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Evidence for valence-quark clusters in nucleon structure functions
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By assuming the formation of quark clusters as valence quarks undergo Q evolutions in quantum

chromodynamics, we find evidences in the deep-inelastic neutrino scattering data that suggest their
existence. From the moments of structure functions we extract direct information on the cluster distribution
in a nucleon. Their physical significance is discussed.

I. INTRODUCTION

In the conventional parton model' the valence
quarks do not play a prominent role since they are
largely submerged under a sea of quarks and anti-
quarks. Yet the simple quark model' that has only
three constituent quarks for nucleons and two for
mesons without any mention of sea quarks has been
quite successful in interpreting many aspects of
hadron physics, such as the 2:3 ratio of the mp:pp
total cross sections. It is the purpose of this pa-
per to unify these two views in the framework of
quantum chromodynamics (QCD).

The key to the unification is in the identification
of valence-quark clusters. If indeed we can as-
sociate with each valence quark its own cluster of
sea quarks and gluons, then the three clusters in
a nucleon can be identified with the constituents
in the additive quark model, and a link between the
two views can thereby be established. The idea
of quark clusters if not new; it has been considered
in the context of a broken-SU(6)~xO(3) scheme, '
and in a specific phase-space model. ' It has also
been found' that hadron-nucleus scattering data
reveal information on the number of quark clusters
in nucleons and pions. But thus far the investiga-
tions have been rather model dependent. For-
tunately, during the past year important advances
have been made in the neutrino scattering experi-
ments, "and the predictions of QCD have been
verified. We shall use the same data and the same
theory to extract quantitative and direct informa-
tion about the valence-quark clusters with basic-
ally no further assumptions beyond what defines
the clusters.

II. VALONS

Suppose that a nucleon is a composite system
of three constituent quarks. To determine their
momentum distribution, one may perform a deep-
inelastic scattering experiment but, would find
that the data can be understood only if there are
an infinite number of quarks and antiquarks. That

is not contradictory to the picture of three con-
stituent quarks if by the latter we mean three va-
lence-quark clusters, each of which contain
quarks, antiquarks, and gluons that can be resolved
by high-Q probes. At low Q the resolution is so
poor that only three clusters can be discerned in
a nucleon, each having no recognizable internal
structure. In bound-state problems they are
ca,lied the constituent quarks. For brevity, we
shall refer to the valence-quark clusters as va-
lons.

The valons therefore serve as a bridge between
hard and soft processes. As basic units in a
bound-state (low-Q') problem, they form the basis
in terms of which the hadronic wave function can
be described. It is here that the so-called uncal-
culable hadronic complication occurs. On the
other hand, when the nucleon is probed at high Q,
it is really the valon structure that is probed, al-
though on top of it there is also a smearing on ac-
count of the momentum distribution of the valons
themselves. In the following we shall specify pre-
cisely what the valon structure is. Qualitatively,
it has a cloud of quarks and gluons that evolve
from a single quark in a way that is calculable in
QCD. In that sense a valon is just a dressed va-
lence quark.

Our aim is to learn about the wave function of a
nucleon in the valon representation. From the
study of the hadron spectroscopy it is reasonable
to assume that a nucleon has three valons. How-
ever, it is not obvious whether the Hilbert space
for the description of a hadron can be spanned by
just the valon vectors only. Since the valons are
not free, gluons are needed to bind them to form a
ha, dron. In that ca.se it appears that in addition to
the valon coordinates one would need to include ad-
ditional degrees of freedom for the gluons. Stated
differently, the question is whether, in an (infi-
nite-momentum) frame where a hadron moves
fast, the valons exhaust the momentum of the ha-
dron, or carry only a fraction y of the hadron mo-
mentum with the balance 1 —y being carried by
gluons not included in the valons. The issue can-
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(2.l)

for each v. The momentum sum rule is
1

G.y&(y)y dy = &

v 0
(2 2)

where the sum is over all valons in the hadron fg.

Let V"(x, q') denote the nucleon structure func-
tion, which can be either F, or xF,. Let 5"(z,q')
be the corresponding structure functions of a va-
lon; they are precisely known in QCD at least in
the leading-order approximation. They are cal-
culable because they have no bound-state compli-
cations which are entirely contained in G„&„(y).
Starting from a quark at z =1, the evolution equa-
tion of Altarelli and Parisi' completely specifies
6:"(z,q') at high q'. On the basis of impulse ap-
proximation the interaction among the valons can
be ignored when one of the valons is .struck by a
virtual photon at high q'. We then have the con-
volution equation relating the hadron to valon
structure functions,

not be settled without a reliable theory for con-
finement. However, we can learn from experi-
ments the relative importance of the valons and the
gluons that bind them. As a working hypothesis,
we assume that y =1. That is the basis of our va-
lon model. If the assumption is w'rong we should
have difficulty in constructing a consistent de-
scription of the hadron that can accommodate the
data.

Our model of a hadron in terms of the valons is
not too far different: from the usual picture of,
say, a deuteron in terms of two nucleons. Even
though pions are exchanged between the nucleons
to effect binding, one usually regards a deuteron
as a bound state of a proton and a neutron without
including the pions as essential constituents. The
wave function of the deuteron in the nucleon co-,
ordinates suffices to describe the effects of bind-
ing. In a similar way we treat a nucleon in terms
of three valons and a meson in terms of two va-
lons. The square of the wave function in momen-
tum space, after integrated over all but one of the
valon momenta, is the inclusive distribution of a
valon v in a hadron h. We denote it by G„i„(y),
where y is the momentum fraction carried by the
valon. It is normalized by

(2.5)

we obtain from (2.3)

M" (n, q') = Q M„i„(.n)M "(n, q') . (2 6)

Except for the sum over v, (2.6) is in the form of
the solution of the renormalization-group equa-
tion, ' i.e. , a product of two factors, one dependent
on q' and exactly calculable in QCD:, and another
dependent on the bound-state nature of the hadron
and basically unknown. A relation similar to (2.6)
was considered by Cabibbo and Petronzio. ' How-

ever, whereas the valons discussed here have no

internal structure other than what is generated by
evolution from 5(z - I),"the constituent quark con-
sidered by them is assumed by ansatz to possess
a nontrivial initial structure. Since in our ap-
proach M"(n, q') is known, experimental data on
M"(n, q') therefore make possible a phenomenolog-
ical determination of M„~„(n) via (2.6). In so doing
we gain direct insight on the hadronic wave func-
tion expressed in the valon coordinates.

M~~ = 3Mg)pM ~++M~]pM ~+,

M2 -M~i„M2 + 2M~i„M2,

(3 I)

(3.2)

where U and D denote u- and d-type valons, re-
spectively. Owing to charge symmetry we thus
have

M„"s ———M, -M,"= (2M„)~-M~)p)(M, -M, ) . (3.3)

Consider M, =g, e, M„«where M„«denotes the
moments of the distribution of q,. quark in a U va-
lon. If q, is a u quark, we call it Mf,„(for favored
distribution); for all other quarks and antiquarks,
they are the same M„~ (for unfavored distribu-
tions). " Then assuming that the relevant number
of flavors f for the data to be analyzed is three,
we have

M2 =
9 Mg,„+9 M~,U (3.4)

III. THE NONSINGLET MOMENTS

In this paper we consider only the nonsinglet
moments because we can extract from the nonsing-
let data direct information about the valon distri-
bution. For F,(x, q ) in e or p scattering we have
from (2.6)

1
r"(x, q') = Q J dy G„i„(y)7"(x/y, q') .

Defining the moments by

(2.3) M2 9 Mf + 9 MiinfLL

whereupon we obtain

M, -M, = —,'(Mf,„-M„„f)= —,'MNS,

(3.5)

(3.6)

1
M'"(n, q') = dxx"-'y" "(x,q'),

0
(2.4)

where Ã„"s is the moment of the nonsinglet quark
distribution in a valon. Equation (3.6) is actually
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M'~ =4M i (M

M3~ = 4M~g~(M„

M 3"= 2M~(„(M~

Ms"= 2M'.(&.

where

—M„—) + 2MDgq(M„- M„—),
—M„-) + 2ND)p(M~ —M-„),

—M„—) + 4MD(„(M„-M„-),

-M;) = 4M„„(M,-M„-),

(3.14)

(3.15)

(3.16)

(3.1V)

1

M, (n) = x"-'F,(x)dx.
0

Using charge symmetry again for the valon distri-
butions in nucleons, we obtain for isoscalar target

independent of f. We thus have, in general, from
(3.3)

M"„zx(n, Q') = —,'[2M
~ (n) -M

~ (n)]M„"I(n, Q') . (3.7)

A similar expression can be derived for M, of
neutrino scattering. If sin'8~ is neglected, the
usual quark-model relations for vp and vp struc-
ture functions are

y'",~(x) = 2[d(x) —u(x)], (3 8)

F'3~(x) = 2 [u(x) —d(x)], (3.9)
where the overall sign of the E, functions are cho-
sen for phenomenological convenience. The valon
structure functions are similar:

y'","(z) =2 fd~(z) —u~(z)], (3.10)

F;"(z)= 2[u~(z) —d~(z)], (3.11)

&". (z) =2[dD(z) -uD(z)]=2[u~(z) - d~(z)l, (3 12)

&',D(z) = 2 [u~(z) —dD(z) ]= 2 [d~(z) —u~(z) ], (3.13)

where the subscripts on the right-hand side refer
to the valons for which the quark distributions are
defined. If we use the distribution functions for the
U valon only, and denote their moments by
kI, (n, Q'), it then follows from (2.6) that

M«p -MD' M ~~. (3.25)

We know that this is not exact, since the u- and
d-quark distributions are somewhat different.
However, with one less unknown we can proceed
with just the neutrino data. What we shall obtain
then will be an average valon distribution, which
is worth knowing a,t this stage. Solution of the
bound-state problem can at present do no better
than that.

On the basis of (3.25) we obtain

For n=2, (2.2) serves as a constraint:

2M'~(2, Q') +MD(~(2, Q') = 1. (3.22)

Using this in conjunction with (3.7) and (3.19) we
obtain

M„"s"(2,Q') = ~ [4Mv(p(2) -1]MNs(2 ~ Q2), (3.23)

M, (2, Q') =M„",(2, Q') . (3.24)

In Sec. IV, M„"s(n, Q') will be given for large Q'.
the n =2 moments of M»" and M, are accurately
known at high Q', then (3.23) and (3.24) can not
only be used to check the validity of the valon
model, but also to determine the average momen-
turn fractions of the valons. Unfortunately, the
present data are inadequate for those purposes.

For general n, M«~ and MD&~ can be extracted
from M„"s"and M, using (3.7) and (3.19) provided
that accurate data are available at high Q'. Cur-
rently, neutrino data" have reached sufficiently
high Q to give successful test of QCD. To make
use of those data while awaiting similar outcome
of the muon data, we proceed on the basis of an
approximation which can easily be lifted when the
muon data become available. We assume that the
valon distribution in a hadron is independent of
flavor, i.e.,

M —= —'(M "~+M'"+M"~+M'")

= (2M~)~+ MD(p)(M„+M~ —M„——M„-) .
The last factor being M„„-M„„f,we have

(3.18)
M,","(n, Q') =&M, (n, Q'),

M3(n, Q ) = 3M„g~(n)M„"s(n, Q ) .
(3.26)

(3.2 7)

M, (n, Q') = [2MU&~(n)+MD~~(n)]M„"~(n, Q') . (3.19)

u" (1,Q)=-, ,

M, (1,Q') =3.
(3.20)

(3.21)

The latter is just the Gross-Llewellyn Smith
sum rule" and is consistent with the latest data. '
The former is also not new" and has the same

physical content.

We can examine the implications of (3.V) and

(3.19) for n =1 and 2. Owing to the absence of re-
normalization of the electromagnetic and weak
currents, we have MN~(1, Q') =1 for any Q'. It then
follows from (2.1) and (2.5) that M„,„(2)=-', .

It then follows that

(3.28)

9M'~~(2, Q ) =M~(2, Q') =Mwq(2, Q ) . (3.29)

This provides a direct relationship between mea-
surable quantities (M„"~~ and M,) and calculable
function (M„"~).

Equation (3.26) indicates that M„"f is about an or-
der of magnitude less than M„which is roughly
true. "" Equation (3.27) will be used in the follow-
ing to determine M„&„. The implication of (3.25) is
that each valon in a nucleon carries —,

' of the nu-
cleon momentum, i.e. ,
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IV. THE MOMENTS MNs (n Q )

We have stated that the structure of a valon is
due to the gluon bremsstrahlung and quark-pair
creation of an initial (bare) quark. At some small
Q', call it Q„', 6:"(z,q„')~5(z —1). As Q' increas-
es, the 6 function is smeared out." It is difficult
to determine this smeari, ng at low Q', but at high
Q' the leading-order result in QCD is a good ap-
proximation. Let the moments of the leading-or-
der result be denoted by M"(n, Q'); then our ap-
proximation at high Q' is

MNs(n, Q') =MN~ (n, Q') = [C lnq'/A ] "n, (4.1)

where C is some constant and

are assuming the validity of the leading-order ap-
proximation for Q' near Q,', or that the usual
leading logarithm formula for o.,(q') is meaning-
ful at Q,'. Q, is just a parameter determined from
the slope C in (4.4). From (4.5) and (4.6) we have

q, =0.82 GeV. (4.8)

The closeness of q, to A implies, via (4.8), that
the effective "age" of evolution even at Q= 3 GeV
is quite advanced. This is a quantitative way of
expressing precocious scaling, which means in the
present context mature evolution.

V. VALON DISTRIBUTION

4 2 1
33 —2f n(n+ I), , j

Expressing (4.1) alternatively, we have

[M",(n, q')] ' '. = Clnq'/'A'.

For n=2, we can use (3.29) to infer

[M,(2, q')]-'~" = C lnq'/A'.

(4.2)

(4.3)

(4.4)

We are now in a position to extract the valon dis-
tribution G„&„(y) from data. We start with the mo-
ment equation (3.27) for which we approximate
Mtts(n, Q') at high Q' by MNs(n, Q') given by (4.8);
consequently, we have

[M,(n, q')]-'~" = S(n) lnq'/A', (5 1)

S(n) = [3M„~„(n)] '~~ [lnq, '/A'] '. (5.2)

This linear dependence on lnQ' has been verified
by BEBC data, ' which give

A=O. V4 GeV, C=4.8. (4.5)

CERN-Dortmund-Heidelberg-Saclay data' unf or-
tunately do not give the n= 2 moment. It is impor-
tant to stress that deviation from the straight line
occurs at small Q' due to nonleading-order QCD
corrections. If one were able to find an accurate
formula to describe the behavior of M»(2, q') as
Q'- Q„, then one would be able to meet the bound-
ary condition M"„s(2,Q„') = 1. However, that would
be extremely difficult. Besides, we have no need
for it here. So long as we limit Q' to large values
where (4.4) is phenomenologically valid, we have
(4.3) as an effective formula for all n. Note that
in place of C we can define a Q, according to

In Refs. 6 and 7 the left-hand side in (5.1) has been
plotted against lnq', and straight-line fits for all
moments analyzed have been obtained. Because it
is only in Ref. 6 that the n=2 moment is given,
from which we obtain Q„we shall in the following
concentrate only on the data in Ref. 6." The
slopes of the straight lines S(n) are not predicted
in QCD but they should not be ignored. They con-
tain information about the hadronic wave function,
which is precisely what we want to extract. In our
picture they are related to the valon distribution,
which is a particular representation of the low-Q'
nucleon wave function. From the experimental
plots that verify (5.1) we determine S(n) for n
=2, . .. , 5, which are shown in Fig. 1.

To fit S(n) we assume that the valon distribution
has the form

C = (lnq, '/A')-',

so that by definition

IMNs(s Qo')] '" = 1 .

(4.6)

(4.7)

60-

50—
b=3

b=2

Thus Q, is an effective value (different from Q„)
which specifies the starting point of Q evolution
in the linear approximation (i.e., MN, ) in such a
way that it mimics at high Q' the actual Q evolu-
tion (i.e., MNS) commencing at Q„with no approxi-
mation. Since we know neither Q„nor the actual
evolution, the effective formula

S(n)

40—

30—

20—

IO—

b= I

I I I I

2 3 4 5 6
n

[Mv ( 2)]-1/d — q (4.8)

is all we need at high Q'. It does not mean that we

FIG. 1. Experimental and theoretical values for the
slope S(n) as functions of the order of moments n. Data
are derived from Ref. 6.
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G„i„(y)= [B(a+I, 5+1)]-'y'(1-y)',
where Bis the beta function. Equation (3.28) re-
quires

(5.3)

5 =2g+ 1.
Hence, the moments are

(5.4)

VI. CONCLUSION

Our principa, l result is the valon distribution
given in (5.6). It is obtained by using the high-Q
data of neutrino scattering. Indeed, deep-inelastic
scattering data at high Q' must depend on the ha-
dronic wave function at low Q'. By assuming the
existence of valons and identifying them as
dressed valence quarks whose structures are cal-

M„~„(n) = B(n+ 2 (b —1),b+ 1)/B(-,'(b+ 1),b+ 1). (5.5)

Substituting this into (5.2) and using f= 3 (a choice
made in Ref. 6), we calculate S(n) for various val-
ues of b. In Fig. 1 are shown the results for b
= 1, 2, and 3. Obviously, b =2 gives an excellent
fit. It implies then

(5.6)

This is the result that we have aimed to extract.
Note that the large-y behavior does not correspond
to the result by the spectator-counting rule, "since
the valons themselves do not experience large mo-
mentum transfers.

The form of the valon distribution in (5.6) is
reasonable. At moderate Q', the valon structure
function &,"(z,Q') is finite at z =1, so the large-x
behavior of Ef(x, Q') for nucleon, according to
(2.3) and (5.6), is (1 —x)', just as it is observed.
At small y the valon distribution is. suppressed,
whereas the valence-quark distribution q„(x) di-
verges as x ' ' according to Regge behavior. That
is because a va, ion carries not only the momentum
of a valence quark but also those of the sea quarks
and gluons in the cluster. Hence its average mo-
mentum is greater than that of valence quark, and
the probability for it to carry zero momentum
fraction is therefore suppressed by comparsion.
The particular behavior y'~' is, however, hard
to understand. To have a singularity at y =0 is
incompatible with the solution of the bound-state
problem in which the valons are confined to a finite
region in spatial extension. That is, a wave func-
tion in coordinate space that vanishes at infinity
should be regular at the origin in momentum
space. Probably, the behavior y'~' is due to the
fact that (5.6) describes the momentum distribu-
tion of an average valon. In reality the U and D
valons need not behave the same way near y = 0,
and they may separately have regular behaviors
there.

culable in QCD, we have provided a representation
for the hadronic wave function. We have achieved
this wit&out extrapolating the theoretical calcula-
tion to low Q' where the present method in QCD
fails. Thus our result is reliable, subject to the
approximation that flavor dependence is ignored.
That will be remedied in our next more extensive
investigation. We have found a number of sum
rules, viz. , (3.23) and (3.26), which should be
checked when high-Q' muon data become avail-
able. We believe that the present neutrino data
already suggest the meaningfulness of the valon
picture. Firstly, (3.21) is derived in this picture
and is consistent with data. Secondly, the data on
S(n) are well fitted by our choice of valon distri-
bution, which has the correct behavior at large
momentum fraction. Thirdly, the value of Q, im-
plies a, reasonable effective size for the valons in
nucleon. At the same time it provides a quanti-
tative description of precocious scaling.

The results justify our basic assumption that
the three-valon representation of the nucleon
without additional gluons is valid. If at Q, the
three-valon states do not form a complete set to
describe the nucleon, then (2.3) and (2.6) would be
incorrect since gluons can have nontrivial struc-
ture functions. Equation (2.2) would certainly be
wrong, thereby invalidating the entirely of our
phenomenology. Evidently, the binding of the va-
lons is adequately described by the distribution in
(5.6) without attributing any momentum fraction to
the binding agent (just as one would for triton).
The fact that gluons carry nearly 50% of the nu-
cleon momentum even at Q = 2-3 GeV is to be
understood in the same way that "precocious scal-
ing" of the structure functions takes place also in
the same Q' range. The point is that Q, /A [which
follows directly from data and the definition in
(4.6)] is very nearly one; consequently, the para-
meter for evolution from Q, to Q is large even for
Q' = 2-3 GeV'. It means that at such Q' evolution
has mostly run its course and the valence quarks
have already lost nearly half of their momenta to
the gluons by bremsstrahlung. The Q,/A parame-
ter is therefore an important characterization of
strong interaction. Its closeness to 1 implies that
the strong interaction is very strong inside a valon
at low Q'. There is no calculational scheme to
elucidate the physics at such low Q', but our pre-
sent analysis at high Q' offers us the above insight
on what effectively takes place there.

The significance of (5.6) is that it summarizes
the so-called uncalculable hadronic matrix ele-
ment. On the basis of it all hard processes can
now be calculated without further unknowns. It
closes the gap between quarks and hadrons; con-
sequently, it should also- play a key role in the



764 RUDOLPH C. HWA

problem of hadronization of quarks. It should also
provide a clue to the study of the bound-state prob-
lem since G„I„(y) corresponds to the square of the
constituent quark wave function in momentum space
boosted to an infinite-momentum frame. Clearly,
the development of the valon picture opens the
way to the study of many hadronic processes in
the framework of quarks and gluons.
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