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We calculate QED and quantum-chromodynamics (QCD) radiative corrections to the fermionic decays of the
Higgs boson, H —{ *1~ and H —gg. A novel feature of the calculation is that renormalization introduces
logarithms of the fermion mass into the total decay rate. The order-a QED corrections suppress the decay rate by a
few percent. The order-, QCD corrections to the hadronic decay rate for a heavy Higgs boson are large, and lowest-
order perturbation theory is useful only for quantities in which the logarithms of the quark mass cancel, such as
I'(H — 2 jets)/I"(H — hadrons). We obtain reliable corrections to the decay rate H — ¢ by summing the QCD
corrections to all orders in the leading-logarithm approximation. The result has a simple interpretation in terms of
the “running mass” of the renormalization group: The effective quark—Higgs-boson coupling is proportional to the
running mass of the quark evaluated at the Higgs-boson mass.

I. INTRODUCTION

The development of unified models of the weak
and electromagnetic interactions, such as the
standard SU(2) X U(1) model,* has been one of the
great advances in elementary-particle physies.
Higgs bosons, introduced for spontaneous symme-
try breaking, are necessary ingredients in all
such models to guarantee their renormalizability.
The possibility of detecting Higgs bosons at present
and planned accelerators has been reviewed re-
cently.? A careful study of their decay modes must
include radiative corrections.

We have calculated the QED and quantum-chro-
modynamics (QCD) radiative corrections to the
decay rate of the Higgs particle into a fermion-
antifermion pair in the standard weak (SW) model.
A novel feature of this calculation is the appear-
ance of mass singularities (logarithms of the fer-
mion mass) in the total decay rate. Although Kino-
shita’s theorem?® guarantees the absence of mass
singularities in the unrenormalized total decay
rate, the renormalization of the fermion-Higgs-
boson coupling introduces a logarithm of the fer-
mion-Higgs-boson mass ratio into the radiative
corrections. This feature is a consequence of the
fermion-Higgs-boson coupling being proportional
to the fermion mass.

For leptonic decays H —~1*1(y), we find that QED
corrections give a small suppression of the decay
rate. For hadronic decays H —q7(g), the QCD
corrections, because of the mass singularity, can
exceed the lowest-order decay rate. This indicates
that the naive application of perturbation theory
is not reliable. It is possible, however, to give a
reliable prediction for the fraction I'(H - 2 jets)/
I'(H - hadrons).

Using Kinoshita’s theorem and the renormaliza-
tion properties of the quark—-Higgs-boson coupling,
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one can sum the leading logarithms of the quark—
Higgs-boson mass ratio to all orders in QCD per-
turbation theory. The resulting correction is some

- power of the ratio of the logarithms of the quark

and Higgs-boson masses. This correction has a
very simple renormalization-group interpretation.
In the context of a mass-independent renormaliza-
tion prescription, a “running mass” parameter can
be defined along with the “running coupling con-
stant.” The QCD corrections to the Higgs-boson
decay rate in the leading-logarithm approximation
can then be obtained by replacing the quark mass
in the lowest-order decay rate by the running mass
of the quark.

II. THE UNRENORMALIZED DECAY RATE

The lowest-order contribution to the decay of the
Higgs boson into fermions comes from the dia-
gram in Fig. 1(a):

2\1/2
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where M is the Higgs-boson mass and » is the
fermion mass. g is the fermion-Higgs-boson coup-
ling constant, which in the. SW model is proportion-
al to the fermion mass g =m(Gzv2)'/2 C is a color
factor: C =1 for leptons, C =3 for quarks.

Kinoshita’s theorem?® states that, in each order
of perturbation theory, the unvenormalized total
decay rate of an unstable particle will contain no
mass singularities (logarithms of the masses of
the decay products). The word “unrenormalized”
requires a little explanation. The matrix element
for the unrenormalized decay rate to a given order
is obtained by summing the contributions from all
Feynman diagrams of that order, excluding dia-
grams which contain wave-function renormalization
counterterms on internal lines and/or vertex
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FIG. 1. Feynman diagrams for Higgs-boson decay
H—1*I"(y): (a) lowest order, (b) virtual-photon cor-
rections, (c) real-photon corrections. Diagrams with
counterterms have been omitted for simplicity.

counterterms. Diagrams with mass counterterms
are included, and the theorem assumes that these
mass counterterms are calculated on the mass
shell. Diagrams with self-energy parts on external
lines contribute the usual multiplicative factor

VZ, where Z is the appropriate wave-function re-
normalization constant. To show that our results
satisfy Kinoshita’s theorem, we will first calcu-

late the order-a QED corrections to the unre-
i)

47

normalized Higgs-boson decay rate into leptons,
so that we can verify the cancellation of the mass
singularities.

The virtual correetions of order o =e?/47 come
from the interference between the diagrams of
Fig. 1(b) and the lowest-order diagram, Fig. 1(a).
We calculated these diagrams in the unitary gauge,
renormalizing the leptons on the mass shell.
Ultraviolet and infrared divergences were regu-
lated by calculating in 4 - 2€ dimensions.* The
mass counterterm 6m and the wave-function re-
normalization constant Z, for the leptons are
extracted from the lepton self-energy parts in the
first two diagrams of Fig. 1(b):

om = =M (;/;) [3I‘(€)uv—61n +4] 2)

Zy=1+p (‘“) [ I‘(€)Uv-21"(€)m+61n-——4]

M2

(3)
We have distinguished the divergences of ultra-
violet origin from those of infrared origin with a
subscript. The third diagram of Fig. 1(b) provides
a vertex correction gG(P, p,, p,) to the lowest-
order vertex, g. We need only the real part of this
vertex correction, evaluated with all external
particles on their mass shells:

1+8%], 1-
ReG=2 (M) {4r(e)uv+L1 B € +6 - 81n;n4+<§—23)L+ E [5L2—2L1n6+28p(;—+§)+%w2]}, )

where L =1n(1+8)/(1 - B) and Sp(x) = - [; (d4¢/¢)1n(1 - t) is the Spence function.
The unrenormalized decay rate into a lepton-antilepton pair to order @ is obtained from Eq. (1) by re-

placing g® by

|(VZ,)%(g +£G) |>~g?[1 +2 ReG +2(Z, - 1)] .

(5)

Using (3) and (4), the order-a virtual correction becomes

4 2 -
o () i (1525 et (- 152 e an(152) i)

(6)

Since Kinoshita’s theorem refers to the fofal decay rate, we must also include the order-a corrections
from the emission of real photons. The relevant diagrams are shown in Fig. 1(c). We calculated separate-
ly the hard- and soft-photon contributions, defining soft photons by an infinitesimal energy cutoff A. Dimen-
sional regularization was used to calculate the soft-photon contribution. Adding together the two contribu-

tions, the X dependence cancels leaving

4 €
R A &
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The total unrenormalized decay rate to order «
is obtained by adding (6) and (7) to the lowest-ord-
er decay rate:

1
1"u=§r-g2MBS+1"f+I"f. )

The infrared divergences cancel between I') and
T'F as usual, but the ultraviolet divergences do not.
Taking the limit m/M -0, we find that Eq. (8) re-
duces to

ru=81 g"’M{l Yo G/’Ifz)[sl“(e)w#{-]}- ©)

This contains no Inm terms, demonstrating that
the mass singularities have canceled in accordance
with Kinoshita’s theorem.

III. RENORMALIZATION OF FERMION-HIGGS-BOSON
COUPLING

In a spontaneously broken gauge theory in which
the fermion acquires its mass from the Higgs
mechanism, the mass of the fermion and its coup-
ling to the Higgs boson cannot be renormalized in-
dependently because they arise from the same
term in the Lagrangian. In the SW model, the
relevant terms in the unrenormalized Lagrangian
are®

£ =$oiﬂ¢o —goiowo(v +h) - egPov, YoAS (10)

where ¢, and A} are the unrenormalized lepton and
photon fields, v is the vacuum expectation value of
the scalar field, and % is the Higgs field. To low-

est order in g, the Higgs field needs no wave-func-
tion renormalization. The unrenormalized electron
J

31482
T'= I‘(1+ N{B_Z 5 +121n———81nB+(B—2[3
1+8 1+8, 1-8
[4Ll ——21 —2-ln 2

The ultraviolet divergences have canceled as ex-
pected. Taking the limit m/M —~0, we find that
the total decay rate now contains a Ilnm term:

~ Ll [ 29 g
vr 8- 8°M 1+2n(2—61nm . (15)

Thus a mass singularity has been introduced by
the renormalization procedure. Note, however,
that the limit » - 0 is still smooth because of the
overall factor of m? contained in g2

The effect of this mass singularity in the QED
radiative corrections is not very dramatic. Even
if the Higgs boson is as heavy as the W boson

mass can be identified as m,=g,v. We now write
this Lagrangian in terms of the renormalized fields
¥ and A*, defined by y,=VZ,¥ and A} =VZ A", ex-
pressing it as the sum of a renormalized Lagran-
gian £; and a counterterm Lagrangian £

Lp =PCF —m)Y - gYvh — ey, YA*
L= =1 = Z)PGF - m)y] + Z,5myyp
(2, - 1)gPyh - (Z, - Vedy ,pA* .

The renormalized mass is given by w =gv and the
relations between renormalized and unrenormal-
ized parameters are

(11)

mo=m —dm,
80=2,82,", (12)
e,=Z,e-Z; 212,

Renormalizing the fermion on its mass shell de-
termines the counterterm 6m and the renormal-
ization constant Z, and consequently also the
counterterm for g via the relationm — dm =mZ, 2,

The renormalized decay rate I' is calculated by
including the Feynman diagrams with vertex
counterterms and wave-function renormalization
counterterms. The net effect of the extra dia-
grams is to make the following substitutions in
T;: g~(2,8)2, =g, e~ (Z,)Z,Z;?=¢,. To
order ¢, the only renormalization necessary is
that of g. So the renormalized decay rate is ob-
tained by replacing g2 in Eq. (8) by

2 afm=0m\? 2( E@)
go—g< po )—g 1-2—-). (13)

Using dm from Eq. (2), the total renormalized de-
cay rate to order « is

3(1-8%

G5

osp(tz) 4 (52)]).

(~85 GeV), the order-o corrections decrease the
decay rate into electrons by only 8.4%. If the
Higgs boson is much heavier than the weak vector
bosons, then weak corrections are comparable in
magnitude to the electromagnetic corrections and
the complete one-loop weak corrections would be
needed.

IV. QCD CORRECTIONS AND JETS

The order-a, QCD corrections to the decay rate
of the Higgs boson into a quark-antiquark pair can
be obtained from Eq. (14) by replacing o by



718 E. BRAATEN AND J. P. LEVEILLE 22

$a, (M),where % is a color factor and @ (M) is
the QCD coupling constant at the mass scale of
the Higgs boson:

1 p_33-2N;

o (1) = ”E In(/Agep)’ 6

(16)

N; is the number of quark flavors with threshold
below the Higgs-boson mass, and Aqcp is de-
termined experimentally to be approximately 0.5
GeV. In the limit m/M -0, the order-a, QCD
correction is

2 9 M
r,-T, “ger) (5_ 61n—— ) (17)

Assuming 6 flavors of quarks and letting M -, we
see that I'| asymptotically approaches —3T.
Hence, in spite of the inverse-logarithmic de-
crease of o, for a very heavy Higgs boson,

the order-a, corrections can exceed the low-
est-order decay rate. Even for a moderately
heavy Higgs, the effects can be large, as shown

in Fig. 2. This implies that higher-order terms in
the perturbation expansion may be important,

50 we can trust neither Eq. (17) nor the lowest-
order result, Eq. (1).

We can get reliable predictions from the order-
a, QCD corrections if we consider “infrared safe”
quantities, i.e., quantities for which the mass
singularities cancel. An example is the ratio of
two partial decay rates which are free of mass
singularities before renormalization. After re-
normalization, each decay rate is proportional
to g,%, and the mass singularities will cancel
when we take the ratio. An-example of such a ratio
is the fraction of hadronic decays which go into ~
two jets: f=T(H—~2 jets)/T'(H hadrons). A two-
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FIG. 2. Decay rate of the Higgs boson into a quark-
antiquark pair, in units of the Higgs-boson mass, for
c¢ quark, b quark, and a 20-GeV ¢ quark, The discon-
tinuity at each new flavor threshold comes from the
simple use of formula Eq. (16) and is not physical. The
real rate interpolates smoothly.

jet event can be defined in the rest frame of the
Higgs boson as one in which all but a fraction less
than € of the energy M is emitted into a pair of
oppositely directed cones of half-angle 56.° To
order @, any event which is not a two-jet event is
a three-jet evént. Ignoring quark masses, the
decay rate into three-jet events is
T'(3-jet)=T, 4a,(M) [(4 In2¢€ + 3)Ind +I 3 4]

. (18)

where we have used €,5<< 1 and sind >€/(1 —€).”
This has the same form as the result for e*e” =3
jets execept for the constant term. The fraction
f=~1-T(3-jet)/T', has no mass singularities and
hence the order-a; QCD corrections to this quan-
tity are reliable.

V. LEADING-LOGARITHM APPROXIMATION IN QCD

Another approach to the problem of the large
order-a, QCD corrections is to sum, to all orders
of perturbation theory, the leading logarithms,
i.e., terms of the form a/"In"(M/m). We will in
fact deduce the leading-logarithm QCD corrections
to the Higgs-boson decay rate to all orders with-
out calculating any additional diagrams, simply by
using Kinoshita’s theorem and the renormalization
properties of the Higgs-boson vertex.

From Sec. III, we know that the renormalized
Higgs-boson decay rate I' can be obtained from
the unrenormalized decay rate I', by the substi-
tutions g ~g,, @,—~a,, where & is the unrenor-
malized QCD coupling constant. Since we are
only considering the lowest order in g, T, is pro-
portional to g2

3 A 4096, A
rumsﬂgMA<aslnM>, A= 1+32 61!’1

19)

We have obtained A from Eq. (9) by inserting a
color factor of 4. For convenience, we have re-
placed the 1/€ from dimensional regularization by
an ultraviolet divergence InA2, where A is a mo-
mentum cutoff parameter. Dimensional consider-
ations prevent any ambiguity in the leading logar-
ithms. The function A can depend only on InA/M,
as Kinoshita’s theorem guarantees the absence of
any Inm singularities in the unrenormalized decay
rate.

The renormalized decay rate is then given by

3 A
r =§—1;g02MA (aso lnM>

A A
=§7;g2MA (ozso InM)B (aso 1n§7—n—), (20)
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where B =(g,/g)?=(1 - 6m/m)?. B depends only on
the mass counterterm from the QCD corrections
to the quark self-energy. Since the Higgs boson
does not contribute to the quark self-energy to
lowest order in g, the function B can depend only
on In(A/2m). The factor of 2 in the logarithm is
irrelevant in the leading-logarithm approximation,
and is inserted only for convenience because it
gives the proper threshold behavior to the final
result.

The unrenormalized QCD coupling constant o,
can be expressed in terms of the running QCD
coupling constant a (i), where u is an arbitrary
renormalization scale parameter with dimensions
of mass. The u dependence of o (i) is governed
by the B function B(c,) via the renormalization-
group equation

9
a—lﬁas(p’) =fa,(w)]. (21)
The leading-logarithm behavior of a (1) is gov-
erned by the lowest-order coefficient b in the ex-
pansion of the 8 function

_33-2N;

Bla)==basees, b=

(22)
The solution to the renormalization-group equation
(21) in lowest order is

a (1)
+ba (o) In(p/ 1)’

where [, is any other renormalization scale pa-
rameter. From this equation, we can deduce that
the leading-logarithm expression for ¢, in terms
of a (M) is

()= (23)

o 0D
0 =15 ba, () In(A/D) °

Inserting Eq. (24) into Eq. (20) we see that the ex-
pression for the renormalized decay rate takes the
form

r (a,(M) 1n£%>

- A o (M) In(A/2m)
=T A <as(M) lnM)B[1+bas(M) ln(A/M)]‘ (25)

(24)

Note that renormalizing @, at the Higgs mass
leaves the function A free of mass singularities.
This relation is sufficient to determine the func-
tional forms of A, B, and I'. The solution is de-
rived in an appendix:

M e/e
I‘=I‘0'[1-bas(M)1n2—7;l-] , (26)

where ¢ is an unspecified integration constant. It
can be determined by expanding to order @ (M) and

comparing with our lowest-order calculation,
Eq. (17). This yields ¢ =4/7. Finally, we use
Eq. (16) to write

In(M /2m) )4/""

In(M/ AQCD)
>24/ (33-2Ny)

r-T, <1
T (1n(2m/AQCD)
N\in(M/Agep)
Equation (27) is the leading-logarithm approxima-
tion to the Higgs-boson decay rate into a quark-
antiquark pair, including QCD corrections to all
orders in a,In(M/m).

The result of the leading-logarithm summation
is compared to the lowest-order decay rate and
the decay rate to order @, in Fig. 2. For energies
moderately high above the quark-antiquark thresh-
old, the leading-logarithm result is very close to
the order-o, decay rate. This is a consequence
of the fact that ¢ b for N; =4 or 5 flavors. As
M-, T'/T, smoothly approaches 0 in the leading-
logarithm approximation, while to order o, it
goes negative and becomes nonsense.

27

VI. THE RUNNING MASS

The leading-logarithm approximation to the
Higgs-boson decay rate has led to the very simple
result given in Eq. (27). We would like a simple
physical interpretation of this result. The answer
is contained in a renormalization-group analysis
of mass parameters.

In a massless theory the coupling constant @
must depend on some renormalization scale pa-
rameter p. The p dependence of this “running
coupling constant” a(u) is governed by the renor-
malization-group equation (21). In a massive theo-
ry with mass parameter 7, a mass-independent
renormalization procedure can be defined, using
dimensional regularization, and defining all count-
erterms by subtracting only the poles in € from
primitively divergent Green’s functions.® For ex-
ample, the mass counterterm for the quark to
order &, in QCD would be

- .4« 1 ‘
a2 Ss 2
5m_m3 4"><3><€. (28)

This should be compared with the mass counter-
term om [Eq. (2)] using on-shell renormalization.
The extra factor of 4 in Eq. (28) is a QCD color
factor. In a mass-independent renormalization
procedure, the parameter 7 is not the physical
mass, which, as usual, is defined by the position
of the pole in the propagator. The physical mass
is now a calculable function of @, #, and the re-
normalization parameter i. The value of 7 will,
along with the value of @, depend on u, and the

1 dependence of this “running mass” #(u) is gov-
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erned by a renormalization-group equation:

2 m(w=v,la(wlnw), (29)

alnp
where 7,,(@) is defined in terms of the mass-re-
normalization constant Z, (@) = (% — om)/m:

1 2

—— -2
~Z,%lnp aoZ"‘(%“ 7 (50)

V(@)=

In QCD, the mass-renormalization constant for
quarks is given to order @, by Eq. (28):

1 1
Zm(as)=1-;asz. . (31)
Hence
2
Ym(as)=-;as+--- . (32)

The solution to the renormalization-group equa-
tion (29) for the running mass m(u) is

() = (i) epr a:(":dal’&%“—))] ) (33)

Using the lowest-order forms for 8 and 7,, we find
that the running mass has the behavior

) =mug exp[ 5 [ 28]
= (uo)[%%]zm . (34)

‘

Expressing the running coupling constant in terms
of the QCD scale parameter Agcp using Eq. (16),
we can write

_ lnuo/A 2/ zb
m(u);mmo)<mg—z) . (35)

Returning to Higgs-boson decay, we see that

the leading-logarithm expression for the QCD cor-.

rections to the decay rate, Eq. (27), can be ex-
pressed in the form

1"=%(G,,.w/7m2)MB3[fh(M) ]2,

m(2m) (36)

where B is the threshold factor of Eq. (1). We can
identify the running mass at the quark threshold

7 (2m) with the physical mass of the quark m, so
we can write the decay rate in the very simple
form

P:-:—H[GFw/ﬁ_m(M)z] MB3, (37)

Thus, in the leading-logarithm approximation, the
effect of QCD corrections is to make the Higgs-
boson hadronic decay rate proportional to the
square of the running mass of the quark, evaluated
at the mass of the Higgs boson.
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APPENDIX

Defining x =@ (M) 1n(A/2m), y=a,(M)In(A/M),
and z =x/(1+by), Eq. (25) takes the form
F(x-y)=A(y)B(z). ‘ (A1)

Differentiating both sides with respect to x and y
and using 8F /8x =—8F /8y leads to

a +by)£—)1nA(y) =_[—1—?1b+—(’;y:)1)1 -;Z-lnB(z)
=-(1—bz)-a%1nB(z). (A2)

But y and z are independent variables, so (A2)
can only be satisfied if both sides are equal to
some constant, ¢. Integrating the two resulting
equations trivially gives

A(y)=c'(1+by)°’?,
B(z)=c” (1 -bz)°/®.

From Eq. (A1) we then obtain
Flo-y)=2[1-b6 -y)°?, (a9)

where ¢’, c”, and T are integration constants.
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