=4.
& F(4.a& 0;~B ~.&.»

(3.10)

(u,„(u) =-/&"„(u)I( B,(u)u( . B)
= 0,

(L&uv (v) =—I&"q(v)h „(v)vi„.B)
——0,

where I&"„(u) and I&B„(v) are defined by

(3.1a)

(3.1b)

P = (1 —y)u& —P„0&y(1,
where y and p, are constants.

From (3.7), (3.11), and (3.13) we obtain

(3.13)

&((u)=5
&&

—u u&& ~

l&
&& (V) = 6

&&

—V V&& ~

(3.2a)

(3.2b)

[(y y ~) o-y/»/o-y&+p ]
1

~ e (3.14)

and from (3.12), (3.13), (3.11), and (3.14) we have
First, let us study the integrability condition

(2.12a). From (2.12a) and (2.5) we get

u"u&„= —(P +u&)u", „,
'I„&(u) p„= (P +u&)u'u„. „.

(3.3)

(3.4)

Now assuming an equation of state for the fluid
with velocity u" of the form

q =(I —P)e q. , - (3.16)

we can cast e and the integrability condition (2.12b)
in a similar form to (3.14) and (3.15), i.e. ,

(3.15)

Assuming the following equations of state for the
fluid with velocity v",

P =P ((v),

(3.3) can be written as'

[e ~(p+u&)u" ].» =0,
where

(3.5)

(3.6)

1
[(itI y &) o-B/2)/(&-B) + ]

[(y y n) B/2(&-B)y g~ y g] 0

In this case the EMT (2.2) reduces to

(3.17)

(3.18)

where

)=(e,.4™)"'""'4, 4 +(0
Ia

'-~(& ~, -)& -y/)I&. y&+ P g, ~ )&. BI.&I&.-.-»-
')2 y ~ 0! 2 —p

g]I I/ gPI/ P (3.19a)
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x=p' + ~'
r —2 P-2 (3.19b)

Note that the inclusion of the constants po and q, in (3.13) and (3.16) has the same effect as adding a cos-
mological constant to the left-hand side of Eq. (2.1). It is also interesting to point out that the EMT (3.19),
as well as the motion equations (3.18) and (3.15), can be derived in the usual form from the action con-
structed with the Lagrangian density

+ r (y, ny ) (1-y/2) /(1-y) + P (y, ny ) (1-()/2) /(1-8)
2 —r ' 2 —P

= &-g (P+q).
The relation of Q and g with the one-fluid variables can be found using the relation

(y~&y ) (y/2) /(&-y )(y v(i) )(t3/&) /(&-())
~, P (y, ay )(1-y/2)/(1-y) (y, vy )o-8/2)/(1-5) ~

yCf oP

(3.20)

(3.21)

(3.22)

Let us further particularize the state equation of
the perfect-fluid components by assuming

m =2/v'-g = —'X' A „,
U„=Re(e'~X „)/[Re(e("X ) Re(e(~X")]'/'

(3.33)

r =P=Po=q'o=o

1.e, y

p = so Q' = e ~

(3.23)

(3.24)

(3.34)

X„=-Im(e(~X „)/[-Im(e'"X „)Im(e("5 ")]'/'

(3.35)
Thus, each fluid component obeys the "stiff" equa-
tion of state, pressure equal to rest energy den-
sity.

From (3.23), (3.15), and (3.18) we get

(P „g""g-g) „=0,

4,»
g'"& i)-

And from (3.23), (3.19), and (3.20) we have

~iw 4'4)(, v +4,,)4,v)

.&-g (4 "0,.+ 0'"4-,.) ~

(3.25a)

(3.25b)

(3.26)

(3.27)

A—= (t)+i(, X =—P —ig. (3.28)

Note that (3.25), (3.26), and (3.2'1) are, respec-
tively, the field equations, the metric EMT, and the
Lagrangian density for a massless, complex scalar
field. Now let us define a complex scalar field A

as follows:

Equation (3.32) tells us that the stiffness condition
for each fluid, Eq. (3.24), is propagated along the
direction of anisotropy. And Eq. (3.34) says that
U cannot be cast in a form similar to (3.8); thus
the condition of irrotationality of each component
is not propagated to the anisotropic fluid model.

It is a rather surprising result that the theory
of Tabensky and Taub, ' relating the Einstein equa-
tions coupled to an irrotational perfect fluid with
stiff equation of state to the Einstein equations
coupled with a massless scalar field, "can be gen-
eralized to include complex scalar fields.

IV. PLANE-SYMMETRIC ANISOTROPIC FLUID
PATH TWO-NULI FLUID COMPONENTS

In this section we study the solution to Einstein
equations coupled to the EMT (2.4) when the space-
time has plane symmetry. The most general form
of the metric for plane symmetry is"

It is a matter of direct computation to cast all
the anisotropic fluid variables in terms of A,

ds' = e~du d() —e" (dx'+ dy'), (4.1)

ImA A+
tan2e = (3.29)

where + and p. are functions of u and v. Two dif-
ferent nell vectors for plane symmetry are

e lABA 8
(3.30)

a" =e"(+) y
(4 2)

(4.3)

ReA A'"
jA BA'~

/

ReA .A (3.31)

(3.82)

where by (+) and (-) we denote the coordinates u

and v, respectively.
The Einstein equations (2.1) coupled to the en-

ergy-momentum tensor (2.4) constructed with the
null vectors (4.2) and (4.3) for the metric (4.1) re-
duce to
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V+++-,'V+ —4+or+ = ——,'eexp(2m),

+—,'p.' —g &u = --,' m exp(2u),
1

p. + + gp+p +GP+

(e"), =0,

(4.4)

(4.5)

(4.6)

(4.7)

Note that taking u, =in, A = B=O, and performing
the change of variables t =f+b (as before) and z
=b -f, the metric (4.1V} reduces to Taub's me-
tric." Also note that the metric (4.17) has a sin-
gularity at t = 0 of the same type as Taub's metric.
The energy density p is also singular at t=O.

where we have introduced the notation p., = 8p/&u,

u =sp/sv, etc.
The integrability conditions (2.14) give us

K + +K (2(d p + p+ ) = 0
~

e +e(2~ +p )=0 ~

(4.8)

(4.9)

The general solutions to Eqs. (4.V), (4.8), and
(4.9}are, respectively,

e" =t=-f(u)+h(v),

w = 4A (v) exp[- (2(o+ p)],
e =4B(u) exp[—(2(u+ p)),

(4.10)

(4.11)

(4.12)

(u = (f + B)/f, -f, /2t,
= (b +A)/b —b /2t.

(4.13)

(4.14)

Note that Eq. (4.6) is fulfilled by either (4.13) or
(4.14). From (4.13) and (4.14) we obtain

where f, b, A, and B are arbitrary functions of the
indicated arguments. From (4.4), (4.5), and
(4.10)-(4.12) we get

V. DISCUSSION

In Sec. IV, as an example, we presented a par-
ticular case of anisotropic Quid with a particular
symmetry that can be solved exactly. We have
been able to find different exact solutions to the
presented model of anisotropic fluid with plane,
cylindrical, and spherical symmetry. The solution
presented here is one of the simplest, the others
will be published elsewhere.

The problem of finding a Kerr metric interior
can be attacked in the following way: One starts
with a metric that can be matched to Kerr's me-
tric and later computes the EMT associated with
this metric. " Some of the energy-momentum ten-
sors computed in this way are similar to the EMT
(2.28}. This problem is under active consideration
by the author.

Possible generalizations of the model are of two
kinds. First, instead of taking a sum like (2.2) we
can take

&@=in(f,h ) — Int+ b(u)+a(v)+~, ,

where e, is an integration constant and

(4.15) T'" (u, v, n, m) = at""(u) + bt'" (v)ct'"(n)

+ dt""(m) (5.1)

b (u) fdu=-,

a(v) = dv.A(v)

(4.16a)

(4.16b)

e =4, exp[I-2(b+ a+ ~.) I],B(u)
f,b

so=4, exp[~-2(b+a+(o, ) ~].
A(v)
f,b

(4.18)

(4.19)

Now the variables that describe the anisotropic
Quid can be written as

Thus the metric (4.1) in the present case takes
the form

ea+b+oro
ds'= (f„du)(h dv) —t(dx'+ dy') . (4.17)

t

e andre canbe cast as (u),.„=f"(u, v),
f""(v).„= f"(u, v) . -

(5.2)

(5.3)

In other words, we now consider a collision term
f"(u, v} different from zero. This collision term
in principle can be computed using kinetic theory.
Of course, one can put together both kinds of gen-
eralizations in a single model.

where each of the energy-momentum tensors
t~"(u), .. . , &'"(m) satisfy an equat'on such as
(2.12). In principle, we can diagonalize the EMT
(5.1) and we shall end up with three different pres-
sures in the three different spatial directions.
This generalized model will be useful in describing
the general case of an anisotropic fluid. A second
kind of generalization results if one changes the
equations such as (2.12) by

AB't'~'
p =a =2 I e "'"~0' b f+,

)(
+

~ =.—.~ (-'~~ ~;„,(-') s, ,
',

~ -a/4 - a/2
~P —e-~/2'~ 1~ 5P~+i-

(4.20)

(4.21)

(4.22)

APPENDIX

In this appendix we compare the EM'Y associated
with a cloud of strings with the EMT of an aniso-
tropic fluid with two-null-fluid components.

The EMT for a cloud of strings can be written
as"

Tvv pgP E /( +)
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where p, is the string-cloud, gauge-invariant pro-
per density" and

we can cast (A7) a.s

Z""= a" b" —a"b"

y =a"a„b"b,—(a„b")',

a a~&0, b"b (0.
Thus

(A2)

(As)

(A4)

&"=p.(U" U"- X"X") ~

Note that

U" Uq = -y" yq
= 1,

U'X„=0.

(A10)

(All)

(A12)

a"b =0,

Eg. (A4) reduces to

(A6)

aqb (a b" +b"a"}-b bqa"a'-a a~b"b"
-a~a"bsb +(a b")'

(A5) .

Taking a string gauge such that'~

It is interesting to compare (A10) with (2.44}. We
notice that the only difference is the sign of the
anisotropic "pressure, " i.e. , in (A10) we have ten-
sion rather than pressure. Now we shall consider
the possibility of generating (A10) from a different
linear combination of EMT than (2.4). The minus
sign in (A10) suggests that we consider an EMT
such as

n+b b8 (A7) ~lkv tlw (b) tlkv (I) (A13)

Defining

U" =a" /(a a")'~'

s bs /( b b 8)1/2

(A8)

(A9)

If one tries to put (A13) in the form (A10}, one
finds that it is not possible to do so. A modifica-
tion of the method used in Sec. II to the hyperbolic
case can be used to prove the previous statement.
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