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We examine the standard quantum-chromodynamics-inspired description of nonleptonic hyperon decays.
We point out that the discrepancy between s- and p-wave amplitudes which emerged from a PCAC (partial
conservation of axial-vector current) analysis cannot be cured by the inclusion of factorizable diagrams. We
include anomalous contributions to the axial-vector current divergence which appear in the presence of the
effective local Fermi interaction. Like factorizable diagrams, these preserve the successful results of PCAC
for s-wave amplitudes, but are insufficient to give a quantitatively satisfactory description. We estimate the

decay rates for 0 —+=*@and:- l v, in view of further tests of the standard model.

I. INTRODUCTION
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gluon

The dynamics of nonleptonic decays has received
renewed attention since the first applications' of
operator-product and renormalization-group tech-
niques to these processes in a quantum-chromo-
dynamics (QCD) framework. The results of these
analyses were encouraging in that a dynamical en-
hancement (suppression) was found for the effec-
tive Fermi operator responsible for n, I=-,' (—,')
transitions. While the numerical values of the
enhancement/suppression factors were insuffic-
ient to account for the observed amplitude ratios,
there were a number of arguments, "based on the
quark model and soft-pion analysis, which sug-
gested a further enhancement/suppresion of the
matrix elements of these operators. It was sub-
sequently pointed out4 that operators arising from
the purely AI = 2 "penguin" diagrams, which van-
ish in both the SU(4) and free-quark limits, have
chiral properties which give a large relative en-
hancement of their matrix elements. These tech-
niques were used to predict' 0 decay amplitudes
which turned out to agree with experiment" within
the uncertainties on the theoretical parameters.
A semiquantitative understanding of both AI = —,

' and
AI = —, amplitudes thus began to emerge. ' More

recently, ' current ideas, including the MIT bag
model for determining baryon-to-baryon current
matrix elements, have been used to calculate para-
meter-free predictions which agree well with the
s-wave data, and less well (except in sign) with
p-wave data. The failure to describe adequately
'both s and p waves is an old problem related to the
use of current algebra. '

In this note we separate the amplitudes arising
from different mechanisms so as to see more pre-
cisely just where the discrepancy lies. In parti-
cular we display a sum rule relating s- and p-wave
amplitudes which follows directly from the stand-
ard current-algebra-curn-pole analysis, "and is
insensitive to those factorizable diagrams which
vanish in the soft-pion limit. We point out that
the axial-vector current has an anomalous diver-
gence" in the presence of the effective local weak
interaction arising from the diagram of Fig. 1.
The presence of this term introduces additional
parameters into the analysis, but is insufficient
to allow a satisfactory description of both AI =-,'
and b, I= & amplitudes. We also present branching-
ratio estimates for the decay modes ~ - - ~m and
0 --'l v, which should be measurable, and have
in fact been observed, in the CERN hyperon-beam
experiment currently under analysis, and which
allow further tests of the nonleptonic decay mech-
anism. In particular, a measurement of the semi-
leptonic decay matrix elements will sharpen the
prediction for 0 -=m.

II. ANALYSIS OF NONLEPTONIC HYPERON DECAYS

q'

FIG. 1. Anomalous contribution to the axial-vector
current divergence (hard-gluon renormalization of the
Fermi coupling is implicit).

We first recall the procedure for the soft-pion
analysis. " The amplitude for A -Bm is evaluated
in the limit of vanishing pion mass using chiral
symmetry. The on-shell amplitude can be ex-
pressed in terms of the identity
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isg(a b+-we) =G„m,,'u~(A~, Bo„y,—)u, . (2.2)

[1+&, is a positive-helicity projection operator.
With the definition (2.2) our sign conventions are
the same as in the Particle Data Tables except for
the sign of SK(Z;}.] Using the above prescription,
one finds for s-wave amplitudes

3g(P.) =-K(P,}+K(0}, (2.1)

where K(p, ) contains the momentum dependence
of the amplitude and 3g(0) is its zero-energy value.
Rapid variations with p, are expected if there are
nearby poles, and these are explicitly taken into
account in evaluating 3g; other contributions are
assumed to be negligible. The hyperon decay am-
plitudes are evaluated using the V-A property of
the weak current, approximate chiral SU(2) sym-
metry, approximate SU(3) symmetry for matrix

.elements, and retaining only the poles arising
from —,

'' intermediate states in gg. We write the
amplitude for the weak decay a -b+ z as

where the unmeasurable Z decay amplitude can
be eliminated using Eqs. (2.3):

A(Zo) = ~A(Z ) =0.9V+0.01 (2.8)

A(Z )+A(Z;) =-~(ZO), (2.9)

which is in good agreement with the data of Table
I:

2.00+0.02 = 2.09+ O.OV . (2.10)

Then with no further assumPtion the P-wave am-
plitudes for A and Z decays are completely deter-
mined in terms of the s waves. These predictions
are also shown in Table I. If in addition we as-
sume the n. i=-,' rule and approximate SU(3) sym-
metry for the Xb, we get the relations

2A(-„o)+A(AO) ( )umA(Z. )

in the conventional notation, A(Zoo) —=Aoco, etc. , and
with the measured amplitudes" listed in Table I.
Equations (2.3) also imply the relation (differing
by the sign of Z; from the nI= —,

' relation)

GFtsr+ u~u A~
(2.3a)

Z„, Q=O, and

(1,66 + 0,04 = 1.48 +0.05),

A(Z;) =0

(0.07 +0.02 =0),

(2.11)

(2.3b)
A(='-Z'v') = (= -Z m'}

1

6~m, , B„=- (m, +m, )~—l
g„2 q

Xb g..)b c

(2..4)

where g'„ is the axial-vector coupling constant

g~o,u,r„rsu. = &b IA~c l~& (2.5)

where f, is the pion decay constant (f, =0.944m,.),
X is the effective weak interaction Hamiltonian,
and T' are the usual isospin raising and lowering
operators; we have used the AI, =--,' property of
3C in writing (2.3b). For p-wave amplitudes we ob-
tain

[2A (A', )+A (=',)]

= -0.34 +0.03 . (2,12)

Equation (2.12) can be used to calculate P-wave
amplitudes for = decay, giving the values in par-
entheses in Table I. Except for A decay the soft-
pion sum rules give a poor approximation to the
data, and the discrepancy for = decay is too large
to be attributed to the small violations of the 4I
=-,' rule (generally 5%) and SU(3) symmetry (gena-

TABLE I. Experitneatal values (Ref. 13}of hyperon
decay amplitudes and current-algebra predictions for p
waves derived from s waves as described in the text.
Bracketed entries include Coulomb corrections (Ref. 14).
The predictions in parentheses require further assump-
tions (see text).

and is expressible in terms of the measured"
parameters

s waves
A

p waves
Prediction

I= 0.428, D = 0.823 . (2.6)

(2.V}

Using (2.3b) in (2.4) we can write sum rules of the
form

A,'
g+
g+

0
Z
wo
MQ
MM»

1.47 ~ 0.01
[1.44l

-1.07
0.07 + 0.02

-1.48+ 0.05
1.93+0.01
1.55+ 0.03
2.04 + 0.02

9.98 6 0.24
f9.80]

-7.14+ 0.56
19.04 R 0.16
11.99 + 0.58
-0.65 + 0.08
-5.96 + 1.12
-6.70 + 0.38

10.60 + 0.56

-8.12 + 0.40
0.16+0.33
4.91+0.17

-5.32 + 0.23
(-1.06 +0.56)
(-1.50 +0.78)
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FIG. 2. (a) Diagram inducing effective local V-A Fermi operators, (b) factorizable matrix element, and (c) baryon-
ic matrix element.

rally 10/o). The particularly large discrepancy in
the prediction for the Z; p-wave amplitude is eas-
ily understood if we recall" that a best fit to the
s-wave amplitudes using Eq. (2.3) gives an f/d
ratio for the (octet-dominated) matrix elements
of X which is close to that for baryon mass split-
tings; equality of these ratios results in B(Z;) —= 0.

Since the conventional soft-pion procedure is not
a good approximation to the data, we should exam-
ine the assumptions that went into it. We shall not
question the V-A nature of the weak current nor
approximate chiral symmetry.

APproximate SU(3) symmetry. Relaxing this as-
sumption would allow for parity-violating baryon-
to-baryon matrix elements of 3C. This could intro-
duce commutator terms in p waves, analogous to
(2.3), and pole terms in s waves, analogous to
(2.4). However, these would not really be poles
since their residues vanish, so for such terms to
give a significant variation to 3Q would require an-
omalously large matrix elements. If they did con-
tribute significantly they would spoil the success-
ful relations of Eq. (2.11) for the dominant n, I= p,

amplitudes. Neglecting these "nonpole" contribu-
tions we would still have a p-wave commutator
term, but it would not contribute to B(Z;). Inde-
pendently of SU(3), the effective local operator
X has only parity-conserving matrix elements in
the nonrelativistic quark model as well. Since
baryon matrix elements generally satisfy SU(3)
constraints fairly well, and since relaxing this
assumption does not appear useful, we shall stick
to it.

Other poles. There are also pole terms from
higher resonances: —,

"for p waves and 2 for s
waves. In the nonrelativistic quark model these

give vanishing contributions because the overlap
integral vanishes in the matrix element of 3C. Of
the known states, the closest and thus potentially
the most important is the SU(3) singlet A(-, , 1405).
Its contribution can be directly measured from
A(Z;) which is indeed small; in our subsequent
analysis we shall assume that this is the only
contribution to A(Z;). One might worry about
the ~' decuplet states ~(1232) and Z(1385) which
are close in mass to the Z and =, respectively.
In a dispersion relation their contributions van-
ish both on-shell and in the soft-pion limit
since either the spurion or the pion momentum
vanishes. Again their effect would be expected to
be most important in s waves and would induce
violations of the Lee-Sugawara relation and A(Z;)
=0, Eqs. (2.11).

Factorizable matrix elements. The factorizable
matrix elements of the effective local V-A cur-
rent-current operator (Fig, 2) vanish in the soft-
pion limit and are believed" to give an important
contribution to the 4I = 2 amplitudes. They also
contribute to AI = —, amplitudes and will be included
in our analysis. However, they make no contri-
bution to the sum rule for B(Z;). Factorizable ma-
trix elements of penguin operators [Fig. 3(c)] do
not vanish in the soft-pion limit and are implicitly
included in the sum rules (2.7) [although they also
drop out for B(Z;)]. The baryon-to-baryon matrix
elements of the dimension-6 penguin operator4
[Fig. 3(a)] has contributions of the type of Fig. 3(b)
which give no net contribution to the on-shell am-
plitudes. Their contribution in the soft-pion limit,
proportional to Qq) =-m, ' f,'/2( m+m~), can be
shown to be independent of the quark mass renor-
malization prescription and to give a contribution

L~ /L L L

R L ='.)! =R

(c)

FIG. 3. (a) Perguin diagram inducing effective local (V-A) (V+A) Fermi operators with enhanced matrix elements
which correspond to (b) in the soft-pion limit and the factorizable diagram (c) on mass shell. Baryonic matrix elements
(d) are not enhanced.
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identical to the on-shell factorizable penguin di-
agram of Fig. 3(c).

Anomalous cun ent divergence. The diagram of
Fig. 1 has a nonvanishing divergence in the limit
of vanishing quark masses, giving an effective op-.
erator

At„=A„,(a) +A „,(a),
ro
~e

-=u. ( }' 3i2( }

and the a -bn amplitudes are then determined by
isospin as linear combinations of (A, B)„,„, and
Z'. The factorizable diagrams of Fig. 2 give the
contributions

(2.14)

q„0"~ Et,s,qh, y, (1 —y, }q', (2.13)

where I,', is the dual of the gluon field tensor and

&,. is a color SU(3) matrix. Since the operator
(2.13) is a flavor octet it has a vanishing matrix
element between Z' and n, so it will not contribute.
to Z, amplitudes. Its matrix elements also satisfy
the Lee-Sugawara relation (2.11) to the extent that
SU(3) breaking can be neglected. However, its ma-
trix elements need not respect all the sum rules
satisfied by factorizable contributions which are
proportional to the divergences of quasiconserved
currents. On the other hand, they can alter sig-
nificantly the PCAC (partial. conservation of axial-
vector current} sum rule for B(Z;) only through
large contributions to s-wave amplitudes which are
disfavored to some extent by successful calcula-
tions' of the latter. In addition these terms con-
tribute to

~

n, I
~

= 2 amplitudes which are small ex-
perimentally and approximately accounted for by
factorizable terms. 4 A quantitative analysis, as
described briefly below, shows that these contribu-
tions are insufficient to allow for a coherent de-
scription of all amplitudes.

In the rionrelativistic quark model, 4I =
& weak

transition operators do not contribute to the ma-
trix elements R„defined in Eqs. (2.3}. There-
fore in the standard approach the decay Z'-nm'
receives no contribution. %'e define the remaining
isospin amplitudes by

c =2 6, c, =06, tc —1 GeV, 5~ =-2, 5~= 3,
(2.18)

where 5-„=4c,/(3c —c,) is the —,/-,' ratio for the
anomalous contribution and we have taken the QCD
parameter A = 500 MeV and a renormalization
point p, =1 GeV, but these numbers could well be
renormalized further by soft-gluon exchange.

We simplify notation by defining "reduced" am-
plitudes:

beA
b

Bbeba- m m y ba- m +ma b b a
(2.19)

Then assuming that the mechanisms of Figs. 1 and
2(b) are the only contributions to the n.I= —', ampli-
tudes we may write

a„,(A) =
2

b~«+ b„a„(A},

a„,(Z) = b~«+ b„a„(Z),
1

(2.20)

asi2(-") = b «+b„a„(:-),

b„,(A) =- 8„«+b„b„(A),
(3F+D)

b„,(Z) = 8,«+ b„b„(Z),
(D-F)

2
(2.21)

b.&, (=-) =
2 8,«+ b~b~(=-),

(3E D)—

product expansion for the effective Fermi interac-
tion

X'"(AS = 1)= vY Q,0,+c 0 )G„+penguin operators

+higher dimension,
(2.17}

0, = (u~y„s ~) (d~y„u ~) + (d~y s ~)(u ~y„u ~) .
In the short- distance leading-logarithm approxi-
mation one gets

A~„(a) = «(m, —m, )g»',

B,"„(a)= «(m, +m,-)g'„',
(2.15)

and if Figs. 1 and 2(b) are the only corrections to
the PCAC treatment, the sum rules (2.7) are mod-
ified to

A,", (a) B„(a) 8c,
(2.16) bii. -=b(au2)+ nb (2.22)

where g„, g~ are the usual axial-vector and vec-
tor-current matrix elements at zero momentum
transfer,

(c +3c,

nb(A} =- + [b„,(A) —(D+E)a„,(A)
«(3F+D) 1

+ (s)'"Da,~,(Z)], (2.22a)

&b(Z) = ~it(D —E)+ [b,(2(Z)+ (D —E)a„,(A)],
1

and c, are the coefficient functions in the operator- (2.22b)
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TABLE II. &I=+~ reduced amplitudes [see text; we assume the small amplitude for a++)
arises from Fo*(1405) exchange only and remove this contribution which contributes equally to
all s-wave & decays], current-algebra predictions (b) «r bf/2 and contributions to gb =bf/2
—b arising from Figs. 1 and 2(b} using &I =$ amplitudes (Table III} as input (see text).

Experiment (Ref. 13)
Q][/2 bg/g

Calculation
b

Expt. Calc.
&b =b)/2- b

-5.93+0.04
[—5.85]

-5.39+ 0.08
7.38 + 0.05

0

-3.51 + 0.11
[-3.49]

6.23 + 0.19
-2.11+ 0.17

8.93 + 0.08

-3.80 + 0.07
[-3.vo]

2.13+ 0.03
-0.24 + 0.07

0.63 + 0.10

0,29 + 0.13
[0.21]

4.10+ 0.19
-1.87 + 0.18

8.30 + 0.13

-3.73 ~2.04
[-3.9v]

-0.89 + 0.72
0.51 + 1.02

-1.17*0.51
[-0.91]

( )
(3E-D)

&m, —m, &""

+ (& —+)~,i, (=. )I, (2.22c)

[(-',)"'a„,(A) —a„,(Z)], (2.22d)

8.30+0.13 = — (0.39 + 0.17),
A

(2.23)

which not only requires a value 5~i =1/20, much
smaller than the calculated one Eq. (2.18)], but
has the wrong sign. On the other hand, the com-
bination 2LS(-)+ nf)(A)+ (—',)"'A(Z) [Eqs. (2.22a)-
(2.22c)] gives

1.58 + 0.45 = — (1.25+ 1.00),1

A
(2.24)

which again has the wrong sign but prefers
i 5„i-1. Taking the values of Eqs. (2.18) gives the

last column of Table II, mhich generally worsens
agreement with the data. It is not particularly re-

7x= x(l —5z/5~) .
We have used the Gell-Mann-Okubo mass relation

m —ms = 2(m~ —m~) —(ma —m~),

and the 5(a„,) are the PCAC predictions (Table II)
with no corrections. We have avoided making
SU(3)-symmetry assumptions for the anomalous
contribution as the operator (2.13) contains deriv-
atives and is therefore sensitive to internal mo-
menta. However, no assumption is necessary to
see that the result is unsatisfactory. For exam-
ple, Eq. (2.22d) gives (see Tables II and III)

TABLE III. &I =2 reduced amplitudes (see text) and
factorizable contributions [Fig. 2(b)] using the values of
Eq. {2,18).

Q 3/2
Experiment

(Ref. 13)

-0.12 + 0.08
[-0.20]

-0.43+ 0.14
0.36 + 0.11

Fact.

—0.46

—0.38
0.46

b 3/2
Exper iment

(Ref. 13)

-0.05 + 0.19
[-0.0v]

-0.61 + 0.19
-0.33 + 0.19

Fact.

-0.28
-0.23

liable to use the 4I=
& amplitudes as input, since

they have large errors and are sensitive to ra-
diative corrections. However, the Coulomb cor-
rections (bracketed entries in the tables), which
are estimated'~ to be the most important radia-
tive corrections, make little difference, and the
large theoretical errors given should reflect suf-
ficiently the experimental uncertainties. The point
is that an adjustment of the coefficient functions
in order to account in particular for the Z decay
amplitudes would not only do violence to their
calculated values but would render fortuitous, as
mentioned before, the agreement of s-wave pre-
dictions with data, as well as the fact that factor-
izable diagrams account reasonably well for the
observed M= 2 amplitudes as seen in Table III.

Similar remarks are probably applicable to any
factorizable contributions (e.g., K poles and K*
poles) which contribute to n.I= —, amplitudes with
strength dampened only by the coefficient function
ratio c,/c but have the virtue of preserving the
Lee-Sugawara relation and the vanishing of A(Z;)
[Eqs. (2.11)]. Our analysis assumed only af =s
for the operator of Eq. (2.13), and the discrepancy
between (2.23) and (2.24) is independent of the
value of the s/-,' amplitude suppression factor.
There are other anomalous contributions coming
from penguin operators in the expansion (2.17)
which contribute only to n.I = amplitudes (as well
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as anomalies with a gluon replaced by a photon
which would mostly affect n.I= —,

' amplitudes) but

they occur with considerably smaller coefficient
functions.

It would seem that the PCAC approach (or the
baryon-pole approximation which is essentially
equivalent) is inadequate to describe the p waves,
at least for Z decay. Another indication that this
is the case is the large value of the wave function
at the origin,

~y(0) ~' = I.9V,',
which is required to fit Z, decay under the assump-
tion of pole dominance. On the other hand the
value

extracted from a pole dominance fit' to 0 -AK
is in much better accord with bag-model predic-
tions and the value extracted from a fit to s
waves. " The point is that in the standard picture
the dominant (factorizable) contribution of the pen-
guin operators drops out from both these decay
amplitudes (as do anomalies and all other factor-
izable contributions). Since the nonfactorizable
[Fig. 3(d)] baryon-to-baryon matrix element of
penguin operators is expected to be small [we find

y- =]2y&=4D&

for the reduced matrix elements of 0 and 0~,
while the coefficient functions are in the ratio
cJ/c =0(o., (p, )/6v); see also Ref. 9] these decays
should measure directly the matrix elements of
0 and therefore ~g~' in a quark-model picture.
However, it has been strongly argued" that pen-
guin operators (which all have n, f=-,') of dimension
higher than six are so convergent that the higher
dimensions are scaled by powers of light quark
(constituent) masses rather than m, (they cannot
be scaled by m~ since they are suppressed by the
Glashow-Iliopoulos-Maiani mechanism), and might
therefore give a non-negligible contribution which
could modify estimates of (B ~X ~B') as well as
static SU(6) relations which follow from 0 domi-
nance. However, unless they can be shown to give
a rapidly varying contribution to decay matrix ele-
ments, they will not affect the above analysis
which is independent of the value of (B ~X ~B') and
to a large extent of assumptions on SU(3) sym-
metry. It has recently been conjectured" that
gluon radiation may play a role in the apparently
unexpectedly large decay width of the D', and may
also give a significant contribution to exclusive
two-body channels"" via diagrams like that of
Fig. 4(a). Since gluon exchange of this type allows
quark diagrams which would otherwise be sup-
pressed by helicity arguments, it could play a

FIG. 4. (a) Two-body meson decay diagram which is
helicity suppressed without gluon exchange between spec-
tator and weakly interacting quarks. (b) Two-body bary-
on decay diagram which suffers no helicity suppression
and is included in PCAC analysis with all possible gluon
exchange.

role in the dominant hI = 2 transition for K- 2m.

However, for baryon decay there is in any case
no suppression of diagrams like that of Fig. 4(b)
which are implicitly included in the PCAC-cum-
pole analysis independently of the way in which
gluons are exchanged; again they would have to
be shown to give rise to a rapid variation in order
to account for tPe discrepancy. The same state-
ment applies to an alternative picture" which al-
lows for a large gluon+ color octet (qq) component
of mesons. Extending this idea to baryons would
not in principle invalidate the PCAC analysis al-
though it could modify the estimation of matrix
elements within the usual static SU(6) framework.

A. Three-body nonleptonic decay

To estimate the decay rate for the observed de-
cay

0 n'm (3.1)

HI. 0 DECAYS

The initial treatment' of 0 decay within the
standard QCD framework including penguin oper-
ators has been followed by a cleaner experimental
situation ' and another analysis' along the same
lines where the bag model was used to calculate
matrix elements. In this approach Q decays are
predominantly parity conserving, and predicted
decay rates agree with experimental ones" within
the uncertainties on the coefficient function c„c~
and the other relevant parameters: The strong
coupling constant g„~0~ and the weak matrix ele-
ment (A ~0 ~=') for Q -KA and the semileptonic
decay matrix element (-

~
J„~Q ) for 0 -=v.

Since the standard model appears successful in
describing both two-body 0 decays and hyperon
s-wave decay amplitudes it seems worth trying
to test it further in spite of possibl. e criticisms"'"
of the assumptions used and the failure discussed
above which is conceivably specific to the p-wave
hyperon amplitudes. To this end we estimate the
branching ratios for Q -- w'g and 0 -='l v.
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we will use the naive SU(6) model as in Ref. 5. We
assume a cascade decay

g~ wgP

(3 2)

as suggested by the data, and first consider the
two-body processes 0 -™*or'and 0 -=~ n'. Ac-
cording to the standard picture the factorizable
diagram of Figs. 3(c) and 2(b) will dominate be-
cause of the matrix element enhancement"' of
the penguin operators (0, and 0, in conventional
notation'). Since 0 cannot contribute to the pole
diagram of Fig. 4(b), and O~ does not have en-
hanced matrix elements in this case, we include
only Figs. 3(c) and 2(b) for our estimate.

For the partial matrix element of the operator
0, one has

M (fl -:-*'w ) = MG~ sin 8c cos 8cc,&- *'w
f 0, f

fl ) .
(3.3)

(Here we use conventional but more cumbersome
notation: O, =-O, 0,=50,+—,', 0,+ —,'04, in order to
use directly previous calculations. ") With the
assumption of factorization we obtain

4if~'F, &-* —
fu y (1 —y, )s fQ &, (3.4)

I

Eq'„g" ~re 0 —y, )sn")=M(m -m )(
-'+

16 m' V
E5 =

3 E6 ——+—
y

for9 m„m,
(3.6)

Replacing the effect of all 4I = operators in the
matrix element by an "effective" 0„
—3C~ = C+ + (3.7)

M(A -=*w )=— iG~ sin8c cos8c(-c,'"+2c,)

f.e' &™*'I~r'(I—r, )s If' & (3.6)

one finds, for example,

c" ' '=+12, c,' ' '=-18.1

(The authors of Ref. 4 prefer" the values c,+pc,
=-0.25, c,"'=-18 from their fit to hyperon de-
cays, but more recent fits' do not require such a
large penguin contribution. ) In naive SU(6) the
baryonic matrix element is given by

where the notation is that of Ref. 5. The Fierz
factor E, measures the interplay between the two
contributing terms for each operator. As in the
case' of 0 -™07'we get

(3.5)

while the penguin factors for the dominant vector
contribution change sign:

(5+ 112 E -m *"'
+2Zf — (m„+m 4)

*
&-', Im'I f-', m&1", (q),

m3 4

where m and m' are the third components of spin for 0 and ™*,respectively.
Taking now the unpolarized rate relative to the 10-8 one of Ref. 5, one obtains

I'(0 -=*'w ) ik~*i (51'~' k~4 (m„+m~4) E~+m~ l "' '
F(Q - - w ) Ik I I, 8& k (m„+mz) Ezw+mz4, ~

(3.9)

3(m„m 4,)[(E~4 +m~4, )(E~+m~)]"' ' -cf"' '+2c,&~'.«(A»+ 2
—

i

2~Z(m„+m~) Ik~ I

- ' 4~
(3.10)

and

B(0 -= w ) = 0.234 + 0.013 (3.11)

where the axial renormalization constants for 10
-8 and 10-10 are assumed to be comparable;
consistency" with PCAC, which apparently works
well in 4 production, requires Z —1 and not ~ as
was used in Ref. 5.

Assuming now on-shell values for fk~4 f
and E~4

in the intermediate ™~mstate and taking'

(3.12)

one finds

E(fl -= w'w ) = ~ (3.13)

The decay is predominently parity violating; the
contribution from the axial-vector current turns
out to be -1% because of the small final-state mo-
mentum fk~* f. Thus we expect the w to be nearly
isotropic in the 0 rest frame, while the m' is in a
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p wave in the = w' center of mass.
Correcting this result for the -* finite width, we

adjust for phase-space differences but assume off-
shell effects in the matrix element to be negligible.
The corrections thus obtained turn out to be small;
the branching ratio (3.13) is multiplied by a factor
of about 1.3. The peak in the = m'invariant mass
occurs about 2 MeV below the ='* mass, and the
bulk of the = m'm events lie in an invariant-mass
range of one or two I'~~ below ~s =m~o*+ 0.8
MeV. So the final prediction is

B(Q - = m w') =+. (3.14)

In the experiment with the highest statistics, ' this
final state has about the same detection efficiency
as the =0m state. With the branching ratio (3.14}
about two events are expected and one was ob-

' served. '
Since the relative sign of the 0 and penguin con-

tributions changes in going from 0 —= w to
0 - -*m, comparison of their matrix elements
could provide a measure of the importance of the
penguin operator provided =~ dominance of the
three-body decay and the general assumptions of
the model are reliable.

+PV qVjP qV jV

(c' ~ ~ &3 ~ ~gvv+CA~v ~+ (y)

(s.i5)

where u„ is a Rarita-Schwinger spinor, j is the
leptonic current, and C3, C, are coupling con-
stants which can be extracted from v-induced &

0 k (M)

FIG. 5. Definition of kinematics for semi1eptonic 0
decay.

B. Semileytonic 0 decay

The semileptonic decay mode of the was given
a very thorough treatment in an unpublished
paper. ' Here we will present the results of a
simpler calculation, using more recent informa-
tion on the N-4 semileptonic coupling which should
provide a fair, ly reliable estimate.

The matrix element for 0 -='Lp is related by
SU(3) to that for v+N-I+ &; in the notation of
Ref. 23 we get

M(A -='tv ) = —-~ G, tane, g(p)
1/2

production; we use the values"

C~ (0) = -1.2, C~ (0) = 2.05 + 0.04. (s.i6)

The kinematics are defined in Fig. 5. In the SU(3)
limit the parameter m' is just the common baryon
mass. Symmetry breaking introduces an ambig-
uity; here we set m'=m„„„„. Defining dimen-
sionless invariants ~ and 7' by

K'= (P, +P,)'/~',
r = (u p, )'/M',

p, =m/M, g'=m'/M,

one obtains the unpolarized rate

d I' 36~ I'tan 8g 1 . p

dg2dy 32g3 ~4 j
where

(s.iv)

(s.is)

is the ha4ronic tensor. The interference term
drops out upon integration over the angular vari-
able ~:

Tmln
'72 p

&&(2(3+p'- »')a(»', p', 1)

+ 12»' [(1—p. ') —»']),
1

~min

= —,',
~

C" ~'( [(1+P)' -K'] &'~ '(»' P
' 1) + 12»')

(3.19)

X(», P', 1)= [K (JL+ 1) ][K'- (P -.I)'] .
The resulting rate is sensitive to the q' depen-
dence of the form factors:

I'(& -:-' e v ) = 10' sec '
&&

1.06
1.29

for a constant form factor and including q' depen-
dence, respectively. The larger number uses the
vector form factor of Ref. 23 and the &, mass for
a dipole axial form factor. One expects a higher
mass scale for strangeness-changing matrix ele-
ments, so one expects the result to lie between
the numbers in Eq. (3.20}; with a measured life-
time of 0.82X10 ' sec ' they give, respectively,

B(Q De v ) —10~X 1.06 '

(s.ao)

(s.ai}

Our partial lifetime is in approximate agreement
with the results of Yeou-wei Yang. The axial-vec-
tor contribution is dominant; we found a vector
contribution of 7% (4%) to the total rate for con-
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stant (varying) form factors. Therefore a mea-
surement of the semileptonic branching ratio
should determine the squared axial-vector matrix
element at zero momentum transfer —which
governs the partial rates for 0 -=m in the stan-
dard model —to within 20 or 30%. Our branching
ratio of 1/o is compatible with the observed num-
ber (-3.5 events) of semileptonic decays in the
hyperon-beam experiment. '

IV. CONCLUSIONS

We have shown that the well-known failure of
PCAC to describe adequately both s and p waves
in hyperon decay persists when new developments
within the framework of QCD are taken into ac-
count. A hitherto neglected anomalous contribution
to the axial-vector current divergence fails to
cure satisfactorily this discrepancy. On the other
hand, calculations of s-wave hyperon and ~ decay
amplitudes' ' "fare well in confrontation with the
data and this success is supported further by the
(albeit scanty) observed rates' for three-body de-

cays of the 0 . These results suggest that there
is no difficulty in understanding either the domi-
nance of 4I=2 amplitudes or the general non-
leptonic enhancement within the framework of the
standard model. They suggest further that there
is not one simple explanation for these phenomena
but rather that they result from the interplay of
various dynamical effects. However, we cannot
be completely satisfied until all amplitudes are
calculable, and a new approach is apparently
needed for the description of p-wave hyperon de-
cay amplitudes. One possibility might be the ex-
tension of newly developed techniques" for calcu-
lating proton decay in a bag model (B-v+leptons)
to the even more complicated case B-B'+m.
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