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We determine the crossing matrix between regularized helicity amplitudes for pion production and show
that this matrix is analytic apart from poles in the continued crossed-channel c.m. energy, corresponding to

poles in the crossed-channel amplitudes.

I. INTRODUCTION

The crossing matrix relating direct- and crossed-
channel helicity amplitudes has been calculated
for two-body processes by Trueman and Wick,!
Muzinich? and Cohen-Tannoudji, Morel, and
Navalret (CMN).® Capella* and Chen and Wang®
found the matrix for (2 ~N) processes. The singu-
larity structure of helicity amplitudes was ana-
lyzed in the two-body case by CMN,® Trueman®
(cf. Ref. T for further references), and in the
(2 -N) case by Svensson.”

In this paper we consider the process N7 —~N7u7w
and its crossed process NN —7rm. Following a
brief summary of Svensson’s methods in Sec. II,
in Sec. III we write down explicitly the regularized
helicity amplitudes (RHA’s) in both the direct and
crossed channels as linear combinations of helicity
amplitudes using the general results of Ref. 7.
Section IV contains the crossing matrix for helicity
amplitudes together with the explicit forms for
the crossing angles for the processes under con-
sideration, based on the work of Capella.? Next,
in Sec. V we determine the crossing matrix be-
tween the RHA’s and show it to be analytic apart
from poles in the continued crossed-channel c.m.
energy, corresponding to the constraints on the
crossed-channel RHA’s. An appendix contains the
definitions of the various kinematic determinants
used.

Our results provide a check on the consistency
of crossing with regularization, as the crossing
relation for spinor amplitudes for the (2 -N) case
must be assumed, while that for two-body pro-
cesses follows from quantum field theory.® More-
over, they are an essential first step in calcu-
lating sum rules for partial waves corresponding
to the work of Modjtehedzadeh® for spinless multi-
particle processes.

II. SVENSSON’S ANALYSIS OF KINEMATIC
SINGULARITIES

In this section we summarize Svensson’s method
of analyzing the kinematic singularities of helicity
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amplitudes for n-particle final states. We refer
the reader to his paper’ for further details.

A. Kinematics

We consider here only the case of a three-
particle final state, i.e., the process a+b—~1+2
+3. A one-particle helicity state |m,s, n; x) or
| PV is defined by

[BA) = e““""e"e”’e""‘g[ﬁx) s (2.1)
where |£, 6, ¢) are defined by
E=mcosht,

|B|=m sinnt,

(2.2a)
(2.2b)

and
(bes bys ;) = (| D] sinb coso, | B| sinb sing, |B| cosb).
(2.2¢)
The matrix elements Twm;m; are taken to be
(Byis Botas Bods | T | Byhas D5Ms) 5

normalized as in Ref. 7. Following Ref. 7 the set

{p% b1y Pa D1y Dy *Pas by b5} can be taken as the
linearly independent set of scalar variables on
which T, depends. There also exists one pseudo-
scalar €,=¢,,,.,p"p. p;P5 on which T,;, may depend.
Parity invariance gives the relation

T(x)(Z"iz)zﬂ(x)T-{x}(Z; +€,), (2.3)

where Z represents the set of scalar variables
above and

Ty = MMM, ﬁ (=)t (2.4)
i=a

For the reaction Ny —N7wm, 7, =(=1)"1" and for
the crossed process we consider later, NN — 77,
Tiny = (=1)™17 as the intrinsic parity of a fermion-
antifermion pair is negative. Thus the linear com-

binations
TP = CUT oy 21T ) (2.5)

are even in €,, and so are regular at €,=0. The
angular parameters of Eq. (2.2) are given in terms
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of the scalars and €, in Table I. The special Ay (P, Par0,)=0, £=1,2,3, - (2.6e)
Gram determinants A,(p, q), 4,(p,q,7) are defined B

in the Appendix. Ay (bybas b1y b2)=0. (2.61)

Svensson’s method of isolating these singularities,

B. Kinematic singularities based on that of Trueman,® consists of commuting

the boost and rotation operators which define the
helicity states (2.1) to form combinations of the
angular parameters for each particle which are
analytic at the singularity surface in question. In
general there then remains some boost or rotation
operator with singular argument which, either

By hypothesis,® kinematic singularities arise
when the helicity states become singular on cer-
tain hypersurfaces, namely those defined by the
singularities of the angular variables of Table L
Thus T(,, may have kinematic singularities on the

anifolds
mant . singly or in combination with those for other
ticles, gives the singularity structure on the
A(p)=s=0 par ’
1(p)=s 2 (2.6a) particular surface being examined.
Using Svensson’s expressions for the singularity
A5(P,£,)=0, (2.6b) structure of the helicity amplitude, in the next
Section we write down explicitly the regularized
8,(pyb,501)=0, (2.6¢) helicity amplitudes (RHA’s) for Nv -~ N7r and the
crossed process NN - 77w, also giving the con-
Az(p, pk) = 0’ k=1,2,3, . (2'6d) straints in the latter case.

III. REGULARIZED HELICITY AMPLITUDES
A. Regularized helicity amplitudes for the s,,~channel process N,m, = N; 7,73

Following Svensson’ we find (for m, # m,) no singularities on the surface A (p)=s=0, and the only kine-
matic singularities of T, g, o;,,0 li€ On the surfaces A,(p,0,)=0, A,(p,p,)=0, and A,(p,p,,p,)=0. We look
at each surface separately.

(@) A,(p,p,)=8,(p,,05)=0. By Eq. 4.37 of Ref. 7 we have

1
Tﬁ;fﬁ( )(Twai(_)-mw%%)

€2
1\/z 0 3 [Di(pg, )M, (/2252
= [(%+)\ )!é— X )!] 75 € 4 i: {7\ D(t) Pa’f’s 1/2}p(gi*/)2('¢;)1 ) pugil)z(yp) )
€/\N, 0 =2, @ “
(3.1)
TABLE I. Kinematics of the process.
Initial-state Final-state
particle (¢=a, b) particle (¢ =1,2...m)
y .4 2.0
cosht Ve s

. [Ax(p,pe)I /2 [Az(e,gjglifz
Sln.h£ mVvs mpVs
+1fori=a [ﬁ 2q

cosd —1fori=b

[Az@,Pa)P/ZIAz(P D pI7?

in6 0 [SA(2, Pq, 2))2
- [A,(5.0172[A (8, 5172

Db, b
[Ag(®,Pa, P2 (2, P, 212

. (2,001, 2R 8, (D ,0a) 12
sing 0 50,040,002 [Ay (0,040 0) 172

cos¢ 1
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Thus [D$(p,, by) I/ *T{42 is regular at DE(p,,p,)=0 [where we define D{(p, q) in the Appendix], so we
can write [8,(p, p,) /T2 is regular at 8,(p,p,) =0.

() A,(p,p,)=0. By Eq. 4.56 of Ref. 17,

o _(1\__[D5p, )] . o i
s :(62) (G+ ;1)! (é’ —IM)! NRE ,;Zo N IDEAp, p,) ]2 (€71 x‘/zhx(:’ @ (<)Martering /25 H @) (3.2)
Thus again [D;*’(p,pl)]”“T,fi;‘fz is regular at D¥(p,p,)=0, and so [Az(p,pl)]‘/"T{i;f; is regular at A,(p,p,)
=0.
(c) Ay(p, b, 0,)=0. By Eq. 4.50 of Ref. T, at A,(p,p,,p,)=0,
T“.n‘x =A{;)laei02(la¥)1), (3.3)

where () corresponds to the cases D& p,p,,p,)=0, and ¢, is given in Table L

There is a sign ambiguity in the expression of ¢, in terms of D*(p, p,, p,) due to the presence of €, in
the numerator of sin¢,. However, the two linear combinations T{i;f; of Eq. 2.5 can be written unambigu-
ously as

Txl;xaz[Dé*)(Prpa’pl)]-n"ﬂll/ZA{iEE;(*)’ . (3'4)
where A,‘i;fl‘*‘ is regular at A,(p,p,,p,)=0 and D& p, q,7) are defined in the Appendix.
Drawing together the results of (a), (b), and (c) above, we can write the RHA for the sub-channel pro-
cess as
Tiu2 =[8,(0, 0,14 (8,(p, )1 A[DEND, P 0101 2(DG B, by 1)1 2T (3.5)

which is regular for all real or complex values of the scalar variables and of ¢,.
T

B. RHA'’s for the #,,-channel process N, N, ~>7,m,m; have singular behavior at 4,(Q)=0, A,(Q,q,) =0,
and A,(Q,q,,9,) =0, where @ =q,+q,. However,
We note first that now the linear combinations as is the case for four particle scattering, the
T{i'ii become singularity at 4,(Q)=@*=0 can be interpreted as
w2 1 NN a pseudothreshold singularity, as indeed Dj{q,,4,)
Tyin = ((2)[Txa;l1:F CRRCREY SN =4Q2 Also, by definition of A,(®Q,q,,q,),

AS(Q’ qa’ qb) = As(‘h - qb’ qa? —ql)’ ElY AS(QC) qi; qg)
=8y(p,Porpy)- Finally, 8,(Q%q%)=28,(p,=p1,P,)
= Az(pa’ _pl)' '

We analyze the singularity structure of the

as noted above. We label the ¢,,-channel four
momenta by q;, i=a,...,3. The continued four
momenta g§ will then obey the equ_ality

@, 45, 45,45, 45) = (P =P D1y DasP3) s ¢,,-channel amplitudes in the physical region of
@ mwIw the s,,~channel process. Thus the singular sur-
where the continuation is from the ¢,, channel faces of the continued ¢,,-channel amplitude are
to the s, channel. Ay(p, b, p1) =0 and Ay(p,, —p,)=0.
As m,=m, for nucleon-nuclon annihilation, we (@) A,(p,, —p,)=0. By Eq. 4.37 of Ref. T we have
]
NNy [/t 5
rap=(1\3 (2 2 T \ADP (b, -p)
€, §=0 p=0 A, FA -
X (i) 22U 5 (L) Mrdariied o i G/ 22 o XD DB (p -T2, (3.6)
where g ® is regular at D{*(p,, —p,) =0. d L1y
2 2
Thus we find, at D& (p,, —p,) =0, o L 1)
1 - . - -
L T =2 =Y o pi(p,, )
T® =2(2 i )e"’zg{*’° [D3(pa, ~pT,
1
L 19 R
= +0[D5(p,, =0 )2, (3.9)

(3.7

z 1
1

P

(2) _ (+)0 3.8 ( _ >
T 0>g0 ’ (5.8) 1@ =222 =Y oon,001p,, -1, (6.10)

4

N
Nl ol
l\!|,_. [0
o
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and at D;(p,, —p,) =0,

33 1
3z -
T =2—7F= gt +0 (D3 (b, -py)), (3.11)
11 1 } )
Tg)=2 2 f gi-)o [Dz(pa’_pl)] 1z
3 3 -
+0([D3(p,, -p )] D), (3.12)
fz 3 O
T® = 2’(5 ’ >gé‘ o, (3.13)
- 1 L9
2 2

and

T(f) =2(

Thus clearly Ty} [D3(p,, —p,)]*/* and 7,3, [D3(p,,
-p,)]* % are regular at A,(p,,—p,)=0. Moreover,
there exist constraints between the amplitudes

[D3(ba, =p T2 T3+ 2 (D3 (g, —p )]V T2
=0(D3(p,, —p,)) (3.15)

[l VB
[ME

1\ .
-4 o> e/ 2g (" [D3(p,, )]/ 2.
(3.14)

N

and
[D3(pgy =0 )Y 2 T2 &7/ 24 [Dy(p,, =) ]2 TE
=0(D3(p,y =p1)). (3.16)

These are important for our purposes as they
lead to poles in Dj(p,, —p,) in the crossing matrix
between regularized helicity amplitudes.

() A,(p,p,,p,)=0. By Eq. 4.50 of Ref. 7 we have

T{52 =A{B2ID(b, 0101 )D3(by by )] 0112

80 [D(p, 00 D)D3(D, oy p)) e/ 2T (12 is
regular at A,(p,p,p,)=0. So, finally, we can
write the continued ¢,,-channel RHA’s as

T3, = Tan, [Da(bey —p1)]

X [D3(D, o p)D3(Ds 0 T2,
~ E 5(by Doy 21D o V] (3.17)
T {31 = T;:;I [D;(pa, —Pl)]

X [Dy(Dy D0y 1Dy Doy P .
J

/Oy = St San Pz PIPY (o= Py) -pipT —mi*(ps = pPT £

IV. THE CROSSING MATRIX BETWEEN THE s,,;,
CHANNEL AND THE ¢;, CHANNEL FOR HELICITY
AMPLITUDES

In this section we quote the crossing matrix
and crossing angles as calculated by Capella.*
The method used by Capella and also by Chen
and Wang® is based on that of Cohen-Tannoudji,
Morel, and Navralet.® It consists of using the
relations between the spinor and helicity ampli-
tudes in the s_, and #,, channels, together with the
simple crossing relation for the spinor ampli-
tudes.

Omitting the details of the derivation, the crossing
relation (Eq. 2.15 of Ref. 4) is

v T?t;gz) =g ina z: di},}l(xl) dizxa(XG) T(t1a) (4_1)
Xil:z

Ay ?
where
]
) . 01
T80, 2 )8,y pIT (4.22)
b, P
—-— pl pa J s
COSX = ~T& 15, 5P 2 A, P 0 (42D
and
siny; =-m°@E)n,G), i=aor1l (4.3)

defines siny;. In the above equation,
2

N mPp—p-p.p)
Ng(8) = = W (4.4)‘

is the helicity axis of particle ¢ in the s,, channel
and 7,°(3) is the analytic continuation of n;(3).
Finally,

o
n @) = €* vpong () @) -, (4.5)
1
where
e €ond79°d%
i) = — A 4.6)
"2(), [~€0 dh95 05 € ap a5a5 03] (
and
T]'(i)=— [m,_zQ—AQ *49;49; @.7
s mi[Az(qui)]llz ) )
Thus
(4.8)

[—€¥ s Do D2DS €un i Do DEPY 2m [ Ay, — )7

where €, =1, € =-1,
This reduces to
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€ Cam PODIDT D5 - PIIDIE;

"c N
nl [-Efpol’:ﬂ?; €u !!&'p: f ;]llz[Az(pm _pl)]llz ’
and so
CE.(6) = — D" =P <D DINDG = D) 5 b2 DD, € ron Caan
! 8 mi[Az@’Qi)]llz[AZ(pa’_pl)]llz ['eﬁpcpzpi.b%€uawpgpfpﬂl/z‘
Therefore,
siny, = Mo PG PILGPIPIPG €uvos Casy
a7 (A0, b8, (D0 =PI =€ o Sy P2 DEDSDEDEDYIE T

It may be easily checked that
—iyu.pu €:Brp: p‘l,p;p: fp; = A3(pvpa’p1) ’

so we have

_ m [A(p,pgp )]
(8200, p IV [ Ag( Dy =PI 2

Similarly, we find that

+m [A(p, pg, 0] 2
8,(p, )18y —p T2

It is convenient to take

siny, =

siny, = [

Pr=T=%
ZI)a’_"')(a

So [p1 p
cosi, = by b

[8,(0,2,) %[ 8Py =12

oy [Ap, b, p)] 2
SI0 = T8, (5, D) A By by T2
[po P
- po b
cos¥, [8:(p, )] 2[A5(Pg, 0] 2
and

: _ m [As(p:p ,Pl) /2
S‘“‘”“‘“‘““T”T"Jﬁ’[w,pa o5, DIT

Thus the crossing relation Eq. (4.1) becomes

RYIRY (t1g)
TSP = 20 (=)0 M d g ()5, (T

1%a
3 : . . 1 N 1
Tt — cosiy, sinky, —cosiy,coszy, sinzdgsinzy,  sinzdgcoszy, |[ T
. , . . . .
T,. i sinky, sinky,  sinky,coszy,  COS3Y, sinzy, coszyscoszP, (| T+
. . . > 1
T, cosky, cossy, —coshy,sinyy, - singy,coszyd, sinzy,singy, [ T-.

. . . 1 1 i1
T__ - sinky, cosky, sinky, singy, —coszY, coszY, c€OSzY, Sinzy, | T--
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4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15a)
(4.15b)

(4.16a)

(4.16b)

(4.17a)

(4.10)

(4.18)

(4.19)
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Next we form the linear combinations T%;2%%), and T%;2{2 with the corresponding crossing matrix

TR sing (Y, —9,) —coss@,-¥,) 0 0 A%

T(+1)- o cosz (¥, -3 sing %q =$) Y 0 T%. s (4.20)

T 0 0 sing(Pa+9,) cosz@a+y,) || T?

T?. 0 0 cosy W +¥,) - siny (e +3,) (T?

where
’ + 1/2
L) =1 “y1/2 [_Da (ppp:pa)] 4.91

00859, = 1+ o) = o b, b At PITT (4.21a)
sinky, = (31 - cosyp,)/? [D3 (2,0, 54)] (4.21b)

T V2 [y(5,0 )5 (Pas )1

and similarly,

cos
‘ 1 = [Dt(pa;pyp )]1/2
sin | * %)™ 738,05, 8, (o, BT . #.21e, 4

V. THE CROSSING MATRIX FOR REGULARIZED HELICITY AMPLITUDES
We calculate in this section the crossing matrix for the RHA’s of Sec. III, and check that it is regular
for all values of the scalar variables apart from poles at D; (p,, —p,) corresponding to the constraints
of Egs. (3.15) and (3.16). Using Egs. (3.5), (3.17) and (4.20), we can write the regularized crossing ma-
trix as:

(D3 (£, 0,0 )12 )
[D; (pay "'pl)]l 2 - COSE(lPa - 1P1)A

Ng

+ - 1/2[p* 172 0 0
XSins (9, — ¥ )A Dz (P25 =P)I"*ID5 (P, P, )] :
[D; (P, e, )]
[Dz (P, =PI sing (Y, -9 A 0 0
xCos%(lpa — lPl)A [D; (pa’ —p1)] I/Z[D;(p’pa’pl)] 12
A[D; (P, 04,2 )12 ,
0 0 [l[)z's(p.,, ) A cosz (¥, +1,)
X SIS, + ) [D3(p o =0 )1 2[D3(D, 20y p )T
A[D; (b, 04,2 )] .
0 0 [Dz-(pay _pl)]1/2 -A Slnﬁ(lp1+¢a)
L X COS%(‘PL‘HP.:) [Dz.(pu, _pl)]l/z[D;(p’pa’pl)]1/2
(5.1)
where
A=[a,(0, 0] [a5(0,0)]*. : (5.2)

A. Behavior of regularized crossing matrix at Ay(p,p,)=0and A,(p,p;)=0

By Egs. (4.21a)—(4.21d) it may be seen that cos3(¥,+¥,), and sinj (¥, ¥,) have a common denominator
of 2A; thus the regularized crossing matrix (RCM) is regular at A,(p,p,)=0 and at A,(p,p,)=0.
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B. Behavior of RCM at A, (P,,-P;)=0

We first check that each nonzero entry of the RCMhasapole at either D, (p,, —=p,) or D;(p,, —p,)=0.
First we write down cos3 (¥, +¥,) and sing @, ¢,):

+ 1/2[p+ 1/2 = 1/2[p=- 1/2
cos%(x[)ai%)= E;T{Ll% (Pa,p,pl)] [Da (pup[’Apz?)ga, jg:)s](f/’;’pypl)] [Ds (ppp;Pa)] } (5.‘3)

and

sinb oz )= - {[Ds (Pas 2,2 1M2[D2 (P, 0,002 x [u*(p,,,p ) kTN (pl,p pa)]“z} (5.4)

[ 2(pay "pl)]l 2

Thus we must ensure at D} (p,, —p,)— 0 that sin} (¥, —¥,) and cos3 (¥, —,) are both O([D; (p,, —p 1)J"/ 2,
and at D; (p,, —p,) that both are finite. Similarly, at D;(p,, ~p,)~ 0 we must have sinz (¥, +y,) and
cost W, +¥,)~ O([D;5 (pa, —£,)]"¥?), and at D} (p,, —p,)~ O both must be finite.

1. D}(P,,-P;)~>0(P, + P, ~m,m;)

ol e
+ e —
g ba Py 1 Pa Do Dy by Pa ', (5.5)

[A2(pa, =p)[Y*

We have

coss (Y, —9,) =

but

b
[ P] Emazﬁ’l’l-P‘PaPa'meaz(P'Px'P'pa) . 56

at D; (pq, —p,) =0 (taking m,=m,). Also

v
[1 p,] =ma2(1’ Pa=D 'p].): (57)

at D; (pq, —p,)=0. So on the singularity surface we have

s P 1 P
a Do | by Ba|”
Thus at D} (p., -p,)=0,

' [pa p ]
cos%(%"d’i)gi— N D P JECH (5.8)

z(pa, _p).)
Similarly at D; (pa) -pl) = 0:

L. 2]

Sin%(lpa —Zl)l) =— m . ‘ (5.9)
We also have
Lol b )
COS%(zP.mPl)N— L 2(1,“2:;3] £y Pe . (5.10)

Now both numerator and denominator are O([D; (p,, —p 1)]1/ 2), so their ratio is finite as D; (p,, —p,)—~ 0.
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Similarly, sing(,+¥,) is finite at D; (p,, —p,)~ 0.
2. D3 (P,,-P;)>0(P, Py >-m,?)

Similar to Sec. VB 1 above, we find both cos3 (¥,~¥,) and sinj (¥, —¥,) are finite at D; (p,, —p,)~ 0. Also,
we have ‘

2wa
L ~ s D
cos§(¢a+¢1)=A[A2(pm T (5.11)
and
IZea
: b
sins e )% AT, Goer P01 (5-12)

Thus the four entries in the upper left-hand block have simple poles in Dj (p,, —p,), and similarly the
four entries in the lower right-hand block have simple poles in D; (P4, —p,).
It now remains to be shown that these poles are consistent with the constraints of Eqs. (3.15) and (3.16),
i.e., that the S;,-channel RHA’s are finite at Ay(pg, —P,)=0. Thus by Eq. (5.1),
T sab __ JAsini@.-y)
[D; (pypa;pL)D:;(p5pa’p1)]l/2 - [D; (pa’ ‘pl)]llz

T4 (D} (pgy, —p 1))

A cosh () — .
- m{% 7O 1a[D} (b, —pl)]”z} - (5.13)
Therefore, at D;(p,, —p,) =0, by Egs. (5.8) and (5.9),
TQsab _ AP P [-1Qt Db, —p )] +iTLIS[D] (bay =p )]V
(D (5, bar 0D (5, bar b2 ="{Ka pJ [ D5 (5a, =) : (5.14)

However, the constraint Eq. (3.15) tells us that the top line is O(D; (P4, —p,))- Thus, as expected,
TWsab jg finite at A,(p,, —p,)=0. A similar check can be made on TS5 T@s¥  and T@%?% with the
same results.

C. Behavior of the RCM at A3 (PP, ,P;)=0

By Eq. (4.13) and (4.14), at A,(p,p,,p,) =0, siny,=sinp, =0. Therefore, ¢, and §,=0 or + 7 independently.
For the RCM Eq. (5.1) to be finite at A,(p,p,,p,)=0, we must have (a) at Dj(p,p,,p,) ~0; cosz(d,+#,)~0,
and (b) at Dy(p,p,,p,) ~0; sinz(d,+ y,)~0.

(a) At Ay(p,p,,p,) =0, coss(y,+¥,)=0 if cosz(y, — %) =0.

Thus, referring to Egs. (5.3) and (5.4) for cosz(y,+ ¥,), it suffices to show that both Dy(p,,p,p,)D5(p1, b, D,)
and D3(p,, p5p:1)D3(p1,050,)=0 at Di(p,p,, p1)=0. Now

pe DV[P1 P
DE( Dy 00D D1y by D) = Dol s =p1)[B5(Ds )1 "’[Az(i”f’l)]l/z{ ][ «]
a be Dolor P

P, P P P
+ ) p] [Az(p,pl)]”z[Az(pa,_pl)]‘/zct[pl pJ[Az(p,pa)]”“‘[Az(p,,,—1)1)]”"‘ )

(5.15)
so finally the problem reduces to showing at D;(p,p,,p,) =0 that
Pa P[PL P
Az(p,,,—pl)[Az(p,p;,)]‘“[Az(.b,pl)]”2+[pa pl][pl pa]=0, (5.16)
and also that '
ba P Py P
(AP, —p,)]‘/z([pa IJJ[Ag(p,p,)]"z+[p1 pa] [Az(p,pa)]W) =0. (5.17)

But
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D be
Dby bar£)= (85,51 (85,911 + J

5.18
P b (5.18)
SO
P b,
[8,(p, 012 [85(p, 1) ]V 2= - . (5.19)
p b
Thus,
P, P[P
By (pg =p)BL(0, 0 )1 2 (850, 1) ]2+ 5 1)] b
Ay )[ﬂ H ][p‘ ? (5.20)
== 2pa’ p1 P pl p1 Pa . .
The latter expression is equal to
=P 02 =m NPy i =P D1 P D)+ Mppr =D Py b)) NP Py =P Prbg DY) - (5.21)
This equals
baD1lm D = p°po b:* =m (D 0) =m (D 01V +2D DD D1Dg D11 = D0 D1 84( 5, bys 1)) (5.22)
=0. (5.23)
Similarly,
La P s El P e . [ p}[p p,,] [1 p] (5 .00
A A = - A(p, .
. PJ[ 2(P’p1)] + . pa}[ 2(p7pa)] W{ pa pl b pl + N pa’ 2 P pa}
== A e n® = 105 = (5o, F = by 1)
+2p b b1Py 1] (5.25)
_—PPA(PP,PJ_O 526
[8,(p,0)]'7? (5.26)
Thus,
cosz (Yot 9,)=0 at Di(p,p,P1) - (5.27)
(b) Similarly, at D3(p,p,,p,)=0, the problem reduces to showing Di(p,,p,p,)Di(p,,p,p,) =0:
a P 1 p
Di(pa,p,pl)m(pup,p,,)=A2(p.,,—pl)[A%(p,p,,)]”2[A2(p,p1)]”'“— . pullpy »
Ps P Py P
+ [8,(p,, - )] 2 [A(p,0,)]H 2 p]-[Az(p,me o lf (5.28)
a 1 a

Now D3(p, P, p1) =0 [8,(p,p,)]/*[A,(p, p,)]* /2
=[ ’a] Thus, on substitution into Eq. 5.28, the
fzrst two terms become

( )Pm] [,,p Elp
R PO e S zn] 1¢>J

by Eq. (5.23). Similarly, the second two terms
are equal to zero by Eq. (5.27). So we have

sinz(¢,+9,)=0 at Dy(p,p,,p,)=0. (5.29)

r
We have therefore established, as required, that
the RCM of Eq. (5.1) is regular for all values of the

scalar variables apartfrompolesat D3(p,, -p,)=0.

'VI. CONCLUSIONS

Using the work of Svensson,” we have determined
the singularity-free helicity amplitudes for
N7-Nnr and the crossed process NN — 7rw. Then,
using the results of Capella,* we calculated ex-
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plicitly the crossing matrix between these regu- nel regularized helicity amplitudes.
larized helicity amplitudes. Finally, we checked We plan to use this RCM and those for the other
that this regularized crossing matrix (RCM) is crossed-channel processes to obtain sum rules for
analytic apart from poles at Di(p,, —p,)=0, corre- partial waves analogous to those obtained by Mod-
sponding to the constraints on the crossed-chan- jtehedzadeh® for spinless 2 —~3 processes.
J)
APPENDIX

We define the special Gram determinants A,(p,q), A4(p,q,7), and A,(p,d,r,s) using the notation of Ref.
1. We define

P a
Ag([’,‘])=—[p (I] ’

where

[ql q>** "4,
=det(q;"
py vy ey, | T 9CH@ET)

and (g;-7,) is the n X n matrix whose (i,k) entry is ¢;:7,. Similarly,

P q 1’]
A3(P:q»7’)=|:p q 7

and

P q7r s
= 2:_
A4(p7q,773) [€(P,l1y7’,s)] [P q 7 S].

Then Di(p,,Pas -« « s DneziPn-1sPy) are defined by
By Drsee s Du2)By(Prsev e s D) =D (Prye e v s Ppess Prots DD (Prs e o s Prozs Prts Po) s
where

. 1
Dyt pys e+ s Puezs Puors Pa) = [Bns( Py o s Dezs o) 1 2[80 a(Brs e o o s Proas D)) /2% El

v Pn-z pn-l]
e pn-2 pn r.

Thus,
D#p,q)=p-qVp*Vg*

and

P q
D:;*)(ﬁ’qy'r):[Az(p’q)]l/z[Az(p’T)]llzi[p 7’].
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