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Analytic properties of the crossing matrix between kinematic-singulanty-free helicity
amplitudes for pion production
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We determine the crossing matrix between regularized helicity amplitudes for pion production and show
that this matrix is analytic apart from poles in the continued crossed-channel c.m. energy, corresponding to
poles in the crossed-channel amplitudes.

I. INTRODUCTION

The- crossing matrix relating direct- and crossed-
channel helicity amplitudes has been calculated
for two-body processes by Trueman and Wick, '
Muzinich' and Cohen-'Tannoudji, Morel, and
Navalret (CMN). ' Ca.pella, ' and Chen and Wang'
found the matrix for (2-N) processes. The singu-
larity structure of helicity amplitudes was ana-
lyzed in the two-body case by CMN, ' 'Trueman'
(cf. Ref. f for further references), and in the
(2-N) case by Svensson. '

In this paper we consider the process Xm-Arm
and its crossed process NÃ —7tgm. Following a
brief summary of Svensson's methods in Sec. II,
in Sec. III we write down explicitly the regularized
helicity amplitudes (RHA's) in both the direct and
crossed channels as linear combinations of helicity
amplitudes using the general results of Bef. 7.
Section IV contains the crossing matrix for helicity
amplitudes together with the explicit forms for
the crossing angles for the processes under con-
sideration, based on the work of Capella. ' Next,
in Sec. V we determine the crossing matrix be-
tween the RHA's and show it to be analytic apart
from poles in the continued crossed-channel c.m.
energy, corresponding to the constraints on the
crossed-channel RHA's. An appendix contains the
definitions of the various kinematic determinants
used.

Our results provide a check on the consistency
of crossing with regularization, as the crossing
relation for spinor amplitudes for the (2 N) case
must be assumed, while that for two-body pro-
cesses follows from quantum field theory. ' More-
over, they are an essential first step in calcu-
lating sum rules for partial waves corresponding
to the work of Modjtehedzadeh' for spinless multi-
particle processes.

amplitudes for n-particle final states. We refer
the reader to his paper' for further details.

A. Kinematics

We consider here only the case of a three-
particle final state, i.e., the process a+b-1+2
+3. A one-particle helicity state lm, s, n; p))) or
l

p))) is defined by

!P))) &-i41z&-i8&ys-i)lcz
l

Oyy

where
l
$, 8, Q) are defined by

(2 &)

and

E = m cosh/,

! pl=m sinh$,

(2.2a)

(2.2b)

—2)- (.)T )~)( +~.) (2.3)

where Z represents the set of scalar variables
above and

~ Q ~

~)~) n, n, n, n.n,— (-) «.
1=a

(2.4)

For the reaction Nw-Nv)), ))),)
——(-1)-'i-'s and for

the crossed process we consider later, NN - m7tm,

v), )
——(-1)-"&-'~ as the intrinsic parity of a fermion-

antifermion pair is negative. 'Thus the linear com-
binations

(p„,p„p, ) = (l pl sine cosp'
I pl sine sing

I pl cose) .

(2.2c)

'The matrix elements T», ,» are taken to be123' ah

(p~) ~, p2) 2 p3~3
l
T

l p. ) . p~) ~&

normalized as in Ref. 7. Following Ref. 7 the set
(p', p p„p, p„p, p„p, p,) can be taken as the
linearly independent set of scalar variables on
which T(» depends. There also exists one pseudo-
scalar e, = &,„,P'P,"P',P; on which T), ) may depend.
Parity invariance gives the relation

II. SVENSSON'S ANALYSIS OF KINEMATIC
SINGULARITIES T))l) = (,)( )) ) +)T) ) -)))) (2.5)

In this section we summarize Svensson's method
of analyzing the kinematic singularities of helicity

are even in &„and so are regular at e, = 0. The
angular parameters of Eq. (2.2) are given in terms
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of the scalars and e, in Table I. The special
Gram determinants &2(p, q), &2(p, q, r) are defined
in the Appendix.

&2(p, p„pb) = 0, k = 1, 2, 3,
&,(p p. ,p, p.)=o.

(2.6e)

(2.6f)

&,(p) =s=0, (2.6a)

(2.6b)

(2.6c)

&2(p, p, ) = 0, k = 1, 2, 3, (2.6d)

B. Kinematic singularities

By hypothesis, ' kinematic singularities arise
when the helicity states become singular on cer-
tain hypersurfaces, namely those defined by the
singularities of the angular variables of Table I.
Thus T~, ~

may have kinematic singularities on the
manif olds

Svensson's method of isolating these singularities,
based on that of Trueman, ' consists of commuting
the boost and rotation operators which define the
helicity states (2.1) to form combinations of the
angular parameters for each particle which are
analytic at the singularity surface in question. In
general. there then remains some boost or rotation
operator with singular argument which, either
singly or in combination with those for other
particles, gives the singularity structure on the
particular surf ace being examined.

Using Svensson's expressions for the singularity
structure of the helicity amplitude, in the next
Section we write down explicitly the regularized
helicity amplitudes (RHA's) for Nv -N(((( and the
crossed process NN-fry, also giving the con-
straints in the latter case.

III. REGULARIZED HELICITY AMPLITUDES

A. Regularized helicity amplitudes for the se&-channel process N~mr, ~ N& m2w3

FOllOWing SVenSSOn' We find (fOr m, ab m, ) nO Singularitiea On the SurfaCe &,(p) = S = 0, and the Only kine-
matic singularities of T...„„,, lie on the surfaces &2(p, p, ) ='0, &2(p, p, ) = 0, and bb(p, p„p, ) = 0. We look
at each surface separately.

(a) &2(p, p, ) = 42(p„pb) =0. By Eq. 4.37 of Ref. V we have

T(1,2) ( (T ~ ( )-Xl&ay )X~2Xg XybXff Ayb -X~

1 0 1 D(a) )
-1/a

([(1 +)( )l(l )( )( jl/2 a 2 at S 1/2 Xl+ gl/2
2 2 a% b +(a(l/2-lia / I)( [D(a~(p p )}1/2}b( (a) (2) + ( )-xi+2+1 (/) (2) )

/=0

(3.1)

TABLE I. Kinematics of the process.

Initial-state
particle (i=a, b)

Final-state
particle (& = 1,2. ~ .m)

cosh)

cos8

sin8

cosQ

m, Vs

[&2(P,P~)&' '
m;~s

+1 for i=a
-1.for i= b

m, ~s

(&2(P,Pb))' '
m, ~s

pa

(~,(P,P.))'/2(~, (P,Pd)'/2

t's~ (p p p )i//2

(&2(P,P,))'/2 (&2(P.Pb))'/2

PP~ Pg
, PP P~

[~,(p, p.,i,)]'~'[~,(p, p. ,pg]'"
~(P,P,P&,Pb) [&a(P,Pa))'/'

(4(P P .P()&"(&2(P,P, .P 2))'/'
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Thus [D( &(p„ps)]'/4T1".;„2& is regular at D,"'(p„p,) = 0 [where we define D,"'(p, q) in the Appendix), so we
can write [n2(p, p, )]' /~T, ,', "1, is regular at &2(p, p, ) = 0.

(b) &2(p, p, )=0. By E(l. 4.56 of Ref. 7,

[D(4){p * )l-1/ 4
T(1,2)

&

1 2 p&pl ]
(&( [D(4&(p p )]1/2}p( el lc&/sh(4) (c& ( ) 11 lc+ce41411/2(&4) &c))

llilc II e [(1+y )I(& I( )I)]1/2 1 2 t 1 lc (3.2)

Thus again [D,"'(p,p, )]'/4T„"2' is. regular at D,"'(p,p, }= 0, and so [b2(p, p, )]'/'T„",'," is regular at &2(p, p, }
=0.

(C) &2(p, p„p,) = 0. By E(l. 4.50 Of Ref. 7, at ns(p, p„p, ) = 0,

(3.3)

(3.4)[ D( )4(p p p )]-I144lli /2~(l 2)(4)
}t1')t 3 ~ g ~ 1a )t1,')tg

where A&I', „2&&4& is regular at (&&,(p, p„p,) = 0 and D,"'(p, q, r) are defined in the Appendix.
Drawing together the results of (a), (b), and (c) above, we can write the RHA for the sub-channel pro-

cess as

g (+,) + f(tI 2()t~e)t1)
X1 tg )t1,' )le

where (+) corresponds to the cases D,"'(p,p„p,) =0, and &t&2 is given in Table L
There is a sign ambiguity in the expression of &t&2 in terms of D,"'(p, p„p, ) due to the presence of e2 in

the numerator of sin&|&2. However, the two linear combinations T,".," of E(l. 2.5 can be written unambigu-1'
ously as

T(1,2) [n (P P )]1/4[+ (P P )]1/4[D(+)(P P P ))Ilc&(I /2[D( )(P P P )]l&4&1) /2T(&i 2) (3.5)

We note first that now the linear combinations
T(1~ 2) beCOme

)tg 2 )t1

as noted above. We label the t„-channel four
momenta by q, , i =a, . . . , 3. The continued four
momenta q& will then obey the equality

where the continuation is from the t„channel
to the s„channel.

As m, =m, for nucleon-nuclon annihilation, we

which is regular for all real or complex values of the scalar variables and of e,.

B. RHA'sfortherh~hannelprocess/&/Ãt~(7sr(ass have singular behavior at &,(Q)=0, ds(Qlq, )=0,
and 42(Q, q„q„)=0, where Q=q, +q, . However,
as is the case for four particle scattering, the
singularity at &1(Q)=Q'=0 can be interpreted as
a pseudothreshold singularity, as indeed D;(q„q,}
=2Q'. Also, by definition of &2(Q, q„q,),

= /&2(p, p„p,). Finally, &2(Qc, q', ) = &2(p, —p„p, )

We analyze the singularity structure of the

(c c c c c) (p p p p p} t„-channel amplitudes in the physical region of
Qgy Gay gpss 92p 93 gy Q7 ly 2t 3

the s„-channel process. Thus the singular sur-
faces of the continued t„-channel amplitude are

((1) ~,(p„-p,) =0. By E(l. 4.37 of Ref. 7 we have

/1
T(1,2& rl QQ (2 2 j l (I [D&4&(p p )]1/2]s

&") '-"-' e.
)[D(~)(* * ~~X ~he: " +/ (3 5)

/1
T(1)

2I
2

1
/ sg(+&0 [D+(p p ))-1/2

1 0

where g/('"2& is regular at Ds"'(p„-p,) =0.

Thus we find, at D,"'(p„-p,) =0,

(3.7)

1
T(1) 212

+0[D:(p., -p, )]"'),

1

el'" [D:(p., -p, }]"'

(3.S)

/z

T,' '=2' 0g (+)0
0

1
(3.8)

I1 1

T (2) 2( 2 2 f (+)1 0 (D+(p p ))
2

(3.10)
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and at D,(P„-P,}=0,

2 1

1
2

= g& "+O (D,(p„-p,)), (3.11)

+o([D.(p„-p,)]"'), (s.12)

1 g (- )0
1

O
(s.ls)

j1
2t2 2 l!&& )0[D (p p )]-1/2

(2 2-1

IV. THE CROSSING MATRIX BETWEEN THE s~&
'CHANNEL AND THE fj g CHANNEL FOR HELICITY

AMPLITUDES

In this section we quote the crossing matrix
and crossing angles as calculated by Capella. '
The method used by Capella and also by Chen
and Wang' is based on that of Cohen-Tannoudji,
Morel, and Navralet. ' It consists of using the
relations between the spinor and helicity ampli-
tudes in the s„and t„channels, together with the
simple crossing relation for the spinor ampli-
tudes.

Omitting the details of the derivation, the crossing
relation (Eq. 2.15 of Ref. 4) is

where

T(2) 2!
!

e&a/2+&-)0 [D-(p p )]--,' 0
(s.14) (4.2a)

Thus clearly T„"1[D2(P„.-P,)]'/' and T1"„' [D2(P„
-p, )]'/' are regular at 42(p, , -p, ) =0. Moreover,
there exist constraints between the amplitudes

[D+(p p )11/2 7' 1'+e"/ [D+(p p )]1/2 7'

=o(D;(p„-p,)) (s.15)

and

[D-(p p )]1/27 &»e«/2~[D-(p p )]1/27'&»

=O(D,(p„p,)) . (3 15)

and

sing& = )l,
'

(i)-)l2(i), i =a or 1

defines sinx, . In the above equation,

(.) (m, 'p p .p, p, )
l3 [1) (p p )]1/2

(4.2b)

(4.s)

(4.4)

These are important for our purposes as they
lead to poles in D', (p„-p,} in the crossing matrix
between regularized helicity amplitudes.

(b) &2(p, p„p, ) =0. By Eq. 4.50 of Ref. f we have

T&1,2) g&1, [D (p p p )D-(p p p )]-)1a-11&/2
g 1

SO [D~(p p p )D-(p p p )]11a-1)l/2T(1~ 2) 1S

regular at &2(p, p, p, ) =0. So, finally, we can
write the continued t„-channel RHA's as

q,'(i)' =e' vp(r)l2'"(i)r/2" (i) (4.5)

where

v Q g y~em& ~ Cb

[ wa Ia fl fb a eB)' Ia fl fb]

is the helicity axis of particle i in the s.b channel
and g, c(i) is the analytic continuation of q,'(i).

Finally,

x [D;(p,p„p,)D,(p, p. ,p )]
&2) T(2) [D+(p p )]1/2
)t )t~ )te)tg

x [D;(P,P.,P,».(P,P.,P,)1"'.

(s.l.'t)

and

Thus

(.) [m, q —Q ~ &l&(f&)

m,.[~,(j„q,.)]"2 ' (4.7)

(4.8)

where E, = 1, &, = -1.
This reduces to
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[-~:..O".Ol p'. e.. P. O,'O".]"'[&.(O., -P,)]'" '

and so

mf[ (O P )]"'[~(P -P )]"'f-~" P"O'P'e P O'p"1"'

(4.9)

(4.10)

Therefore,

[~(o P )1"'[~(P -Pl)]"'[-e, ~" o"o'P'bp o'P"]"' ' (4.11)

So

a Xa

It may be easily checked that

~papa ~a&&& Pa Plp &&Pa P\PQ'3(papa&pl) s

so we have

m.[a,(p, p.,p,)]"'
[~.(p, p.)1"'[ ~(p., -O,)]"'

Similarly, we find that

+m, [~.(P,P.,P,)]"'
[~.(p, p, )]"'[~.(p., -O,)]"'

It is convenient to take

Pl + Xl

(4.i2)

(4.is)

(4.14)

(4.15a)

(4.15b)

Pl Pa' [&.(P,p,]"'[c;(P. -P )1"' ' (4.isa)

+m, [~.(p, p.,p )]"'
[&.(P P)]"'[~.(P., -P )]"' (4.18b)

Po P

COS&pa = l g' [~.(p,p.)]"'[~.(p., -O,)]"' ' (4.1Va)

and

m. [~,(p,p.,p,)]"'
' [~,(p, p.)]"'[~.(p., -O.)]"' (4.17b)

Thus the crossing relation Eg. (4.1) becomes

T(sag& g ( ) sl +&l -
&&a d sa

(&P )ds~ (y )T(tla&
)tPSX a )lit -Xl 1 X')tl

x'x' a~ a
1 a

(4.18)

T, sin-', &I&a sin24&

T + Cosy&I&a Cospgl

—sin 2(, cos~g,

sin-2$, cos~ &I&,

—cos-,'g, sin-,'g,

sin-,'ga sin-', g,

c'o(s, sin-,'&I&, -cos-,'g. cos3(,
~ 1 1 & P

Sln2$a Cosa&I&l T~sin-,'t)&, sin-,'g,

cos-2&&j&, sin-,'y, COS24a COS2&I &

1 T+

T +

Tcos-', g, sin-', &)&,
l 1—Cosa/a COS2$&

—sin~g, cos~ag, sing&)&, sin~g,

(4.19)
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Next we form the linear combinations T&,2&,"",
'T,", ' 'sin2 (g, —g,) —cos~ (g, -(,)

cos2(g. -g&) sin-,'(g. -gi)

and Tz,')),'" with the corresponding crossing matrix

0 0 & ~T(i) ~

(4.20)

sin-,'(q, + g,) cos-,'(y, +y,) T",,'
cos-,'(g, +g,) —sin-,'(g, +g,) .T,' .

where

[D:(p„p,p.)1'"(-' -'~) =~2[~',(p, p,),(p.,p,)]
(4.21a)

sin~ (41 os 41/2 I 3 (pl&pPp+)1
~&[~(p p)~(p p)1"'' (4.21b)

and similarly,

[D,'(p. ,p, p,)]' '
sin ' ' v2 [a,(p, p, )a (p„p,)]' (4.21c, d)

V. THE CROSSING MATRIX FOR REGULARIZED HELICITY AMPLITUDES

We calculate in this section the crossing matrix for the HHA's of Sec. III, and check that it is regular
for all values of the scalar variables apart from poles at D,'(p„-p, ) corresponding to the constraints
of Eqs. (3.15) and (3.16). Using Eqs. (3.5), (3.1'I) and (4.20), we can write the regularized crossing ma-
trix as:

[D;(p,p. ,p,)1'"
[D:(p., -p,)1'"

xsin~ (P, —P,)A

—cos~(g, -g,)A

[D.'(p. , -p,)]"'[D.'(p, p.,p,)1'" 0

[D;(p,p.,p,)]'"
[D.'(p. , -p,)]"'
xcos% ($, —f ])A

sin~(g, —g,)A

[D:(p., —p,)]'"[D;(p,p.,p,)]"'

A[D;(p, p.,p,)]"'
[D;(p., -p,)]'"

x sinp (gq+ $g)

A [D:(P,P.,P,)]"
[f~;(p., -p,)1"'

x cos-', (g ~+ g,)

A. cos-,'(~g+ g,)
[&:(p., -p, )]"'[D:(p,p.,p,)]"'

-A sin-,'(g, + g,)
[p. (p., -p,)]"*t&.'(p, p.,p,)]"'

(5.1)

where

A = [& (p p )]'"[& (p, p,)1"'. (5.2)

A. Behavior of regularized crossing matrix at 62(p, p~) = 0 and LL2(p, p&) = 0

By Egs. (4.21a)-(4.21d) it may be seen that cos~ (t'ai, + g,), and sin~(g, a g,) have a common denominator
of 2A; thus the regularized crossing matrix (RCM) is regular at b,,(p, p, ) = 0 and at 6,(p, p,) = 0.
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B. Behavior of RCM at A2 (P», Pg ) = 0

We first check that each nonzero entry of the RCM has a pole at either D,'(P„-P,) or D, (P„-P,) = 0.
First we write down cos2(g, +g,) and sin —

2(g, a),}:

( )
i (ii;(P. ,P, P,))'~'I&; (P.,P P.)I' '+ l&.(P.,P, P))* 'I&, (P„P,P )) .

I'
'

[ (p p)]"' (5.8)

aQcl

1
(y y )

1 [D3 (palp)pl)] [D3 (pl) pipa)] + [D3 (paipipl)] [D3 (p1ipi pa)] (5.4)
[~.(p., -p,)]'"

Thus we must ensure at D2 (p„-p,)- 0 that sin2 ()(), -g,) and cos2 (g, -g,) are both O([D,'(p„-p,)J '/'),
and at D2 (p„-p,) that both are finite. Similarly, at D, (p„-p,)- 0 we must have sin2(g, +)I),) and

cos2(g, +(),) O([D, (p„-p,)] '/'), and atD,'(p, , -p,)-0 both must be finite.

We have

1. Dg(P~, -P~) 0(P~ 'Pl ~
y i)

Po

cos2((. —0,) -=—— '1

P 1/2 P P 1/2 ~
P P ~1/2 PP

+
&1 pa i pap1, ~ -p1

l~.(p. , -p,)]'"

p

Po (5.5)

but

=m. p'p -p'p. p. 'p =m. '(p p -p p.)
a 1

(5.6)

at D,' (p„-p,) = 0 (taking m, = m,). Also

Pj. P

p p
=m. '(p p. -p p,),

1
(5 '/)

at D,'(P„-P,}=0. So on the singularity surface we have

Pg P

pa p1

pl p

p1 pa

Thus at D2 (p„-p1)= 0,

p. p
pa p1.

~1) ~ [~ (p p )]1/2

Similarly at D2 (P„-P,) = 0,

Pa P
~ 1 ~ PO Pg

S&n2(fa -4X) =-~[ (p p )]1/2

We also have

p p
—1/2 p

1(~ ~) pa p~1

P 1/2 P P i y/3 P P 1/2

pa I pa pl; ~ ~ ~pL pa--

[&2(P., -P,)]"'

(5.8)

(5 9)

(5.10)

Now both numerator and denominator are O([D,'(p„-p,)]' '}, so their ratio is finite as D, (p„-p1) - 0
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Similarly, sin2 ((,+g„) is finite at D,'(P„-P,)- 0.
Z. D~ (Pa, -Pg)~0(P~ ~ Pg ~-ma )

Similar to Sec. VB 1 above, we find both cos-,'((,~g,) and sin-', ((, —g,) are finite at D, (p„-p,)- 0. Also,
we have

Pa P

ga P~
a 4' +4z) = ~[ (p )]zy2

(5.11)

Pa

(5.12)

(5.13)

Therefore, at D,'(p„-p,)=0, by Eqs. (5.8) and (5.9),

7'!""fPi(u., -t-,)j"'+~&'"'"I&*'(t., 001" . I-.'.
.

[D. (P P. P.)Ds(p P. P.)]" p. p& D. (P. -P.)
However, the constraint Eq. . (3,15) tells us that the top line is O(D,'(p„-p,)). Thus, as expected,
T~,""' is finite at b, ,(p„-p,) =0. A similar check can be made on Ti'~"' T~+'+~'&' and T~,'i'&' with the

same results.

Thus the four entries in the upper left-hand block have simple poles in D,'(p„-p,), and similarly the
four entries in the lower right-hand block have simple poles in D, (P„-P,).

It now remains to be shown that these poles are consistent with the constraints of Eqs. (3.15) and (3.16},
i.e., that the s„-channel RHA's are finite at 6,(p„-p,) = 0. Thus by Eq. (5.1),

T(l)Say

[D:(P,P.,P,)D, (P,P.,P,)1"' [Dl (P., -P,)]"'
A

[D:(Pa, P))'"-2 a 41 T(1) t~[D+ (P P )]1/2

C. Behavior of the RCM at b,3(P,P, ,P&) =0

By Eq. (4.13) and (4.14), at A, (p, p„p,) = 0, sing, = sing, = 0. Therefore, p, and g, = 0 or + w independently.

For the RCM Eq. (5.1) to be finite at &,(p, p„p,}=0, we must have (a) at D;(p, p„p, ) -0; cos-,'(g, + p, ) -0,
and (b) at D,( p, p„p,) -0; sin-,'(y, + q, ) -0.

(a) At 4,(pyp, yp, ) =op cos2(y, + y, ) =0 if cosy(q —q, ) =0.
Thus, referring to Eqs. (5.3) and (5.4} for cos2(g, + (,), it suffices to show that both D;(p„p,p, )D,'(p„p, p, )

«d D,(p„p,p„)D,(p„p,p, )=0 at D'(p, p„p,) =0. Now

Pa P Pl P
Dl(p. P P }Dl(p P P.}=&.(P. -P )(~.(p P.}]'"l&.(p P.}]'"+

Pa Pl Pl Pa

Pa' P Pl P
[~.(p Pi)l'"[&.(P., -p, )]'"~ [~,(p,p.)]'~'[~,(p, p, )]~&2,

(5.15)
J

so finally the problem reduces to showing at D'(p, p p ) =0 that

P. P Pi P
&.(P. -P.}[~.(p P.) l'"[&,(P P,)]'"+ (5.16)

and also that

(rp. p p p
[&.(P., -P, ) l"'I [&,(P P,)]'"+ [&.(P,p.}]'"

I

=o ~

)
But

(5.1V)
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so

"P P.
=0

P
[&.(P P.)]'"[&.(P P )]'"=-

P Pl

D.'(P, P.,P,)= [&,-(P,p,)l'"[&.(P P )]'"+
p p 1

(5.18)

(5.19)

Thus,

P P rP P
~.(P., -P, )[~.(P,P.)l'"[&.(P,P,)1'".

I Pa Ply I
Pl Pa~

IP

=-&.(P -Pl)
P P P Pl P

Pl Pg Pl, Pl. Pg
(5.20)

The latter expression is equal to

-(P. P' -~.')(P'P. Pl -P P.P P.)+ (~.'P P. -P P.P. P )(~.'P P. -P P P. P ).
This equals

P -P P 'P —3&2, {P 'P, )™,( P 'P ) + 2P 'P, P 'P P, 'P ] =P, P,&,(p, p„p, )

=0.

Similarly,

Pg P P Pg Pl P
I~.((,(,&& + (~,(», ».&&

—(, ( &(„. — + ~.((,&,
&I

(& 1 1 (& (& 1 1 1 a

(5.21)

(5.22)

(5.23)

(5.24)

[g ( )]1/2 I~(& P P (P(& Pl) ™(&(P P(&) . ~(& (P(&' Pl)
«Pa

+2P P.P P P. P.l, (5.25)'

Thus,

P Pa 3(p&pa&pl) 0
[~,(P,P.)l'" (5.28)

cos-2'(p a/, ) =0 at D,'(p, p, ,p,).
(b) Similarly, at D, (p, p, ,p, ) =0, the problem reduces to showing D,'(p, ,p, p, )D;(p„p,p, ) =0:

P. P~ Pl P
D.(P.,P, P, )D.(P„P,P.) =.,(P" -P )["(PP.)1'I'["(P P )l'I' —

p p p pPa

(5.2V)

+ I~.(». , -&,&&"*I(~.((.(,&l'"
Pg P

Pg Pl

Pl P t

—[~.(P,P.)i'"
1 (&

(5.28)

sin2'(g, ~ &t&,) =0 at D,(p, p„p,) = 0. (5.28)

Now D (p p p )=0—[a (p p )]' 2[I& (p, p, )]'I'
= [f f~]. Thus, on substitution into Eq 5.28, the.
first two terms become

P P(& P(& P 71 P

(P Pl&
l
P Pl Jl1 P(&

by Eq. (5.23). Similarly, the second two terms
are equal to zero by Eq. (5.27). So we have

I

%'e have therefore established, as required, that
the RCMof Eq. (5.1) is regular for all values of the
scalar variables apart frompoles at D;(p„-p, ) = 0.

'VI. CONCLUSIONS

Using the work of Svensson, ' we have determined
the singularity-free helicity amplitudes for
Kp-Ngp and the crossed process NN- zpp. Then,
using the results of Capella, ' we calculated ex-
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plicitly the crossing matrix between these regu-
larized helicity amplitudes. Finally, we checked
that this regularized crossing matrix (RCM) is
analytic apart from poles at D;(p„—p, ) =0, corre-
sponding to the constraints on the crossed-chan-

nel regular ized helicity amplitudes.
We plan to use this RCM and those for the other

crossed-channel processes to obtain sum rules for
partial waves analogous to those obtained by Mod-
jtehedzadeh' for spinless 2-3 processes.

APPENDIX

We define the special Gram determinants &2(p, q), &2(p, q, r), and 6,(p, d, r, s) using the notation of Ref.
1. We define

where

0'2' ' 'Vn
= det(q, r„),

+2 n

and (q, 2,) is the nx n matrix whose (i, k) entry is q, r„.Sim. ilarly,

P q
s,(P, q, r)=

P q

P ques
&.(P q ~ s) = k(p q ~ s)l'=- Pqrs

Then D„'(p„p„.. . ,p„,;p„„p„)are defined by

2(Plt ' ' tPn 2) n(Plt ' ' ' tPn) n (Plt ' ' ' tPn 2t Pn ltPn)Dn (Plt ' ' ' tPn 2t Pn lt Pn) t

where
Pl Ptl 2 Ptl 1

D."'(P, P.-.'P.-. P.)=I:~.-(P " P.-. P.-)f"[~.-(P P.- P.H'"+ . . . p p

Thus,

D2' (P q) =P'q+ ~P~&
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