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In this paper one unambiguous prediction of cosmic censorship is put to the test, namely that it should be
impossible to destroy a black hole (i.e. eliminate its horizon) by injecting test particles into it. Several authors have
treated this problem and have not found their conclusions in contradiction with the prediction. Here we prove that if
a general charged spinning particle (with parameters very much smaller than the respective hole parameters) is
injected in an arbitrary manner into an extreme Kerr-Newman black hole, then cosmic censorship is upheld. As a by-
product of the analysis a natural proof is given of the Chriatodoulou-Ruf6ni conditions on the injection of a spinless
particle which yield a reversible black-hole transformation. Finally we consider the injection of particles with
parameters that are not small compared with those of the hole, for which cosmic censorship is apparently violated.
By assuming the validity of cosmic censorship we are led to a few conjectures concerning the extent of the particle's
interaction with the hole while approaching it.

I. INTRODUCTION

possibly the greatest unsolved problem in classi-
cal general relativity is penrose's cosmic censor-
ship hypothesis~ whereby naked singularities are
excluded from the real world. As with the birth of
many important ideas in physics cosmic censor-
ship is not yet precisely defined so that many
situations are known which contradict a strict
interpretation but not the spirit of the hypothesis.
However, a c1.ear implication of any reasonable
definition is that if we are given a black hole then
we should not be able to destroy it, that is remove
its horizon, and in particular we shouM not be able
to destroy it by means of injecting test particles.
Thus if it could be explicitly shown to be possible
to destroy a black hole by firing particles into it
then there would seem to be little hope of any form
of cosmic censorship being true.

It is now well established that all stationary
electrovac black holes belong to the three-pa-
rameter Kerr-Newman family of exact solutions
to Einstein's equations, the parameters being the
mass M, charge q, and specific angular momen-
tum a = J/M with the condition M~~a2+ q2. A sta-
tionary electrovac spacetime with M'&a'+ q'
must then be a naked singularity and not a black
hole. Calculations show it is possible to create an
extreme black hole (i.e. , one for which M =a
+ q2), and indeed calculations on astrophysical
aecretion3 lead us to believe that some black holes
will be near extreme. Thus the prediction of cos-
mic censorship is the following: Given an extreme
Kerr-Newman black hole we cannot create a space-
time with M' &a'+ q' by injecting test particles
into it. If the injected particle contributes energy
dM, angular momentum dJ, and charge dq to the
hole, then the final spacetime cannot have M2

(a~+ q2 if

a qMdM-
2 &

dJ-
2 2 dq&0.

M +a I +a
So this inequality is the prediction of cosmic

censorship to be tested. In deriving this equation
we have assumed that dM«M, dJ«J, and dq«q.
If the particle did not satisfy these conditions we
could imagine the following: Take an extreme
Kerr hole and drop a charged particle into it. No
repulsive force is apparent, and consequently the
particle could enter the hole and destroy it. In
situations of this kind one must go beyond the test-
particle approximation in order to verify cosmic
censorship. We shall return to this problem in
See. IV. However, until thenthe expression" test
particle" should be interpreted as being a particle
which satisf ies these conditions.

Now the first law of black-hole dynamics states~

—dC= dM- Q.dJ- 4dq,
K

8m' (2)

where 6 is the area of the horizon, K is the surface
gravity, 0 is the angular velocity of the hole, and
4 is the electrostatic potential of the horizon:

Q=, —„4=,', , e', =M+(M' —a' —q'}' '.
a, +a' x, +a

Since for an extreme Kerr-Newman black hole r,
=M we can rewrite Eq. (1) as the restriction to
the extreme ease of

dM- QdJ'- 4dq a 0, (3)

which looking at Eq. (2) is seen to be just the area-
theorem inequality restricted to the case of an ex-
treme black hole. Thus it might appear that we
could prove the result we require, namely, Eq. (3),
by invoking the area theorem d8 ~ 0 and using Eq.
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(2). However, Eq. (2) only makes sense if we have
a horizon before and after the perturbation for
which to calculate the charge dC. Hence if me used
the area theorem we should be assuming the exis-
tence of the horizon after injecting the particle.
This is the very statement we wish to test. Also in
the proof of d8~0 one shows that if 8 were to de-
crease, then within a finite lapse of affine pa-
rameter up the generators of the horizon, 8 would
decrease to zero, at which point generators of the
horizon H=Z (S') would intersect each other. This
contradicts a theorem of Penrose4 which states
that generators of J (8') cannot cross to the future
of the point at which they enter J' (s') from J (s').
However, this theorem depends on ruling out. the
possibility that the generators hit a singularity
and hence cease to exist, i.e. , it depends on cos-
mic censorship. Consequently we are barred from
using the area theorem to test cosmic censorship,
as manifested in Eq. (3), by the twofold assumP-
tion of cosmic censorship, first in proving d8~0
and second in using Eq. (2).

The approach adopted by previous authors (e.g. ,
Befs. 3, 5—9) is to use an appropriate equation
of motion (geodesic, papapetrou, etc. ) and by ex-
plicit calculation of turning points or by more gen-
eral manipulation show that particles with energy
E, angular momentum I., and charge e at infinity
are repelled before entering the horizon if they
violate

E —QJ —4&~0.

Before proceeding further we should mention the
question of radiation. Vfhen a particle falls into a
black hole it emits gravitational and, if charged,
electromagnetic radiation which mill carry energy
and angular momentum (though not charge) away
from the particle. As a result dM&E and dggr.
(E and L defined at infinity) so that one might
fear that in testing Eq. (4) one is not really testing
the actual prediction of cosmic censorship, name-

ly, Eq. (3). However, calculations indicate (see,
e.g. , Ref. 10) that the amount of energy radiated
from a particle of mass m is less than m2/M,
which is precisely the type of second-order term
which was neglected in deriving Eq. (1). Conse-
quently, to first order, Eqs. (3) and (4) may be
considered equivalent.

Walds has obtained the general proof of Eq. (4)
for spinless particles; however, the complexity
of the equations of motion for spinning chargeless
particles has prevented detailed analysis of their
motion except on the axis of symmetry5'~' and in
the equatorial plane. '9 For charged spinning par-
ticles only the case of motion in the equatorial
plane has been treated. ~ Thus this approach has
not produced a general proof of Eq. (4) for an

arbitrary method of injecting a charged spinning
test particle.

In Sec. II the ease of nonspinning particles is
considered and particles entering the hole are
shown to satisfy Eq. (4) even for a nonextreme
black hole. As a by-product of this analysis a
transparent proof is given of the Christodoulou-
Buffini conditions"'3 on the injected particle
which yield a reversible black-hole transforma-
tion. In See. III the basic idea of the proof in
Sec. O is generalized to spinning particles, and

finally in Sec. P7 situations in which cosmic cen-
sorship is apparently violated are discussed.

II. NONSPINNING PARTICLES

Consider for the moment an uncharged non-
spinning particle with momentum p. lf f and $
are the time and angular Killing vectors, then
they yield two conserved (to first order) quantities
E=P g and L=-P ~ $, the energy and angular mo-
mentum of the particle, respectively.

For a charged particle E=v $ and L= —n~ g,
'

where m =generalized momentum =P + eA and A
is the vector potential of the hole with the gauge
freedom A-A+df(r, 8) (d is the exterior deriva-
tive).

We now prove Eq. (3) for the injection of a spin-
less charged particle into a general Kerr-Newman
black hole. Now the product of any future timelike
vector with any future null vector is strictly posi-
tive, so if we contract the momentum of the par-
ticle with the tangent vector X to the null genera-
tors of H as the particle passes through Ij me get
a strictly positive quantity, i.e.,

(»X)&0.
Then since p=v —eA —edf(x, 8) and )i=$+Q(
we obtain

(v —eA. —edf(r, 8), g+ Q]) &0

or

dM —QdJ —(A, X) dQ —( df(r, 8},g + Qg) & 0.
A simple calculation shows (A, X) = C [see Eq.
(2)], and noting (d 8, y) =(dr, X) = 0 we obtain

dM —QdJ —Cdq& 0,
which is the required result. If the particle does
not enter the hole we cannot contract its momen-
tum with X so we do not obtain the above restric-
tion on the properties of the particle, in accord
with the idea of particles not obeying Eq. (5)
being repelled before reaching H.

Note that for a general stationary axisymmetric
black hole (e.g. , hole with a ring of matter around
it) general theory shows' that we may still write
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X = ( + Qg and that C = (A, X), thus Eq. (5) holds
in this case also.

Equation (2) tells us that Fq. (5) is equivalent
to dQ+ 0 for massive particles. The connection
between' and entropy leads one to call a process
for which d8=0 reversible. Christodoulou and
Ruffini' ' have shown that the injection of a par-
ticle is a reversible process if and only if the par-
ticle is massless and P"=P~ =0 at H. This result
may be deduced very simply by the method of this
paper without the detailed algebra of the original
proof. Since we have proved d8+ 0 for massive
particles we see that if dC= 0 is possible at all
then the particle must be massless, and since
there are no massless charged particles in nature
Eq. (2) requires that for a reversible process

8m 8m
0 =d8=—(dM —Adj)=—P X,K K

where we define X'=—p'+ S'~ V&.
If X is timelike then we obtain dM- QdJ& 0 as

required. Before looking more closely at X, note
that there is a degree of freedom in the definition
[Eq. (7)] of V, namely, V- V+gX, where g is
some real constant. Thus while X ~

X is invariant
under such a change, ) is not; so what we must
prove is that there exists a single V satisfying
Eq. (7) such that X is timelike, for then A,

~

X ) 0
for any V. Therefore we need to show that re-
gardless of the point at which the particle crosses
II there exists a Vfor which X X +0.

Now~' P, S' =P 8 = 0 and 8' =q' +,P~ where
a caret denotes the unit vector. Using the expan-
sion of q' 'q, &~ we obtain

x x=p'- ~s' [(p v)'-(s v)'- v'] (9)

Since P S=O we may construct two null vectors

and indeed since P is now null we can make it
orthogonal to x, which we could not do before
with massive particles. The condition d8 =0 now
becomes

5= and y=- with 6 ~ y=1,p+S P —S
2

and using these Eq. (9) may be written as

X ~ X =m' —~s'~[2(5 ~ V)(y V) —V'] . (10)
P x=0

and this implies that p points along X. Hut X= g

+0) so X' =X~=0 and thus

1 5=P X+ rXa,.sS'

However, on II we have '

X&, X~.,&

——0 so there exists
a Vsuch that

x, .g ——2x(, Vt (7)

III. SPINNING PARTICLES

In this section the argument of the preceding .

section is generalized to the case of chargeless
and then charged spinning particles with the re-
striction that the black hole is now extreme.

For spinless chargeless particles we showed
that dM- QdJ can be written as the contraction of
a future timelike vector (namely P) and the tangent
to the null generator of B. %e now do the same
for chargeless spinning particles. For such par-
ticles the conserved (to first order) energy and
angular momentum are given by

E=P' g+ 2g qs' and. L= —(P g+ ig;i, S' ) ~

Now

X ~ X=m'+ S'~ V'&m'- IS
M (12)

However, a particle with spin
~

82~'~2 and mass m
has a minimum size

~

S2~i~~/m, and for it to be
considered a test particle this must be much less
than the size of the hole, so the test particle con-
dition is

m2 " (13)

Since we are considering anextreme Kerr-Newman
black hole z =0, so ~„X=AX=0 and consequently
0 = X 'X., i,

——(X V)X„ that is,

X V=o.
Jf V- V+gX then V'- V'+2g(X ~ V) = V', so V'
does not depend on the choice of V, and since

V=0, V must be spacelike or null. In the
Appendix we calculate V'2 and find 0& V2~- 1/M2
and that V is only null at the poles.

Since at the poles g is null and V~ X= 0, V points
along X, which implies X,.~=2X«V» ——0. Substi-
tuting this into Eq. (6) we obtain

dM-QdJ =P x+0
if the particle crosses H at the poles.

off the axis Vis spacelike so we can add on
multiples of X to make V orthogonal to 6 or y.
For V chosen in this way Eq. (10) becomes

Using Eq. (7) we may rewrite Eq. (6) as

dM- QdJ =x ~ x, (6)

Using Eq. (13) in Eq. (12) we obtain X ~ X) 0 for
the V such that V~ 5 =0 or V. y=0 so X ~ X+ 0 for
all V. Consequently
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dl- QCJ+ 0

away from the poles as well as at them. Thus the
required result is obtained for the general injec-
tion of a chargeless spinning particle.

Note that when the particle crosses at the poles
we do not impose the size condition whereas in
general we do. Comparing this with previous cal-
culations we see that when Weald sends the par-
ticle down the axis of symmetry he does not have
to impose Eq. (13), whereas in the equatorial plane
Tod et al. are forced to if the hole is not to be
destroyed. The same feature is present in the
above proof L.et (y, 5, p, p) be a null tetrad defined
along the world line of the particle; then we may
write Eq. (10) as

&'= ~'- 2
I
S'

I I (i V) ('.
But p V is independent of S2( and can only be
made to vanish at the poles, so that if we do not
demand Eq. (13) away from the poles then we can
choose

~
S2) large enough to make X spacelike for

any V. e are thus unable to deduce A. ~ X& 0.
For charged spinning particles 7

E=v. g+ —,'g, .l, s'~, I.= —(&' g+ ~gg. g,
s' ),

where as before r =P + @A is the generalized mo-
mentum. gee have seen that X. X+0 regardless of
the point at which the particle crosses B, so

(P' + S' Vq)X & 0

and thus

(w+s"v~)x. -a x

and thus

dM- MJ' —4dQ& 0.
Therefore we have shown that the injection of a
charged spinning test particle in an arbitrary
manner cannot destroy an extreme Kerr-Newman
black hole.

IV. CONJECTURES

In this section we discuss situations in which
cosmic censorship is apparently violated, and in.

attempting to resolve these problems we are led
to make a number of conjectures concerning the
interaction between the black hole and the in-

jected particles.
In a recent paper Hiscock~4 claims to have

violated the area theorem by firing a ring of un-
charged particles into a Schwarzschild hole.
Since cosmic censorship is manifestly the weakest
assumption in the proof of the area theorem, he
deduces that cosmic censorship is violated. In
more detail, the area theorem applied in this
case dictates that a particle entering the hole

must induce changes dM. and dJ such that

dM» (dg) 2

I

(15)

However, the geodesic equation allows particles
violating Eq. (15) to enter.

The problem stems from the fact that in Secs.
II and III the particle could be thought of as
propagating in a fixed background geometry and
that second-order terms, corresponding to par-
ticle-hole interactions, couM be neglected. But
here there is no first-order term in L,, and con-
sequently we must look at the interaction of the
particle's angular momentum with the hole. %e
can also no longer ignore the second-order effect
of gravitational radiation, and before looking at
the particle-hole interaction we must first con-
sider this radiation.

An uncharged particle is normally considered
as moving on a geodesic P&P =0), and conse-
quently &&(P ~ P) =g &&P=0, which leads to the
identification of P f with the particle's energy E.
However, if the particle is fired toward a black
hole it will emit a small amount of gravitational
radiation and will deviate slightly from geodesic
motion (V& P e0) so that P. g will no longer be a
constant of the motion. Nevertheless we wish in
what follows to maintain the identification of P
as energy, i.e. , E=P. g. (I, is exactly conserved,
since ring+ hole forms an axisymmetric system
which therefore cannot radiate angular momen-
tum. ) Although we cannot furnish a proof of this,
it can be made quite plausible by the following two
arguments. First suppose the particle emits
gravitational waves of sufficiently high frequency
to obey geometrical optics; then the wave can be
thought of as being made up of gravitons with
definite momenta following definite world lines,
and as usual for the emission of particles the
energy is still P. $ despite the fact that it changes.
Second, imagine that we fire a particle toward the
black hole from the asymptotically flat region
where its energy and momentum are E, and P&, it
then passes near the hole with the emission of
some gravitational radiation, most of which will
be low frequency. Then it escapes to the asymp-
totically flat region where its energy and mo-
mentum are E2 and p2. The waves have carried
away energy so that E& ~ E„.however, because of
asymptotic flatness, E& and E, are manifestly
P&. g and P~ $. The second argument justifies the
identity E=P g initially and finally for all fre-
quencies, whereas the first justifies it at all
times but only for high-frequency waves.

We can now return to Hiscock's problem. As
the ring of particles spirals into the black hole,
it emits gravitational waves; also, it interacts
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with the hole so that the initially static Schwarzs-
child horizon generators start to rotate until, at
the point of capture, Q has increased from zero to-
a value Q,. After entering the horizon, the ring
cannot radiate anything more to p'; hence dM~ ~,~,

=E
I „and from the preceding paragraph E=p ~

g

so that dM, „&,&.= (p' g) I „. Clearly dM, but not
dJ, . will have a small contribution from radiation
entering the hole, but since the waves carry no
angular momentum this contribution is positive
(see Ref. 15), hence dM = dM~„„,~, +dM„d;„;,„,
& dMp p &

Contracting P with y at the point of
capture gives

(& &)I.+Q.(& Bl. 0

g, as was the case for a Schwarzschild hole, Eq.
(19) is to be a consequence of P y) 0, we are led
to conjecture that

L
c 2M3

precisely the same reasoning applied to the case
of firing a charged particle radially into an ex-
treme Kerr hole leads us to conjecture that as the
particle approaches, it induces a potential (see
Ref. 8) on the hole with a value at the point of
capture of

e
c 4M'

or

or

dMp~t-„), & Q~ dJ

dM& Q~dJ.

(16)

We therefore suggest that if perturbation cal-
culations were performed for extreme Kerr and
Reissner-Nordstrom black holes in order to find

Q, and 4„ then they should satisfy Eq. (20) and
Eq. (21), respectively, if cosmic censorship is to
be upheld.

if the area theorem is to be upheld by Eq. (16), we
deduce

L
c 8M30&

As would be expected from an. interaction picture,
the lower bound of Q, is ProPortional to L (the
angular momentum of the ring).

%ill~8 has performed a perturbation calculation
for this problem and finds Q, =L/4M3 which satis-
fies Eq. (17), and the area theorem is upheld. In
fact, , putting Q, =L/4MB in Eq. (16) yields dQ

+4mL'/M2. The neglect of particle-hole interac-
tions in Hiscock's analysis has already been
pointed out by Abramowicz et al. ~7 However, they
did not show how this led to the area theorem
being satisf ied.

Essentially the same trouble arises if we in'ject
a ring of uncharged particles with orbital ar gular
momentum into an extreme Reissner-Nordstrom
hole, for it would -then appear that we could
destroy its horizon. The horizon-nondestructibili-
ty condition is derived by defining

J2
f(M, J, Q) =M —

M2
—Q,

which is non-negative when a horizon is present.
5 there is a, horizon after the injection, then

(18)

In Secs. II and III, second-order terms in Eq. (18)
could be neglected, yielding Eq. (1), but in this
case we obtain
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APPENDIX

Jn this appendix we calculate V using spin co-
efficients and show 0 & V2a- 1/M2, V being null
at the poles. Let (I', n', m, m) ( e the Kinnersley
frame~' for which all the spin coefficients have
been written down:

I"=—(r2+a2 b, 0 a), n"= (x2+a —6, 0,a),1 1

m'= (ia sine, 0, 1,i csee),
QZi p

where p =r+ia cose, p
~ =r —ia cos8, p2= pp~,

6 =&2 —2Mr+a2+ Q2. It'arious inner products
occurring in the following calculation blow up on
the horizon, and thus it is more convenient to use
the (f, n, m, m) frame defined by I =El', a=a 'n'.

Qn H, l points along X so that V.X =0 implies
V ~ l=0 so

V~=2(I V)(n' V) —2(m' V)(m' V) = —2(m ~ V)(m

(dZ) 2

dM
2

(19)
We must therefore calculate m. P. Now X,.~
=2X&NV» so noting X &=X m=X m=0 we get
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(Al)n'm«X, .«= (m' V)(y' n) .
To find n'm«x, .«expand X: X = (X' n)~. + (X l)n
—(X m)m, —

()f m)m„so that a short calculation
gives

n'm«y .«= (y n)n'm«l, .«+& (y n),

and a further simple calculation shows

a2 sin28(M« —r2)
„(X n) =2~2pp4(M2+g2) =0 on H.

(A2)

Thus since n'm~E, .~ is known explicitly in terms
of spin coefficients to be n~ + p, combining (Al)
and (A2) yields

m~ p=n +p

However, since the transformation E =El', n
=6 ~n' does not change n~ + p we can simply look
at the spin coefficients in the (f', n', m, m) Kinners-
ley frame and see~9

ia sin8
n +p=—

&2 (p)

Hence

7' =-2 o. + p~ ——— a sin 8 1
(M'+ a2 cos'8)' M~

and is zero at the poles.
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