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We discuss high-pr production of particle pairs, comparing the "higher-twist" constituent-interchange-

model (CIM) subprocesses to the most "elementary" [quantum chromodynamics (QCD)] subprocesses. All

aspects of spectra scaling laws and charge and quantum-number correlations are discussed. Comparison

with existing data is given. In general, we find that meson pairs at moderate pT receive contributions from a

mixture of QCD and CIM subprocesses; the strongest evidence for the CIM contributions comes from

substantial charge correlations observed in several experiments. For pairs involving baryons, especially pp,
CIM should be dominant at moderate pr with consequent large correlations and strong inverse-pT damping.

I. INTRODUCTION

Considerable attention has been focused on the
production of hadrons at high transverse momen-
tum (pr) as a probe of the iniportant short-dis-
tance subprocesses of quantum chromodynamics
(QCD). All theorists agree that the most elemen-
tary processes —qq -qq, qg-qg, and gg-gg —with
basic p~ behavior will dominate at sufficiently
large p~. At moderate p~ in single-particle spec-
tra, however, there are two competing ap-
proaches: (1) the constituent-interchange model'
(CIM) in which higher-twist QCD subprocesses,
such as qM -qM, yield intrinsic p ~

' behavior
(for meson production) with large normalization
that temporarily dominates the more elementary

pr ' subprocesses (QCD subprocesses); and (2)
the transverse-fluctuation approach' in which the
basic pr ' behavior of the elementary QCD pro-
cesses is obscured not only by scale breaking,
but also by large primordial transverse-momen-
tum fluctuations, of the colliding quarks and glu-
ons within the incoming hadrons, in such a way as
to yield temporary p~

' behavior for single-par-
ticle spectra.

The advocates of the CIM note that processes
involving bound states are inevitably present in
QCD, that their normalization is calculable, and
that the predicted moderate-p~ single-particle
inclusive spectra are in excellent agreement with
data —for instance, the differing behaviors, p~

'
for meson triggers and p~ ".for baryon triggers,
are automatic in the CIM while difficult to recon-
cile in the fluctuation approach. Further, CIM
advocates claim that a proper inclusion of off- shell
effects' greatly reduces the effects of primordial
transverse fluctuations and keeps elementary
p~

4 subprocesses from being the dominant contri-
bution to single-particle spectra in the moder-

ate-p ~ range.
The correlations between two hadrons, H, and

H„produced on opposite sides of the beam axis,
especially near the symmetric point p~ -p~, are

1 2
a particularly sensitive way to discriminate be-
tween these two different types of contributions.
The CIM processes, for instance, yield substan-
tial quantum-number correlations between H, and

H, while the elementary QCD processes do not.
The two approaches are also distinguishable by
the scaling laws of the pair cross section. Near
the symmetric point the scaling laws in p~
= —s(pr +Pr ) are basically insensitive to the pri-
mordial transverse-momentum ("kr") fluctuations. '

In single-particle production a possible config-
uration (at moderate pr) is one in which each of the
colliding quarks (or gluons) has large intrinsic

in the same direction as the trigger P r [Fig.
].(a)]. This configuration, which probes the sub-
process at small (instead of large) momentum
transfer is potentially capable of distorting the
p~ spectrum, whereas in the absence of k~ fluc-
tuations the subprocess is always evaluated at
large momentum transfers. In contrast, for
symmetric-pair production, Fig. 1(b), the pre-
ferred reaction configuration is initiated by quarks
(or gluons) with small kr. Any bias in the direc-.
tion of one hadron makes the production of the
second, symmetric hadron much less probable.
This intuition is confirmed by explicit calculation. '
Thus in symmetric pair production a comparison
of CIM subprocess scaling laws with those of
the more elementary p~

' subprocesses is much
less sensitive to k~ fluctuations.

In the present paper, we will calculate the CIM
contributions to symmetric-pair production for
a variety of quantum-number combinations of the
pairs. We also include the elementary QCD con-
tributions without scale breaking. It has been
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FIG. 1. The contribution configurations for (a) single-
particle high-p z production, and (b) symmetric high-p z
pair production.

shown' that this gives a good description of the
single-particle spectra in pp collisions at both
Fermilab and CERN ISR energies. We use the
same relative weight for the two contributions as
was used in Ref. 5. We will discover that the pre-
dicted pair spectra agree with existing Fermilab
data' in shape and normalization. The underlying
scaling laws are quite different from those pre-
dicted on the basis of p~

' subprocesses only.
However, scale-breaking effects in the p~

4 pro-
cesses tend to make the differences smaller. '4
Thus definitive tests of the scaling laws, which
are, as we emphasize, free of k~ fluctuation am-
biguities, must await corresponding ISR data at
widely separated energies.

We s'il/ see, however, that existing ISR and
Fermilab data" already provide evidence for the
quantum-number correlations expected when a
mixture of CIM and QCD subprocesses is em-
ployed; the large quantum-number correlations
are a direct consequence of the structure of the
CIM contributions.

In Sec. II we will survey the scaling-law differ-
ences for pair spectra, predicted in an asymptotic
expansion of the pair cross section, between CIM
and QCf3 pr ~ type subprocesses.

Section III will discuss in greater detail the con-

tributing reactions and contrast CIM and QCD
subprocesses. We will compare analytic-asymp-
totic-expansion techniques with more precise re-
sults obtained by numerical integration and dis-
cuss general systematics, charge correlations,
and related questions. The numerically integrated
cross sections have scaling laws that, at experi-
mental moderate-p~ values, differ slightly from
those obtained asymptotically. The numerical
results yield excellent agreement with the data
in shape and normalization. The distinguishing
differences between the CIM and p~

' scaling laws
are still apparent. The relative normalization of
these two types of contributions is discussed.

Section IV contains concluding remarks and dis-
cussion.

The Appendix provides details of the derivations
of the asymptotic forms discussed in Sec. II.

We encourage the reader of the paper to lay
greatest emphasis on the general features of the
higher-twist CIM subprocesses which distinguish
them from QCD subprocesses. These features
include the scaling laws, charge correlations,
and relative cross-section magnitudes. This is
especially important since their exact normaliza-
tion is less trustworthy —the general features can
be used to ascertain whether or not the CIM sub-
processes are present. The level predicted by the
normalization process of Ref. 1 on the basis of a
smooth connection to elastic scattering (pp -pp
and wp - wp) is fairly substantial. Doubt, however,
has been cast on this normalization procedure in
the case of m beams by the data of Frisch et al.'
who find the ratio (v p-m X)/(w p-w'X) to be very
near 1 at high p~ for a variety of x~ values. This
is in contradiction to the extension of Ref. 5 to
CIM subprocesses contributions for pion beams;
a much larger ratio is obtained. However, QCD
subprocesses also have difficulty at the higher
x~ values of the above data; they predict v /v'
approximately 3 times larger than the data. "
Thus the failure of the final m to remember that
it comes from a m beam is not fully understood
in either model. Various excuses can be proposed
in either approach but it is apparent that a clear
means of discriminating them in the case of pp col-
lisions is highly desirable. This paper emphas-
izes that high-p~ pair correlations and scaling
laws provide just such a means. Especially im-
portant are the scaling laws and cross-section
ratios for pp-PpX, pp-pPX, and pp-pmX which
are very different from those predicted by QCD.
The single-particle predictions of the higher-
twist CIM subprocesses for pp —pX and pp-pX
have long been one of the model's particular suc-
cesses —those reactions not being well described
by the simpler QCD subprocesses.
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II. COMPARISON OF ASYMPTOTIC SCALING LAWS

We will be concerned with three distinct final-
state structures in our calculations. These are
illustrated in Figs. 2(a)-2(c). They differ accord-
ing to the number of final-state fragmentations
required. We consider the reaction A+8 -C+D
+X. The high transverse momenta of C and D
are produced through a large-angle subprocess
scattering of secondaries a and b of A and B, re-

spectively. In the first situation, Fig. 2(a), C
and D are produced directly in the subprocess
via a+5 -C+D In. the second situation, Fig. 2(b),
final fragmentation occurs, a+& -C+d at large
angle followed by d -D fragmentation. In the
third structure, Fig. 2(c), both C and D are pro-
duced indirectly, a+5 -c+d at large angle fol-
lowed by d-D and c-C. In all three cases men-
tioned above the pair cross section can be de-
rived from the formula

EcEc, , =
J dx, dx, d'k, d'k, dw, dw~d'k, d k~x, G„„(x„k,)x~G~, s(x~, k,)

&
Dci~(w„k~) Des~(w~, k~) dc" '

4i +
C

(2.1)

In the case of direct production of, e.g. , particle
C, one should replace D«, (w„k, ) by 6(w, —1)6'(k, ).
The variables zo,. and k, , i =a, b, c,d are re-
spectively, the scaled longitudinal and the in-
ternal transverse fluctuation momenta.

In contrast to calculations for single-particle
spectra, the pair spectra will be insensitive to the
way in which we incorporate the internal ("pri-
mordial") transverse momenta k, The only crit-
ical feature is that the behavior in the k,. be more
rapidly damped than a power law. All power laws
are contained in the various possible short-dis-
tance subprocess cross sections.

We employ a Gaussian form for the primordial
transverse k~ fluctuations:
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We will only need the cross sections at 90',

(2.6)

(2.V)

Furthermore, we use the simple parametriza-
~ tions of Ref. 5, which led to a successful descrip-
tion of single-particle spectra. Typically they are
of the form

(c)

FIG. 2. Production of a back-to-back pair of high-p z
particles: (a} when both are produced directly by the

subprocess, (b} when one is obtained as a fragment of
a primary particle produced directly by the subpro-
cess while the other is produced directly, and (c}when

both are produced as secondary fragments of primary
particles produced directly by the subprocess.



632 JOHN F. GUNION AND B. PKTERSSON 22

where they can be written in the form

(2.9)PT = zPT

For simplicity we discuss in the text mainly the
case z = 1 (the symmetric point). "

In the first situation, the direct production of
particles C and D [Fig. 2(a)], we obtain at the
symmetric point

D d ~P d sP 2/$2) a/A 5/&

(1 —~ }&a/ A+& b/ B
X

(2p )2« (2.10a)

dO 77Q90o
(2.8)

dt s"
The parameters A+ „,g„„,dD«, gD«, and S"

are given for all processes of interest in Ref. 5.
We will not discuss their determination here.
From the formulas given above we may now infer
the asymptotic scaling limits for the three cases
of interest. We refer to the Appendix for the ex-
plicit derivations.

We are interested in th@ situation where par-
ticles C and D are produced opposite to each other
at90'

Away from the symmetric point the cross section van-
ishes exponentially; for PT —pT = ~T fixed we get

C D

do' da'
C Dg73 d3 C D ~73PC PD PC PD sXm

(2.10b)

Note that the double-differential cross section has
the same scaling (pr '«) at fixed xr as the single-
particle spectrum Ed@/d'p for the same subpro-
cess. The extra inverse-momentum dimensions
are provided by a transverse-fluctuation scale.
This is typical of all the symmetric-pair results;
while the scaling laws are simply related to those
of the subprocess, the overall normalization re-
quires knowledge of the size of the transverse fluc-
tuations. The sensitivity arises simply from the
momentum balance constraints transverse to the
incoming beam direction.

The most important configuration for the CIM
contributions is that illustrated in Fig. 2(b),"with
one final fragmentation. Here we consider two
different limits, z =1 and z &1.

We find

dg 1 2Q') ' ' (1 —~ )~a~'~s/a
& d ~p d ~p 27]($2) «& &/& 2/2)+ 2(tm) Bt'

(2p )»
For z &1q

(2/2)))/ 2

1(z,P,) = —D„,(z) Mw

PT 18rge PT

and for z =1,
/2/52 )1/ 2 ) Ep/g+)

at&D/g -a d~
1))T 18I'g8 PT 0

Clearly, as z -1 a, rough interpolation is provided by the replacement

(2.11)

(2.12)

(2.18)

(2.14)

Thus the scaling laws are quite different in the two regimes pT =pT =pT and pT =zpT =zpT. In the case of
approximate equality, transverse-momentum constraints impose additional inverse powers of pT through
the fragmentation functions.

Finally we consider the double-fragmentation case, Fig. 2(c). Here we obtain in the symmetric case
- da'

C Dd3Pc PD

1

I'(g./ „+R„~+1)1'(g c„+g/)„+1)
X a

F(ga/~+Ais+&ci c+g/«~ 2)+ (2.15)

where

J is specified in detail in the Appendix.

I

Note that in the double-fragmentation situation,
the symmetric-pair cross section scales with one
more power than the single-particle cross section
based on the same subprocesses.

Let us now discuss the implications of (2.10),
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(2.11), and (2.15) for two typical subprocesses-
a higher-twist, CIM subprocess, quark+meson- quark+meson, and a p~

4 subprocess, qq -qq.
We will consider proton-proton collisions with
production of an exactly symmetric pair of m mes-
ons (i.e. , z =1). In the CIIVI case qM -qM', one
of the observed mesons must be the fragment of the
final quark; the other observed meson can be pro-
duced directly in the subprocess or indirectly as
the decay product of a meson resonance. For qq
-qq we obtain both mesons via quark fragmenta-
tion. In summary we consider

to approximately p~-'. . The scale-violation effects
upon the quark-meson-subprocess predictions are
much smaller since the subprocess is initiated
by a meson; the distribution 6« ~(x) is not strongly
affected by QCD corrections due to the color-sing-
let nature of the meson. Also, final-fragmenta-
tion scale violation is present in the qq-qq case
through D~/, but not in the CIM case where the

meson is produced directly or through standard
resonance decay.

We now compare the pair spectra. For (2.16)
we obtain (neglecting scale violation) the scaling
laws

q (2.16a) (1-xr)
(y2&) 1/2p 5 (2.19a)

qM' -m, q (2.16b)

qM' M+ q (2.16c)

do qq qq

dt
~ 1/s',

+Aft q

gyp=3 ~

-~/p=5

~.i p=o.

(2.17)

We first remind the reader what the implications
of (2.17) are for single-particle production. The
scaling laws based on the subprocesses of (2.16)
are

!'(1—x,)'/p, ', (2.18a)

E, , o=& (I -xr)'/pr',

I (1-x,)"/p, '. (2.18c)

We have, of course, temporarily ignored scale
violations and primordial transverse-fluctuation
effects upon the scaling laws. The phenomenolog-
ical debate centers on the possibility that combin-
ing scale violation and (on-shell) fluctuations tends
to make the pr 4 scaling law of (2.18a) quite sini-
ilar at moderate p~ to the p~ ' scaling law of the
qM -ql subprocess predictions. However, if we
follow the CIM advocates and use off-shell kine-
matics' for the primordial fluctuations, they be-
come unimportant leaving only the scale viola-
tions; these effectively change' the pr ' of (2.18a)

(2.18b)

W] tt2

where we presume M*=p is typical. The required
scaling-law parameters are

qAE'~/lf +q
~ 1/s',

.. ., d3 d3 &0
Z «(I - xr)' (2.19b)

fl'2 T

(1 —xr)
((~'&+(~'&)"'p ' '

E.
T

For the CIM subprocesses the single-fragmenta-
tion power law, P& ', is higher than that for
double fragmentation, P&, but has a large- co-
efficient and will generally tend to dominate at
moderate p~.

Again there is a difference of at least four po-
wers in p& between the qq-qq subprocess scaling
law and that based on qM -qM. Scale violations
will again affect (2.19b) and (2.19c) much less
than they will affect (2.19a) where calculations
have shown that scale breaking alters the p&

' to
approximately p& . As in the single-particle
spectra, one is left with a difference of about p&
between the CIM and p&

4 scaling laws. The ad-
vantage of the pair-production configuration is that
primordial transverse fluctuations will not further
reduce this difference, regardless of how they
are incorporated. In addition we shall demon-
strate in the next section that the CIM subpro-
cesses produce very substantial charge and quan-
tum-number correlations. These are absent
when the symmetric pairs are presumed to be
produced by the elementary QCD subprocesses.

III. DETAILED RESULTS

In this section we present numerical results for
a variety of pair cross sections. Since the asymp-
totic scaling laws (2.12), (2.13), and (2.15) are not
fully realized at the moderate-+ values of inter-
est we will give results obtained by exact numeri-
cal integration of the functions f(z, pr) and &(xr).
As an aid in considering the nature and relative
size of the contributions from different subpro-
cesses we also tabulate analytic forms and corres-
ponding results (at s =1) based on analytic ap-
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(4wn„) ~ is the vertex describing the breakup of
a meson into its quark and antiquark components.
The size of S901".1 q2"2 is determined by uginN2 so
that, for instance,

proximations (derived in the Appendix), T(1,Pr)
and Z(xr), related to I(1,pr) and J(xr). Both I and
J are defined so that as p&-~ or x&-1, respec-
tively, they approach unity. For instance, when

x& &0.6, ~=J, where J is the exact function, within
20%%uo. I is generally a very reliable approximation
while ~is typically, for x&= 0.3, smaller by a fac-
tor of -2 than ~.

In the following tables we present results for
exactly symmetric pairs (z =1). We consider
first CIM contributions. The tables in the CIM
case give for each subprocess (1) an asymptotic
analytic expression multiplied by the appropriate
T correction integral, (2) the numerical results
at x& ——0.25, p&

——3 GeV following from exact in-
tegration of I, and (3) the result at this same
kinematic point following from the I approxima-
tion. The @CD tables give for each subprocess
(1) the analytic result from (2.15) with J-Z,
which is accurate numerically for xr &0.6, (2) the
numerical evaluation at x& ——0.25, p~=3 GeV of
the analytic result, and (3) the result of an exact
integration of &(xr) at the same kinematic point.
All results in the tables will be for p-W collisions
with cross sections quoted in GeV units and yer
nucleon. "

We will use these results, in particular, to dis-
cuss pair-spectra ratios, such as pN-w'w /w'K /
w K'/K K'. These ratios depend mostly on rela-
tive normalizations of the distribution functions
and subprocess cross sections which enter. They
provide a useful characterization of many of the
overall features of the pair-spectra predictions.

The distribution function and subyrocess norm-
alizations we employ, i.e., the &,.«'s, d«~'s,
g«I's, 904' 's, etc., were given in Ref. 5 where
single-particle spectra were predicted. In that
reference, however, SU(3) symmetry was used as
a working approximation. Here we wish to allow
for possible SU(3) breaking through the following
additional parameters.

First, for the momentum fractions of Ref. 5
[recall that A«& f,»(1+g«,) wh——ere f,» is the
fraction of momentum which i carries in I] we
define the following'.

g)+v gIC
804

v itg
~904 & wr off+-ufo'+ K r

f—«Msp4

WK&r K &

(3.1)

We will, in what follows, take K=K . In the above
is proportional to o.'„2 (=4 GeV ) as de-

fined in Refs. 1 and 5.
We will take (k') = (I') =0.5 GeV' for all results

that follow. We also define f«~ rf„&~ f—r—om Ref.
5.

We begin with a discussion of the various me-
son-particle-pair ratios for pW collisions. We
first summarize the various subyrocess con-
figurations which contribute to each type of me-
son pair in Table I; Table II presents the asymp-
totic forms and appropriate T correction factors.
Subprocess contributions which are small in ab-
solute magnitude are not given. For instance,
the (st) topologies for the qM -qM scattering sub-
processes are negligible except for E E' pairs, '

they are suppressed because of their topology by
a factor of 16 relative to the (ut) topologies.
Special note should be made of the fusion contribu-
tions to E'E and z'w production.

In Table 0 we have evaluated the relative mag-
nitudes of the various meson-pair cross sections
at the typical point Pr =3 GeV, xr =2pr/Ms=0. 25,
taking all SU(3)-breaking parameters to be —,', and
r = —,'. The ordering of cross sections is seen to be

m'w &m'w+ &m w &E+w &E w &E E
&E'E' &g'K &E g &K E .

The relative size of the fusion contribution to the
E E and m'w cross sections is sensitive to the
(k') value chosen, varying as 1/(k'). We employ
(k )=0.5 GeV . If (k') is larger then K'K ap-
proaches K'K'(=w'K ) .

Cross sections for symmetric m'm, m'E, m K' and
E'E pairs have been obtained by the Stony Brook-
Columbia-Fermilab collaboration of Jostlein
et al. These are measurements on nuclei and
are corrected substantially for 4 dependence.
Near the kinematic point (Pr ——3, xr ——0.25) under
consideration the cross-section ratios are

(a) f,~~
——f;&~ yf„„„&~and f„-&~

——is t-ake-n to equal

f,-&~ of Ref. 5;
(b) f„(~,&(~ &f„(„„&)pand f-jg(„——&)~ &-f2,-g~, where-——

f„«»&&~ and f~,&~ are taken fr-om Ref. 5;
(c) dg.g„——6d,+g„, dz+ z-g g 6'd,+,-g„and dg g;——

=dz-~, ——d,+&„, where d,+&„ is taken from Ref. 5.

For the subprocess parameters we define the
following:

(d) &„[M(g~) -s+~)]=etc o&u[M(du) -d+u] and

+»[M(ss) —s + s] =vg'e„[M(8u) Z+ u], where

fw'w '. w K:K w '. K'K ]„, , „,
= 1.07:0.445: 0.175:0.075 . (3.3)

Without A correction the relative size of the E'E
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TABLE I. CIM subprocesses. "7r '" indicatesanynmson
with quark content the same as a 7r', etc. , except where
indicated by (st) a11 q~M& q2M2 processes have (ut)

topology.

cross section is increased to 0.12. These can be
compared to the CIM prediction,

[7r'7r: 7f K:K 7r': K K jcgM= 1.15:0.24: 0.04:0.16~

Obser ved pair

7r'r'

7r "lr

E' 7r

E+E+

E E

E' 7r"

E' E'

Significant subprocesses

u«7ro» ~&+d(~ &-)

dw r u( m')

fusion +gg: 'lr 7r

d~
fusion

u"w'" x'u(

d 7r" hard( 7r)

u"E" -E'd(- ~-)

d "7r 7r u( E')
g"7r' ' 7r'u ( E')
g 'E'+" E+u(

u"X+ K+u( K+)

g"y" -E's(-E-)
ci 0', (St)u"7ro" E's( E )

„(st)d"n'+" E+s( E' )

s"~"-E-g(-E')
s '7r E'+u ( E' )

ug E'+X

2"~"-~~u(- E-)

s"~"-Z u(-u'}

7r's( E )

s 7r" Ed( 7r)

d"E-"-~-s(-E-)
u 7r" 7ru( E')
s"E-"-E-s(-E-)
u"E " K @( E-)

SU(3)-
breakirg

factor
(3.4)

The obvious discrepancies are the small size of
the K v' cross section and (relative to the &-
corrected value) the large K'K cross section
predicted by the CIM. These discrepancies are
directly related to the fact that large quantum-
number correlations are inherent in the CIM sub-
processes, especially the fusion mechanism
which results in K K' &K 7r'.

Another way to characterize these results is
in terms of factorization, " which is an indication
of the absence of charge correlations. The above
data obey

[(w'& ) (K'K ):(u K') (K v')], , = 0.08: 0.078,

(3.5)

where factorization would yield 1:1. Factoriz-
ation will be typical of the elelmentary QCD sub-
processes which will also be shown to yield very
little quantum-number correlation. The higher-
twist CIM subprocess predictions do not obey
factor ization.

The above experimental data appear qualitatively
different from recent data (obtained only at pr
values slightly below those of the J5stlein et; al.
experiment) from Finley et a/. " While these
latter data are at dangerously low-P~ values for
interpretation in the present framework they do
show charge correlations and lack of factoriza-
tion as well as A dependences which are different
than those of Jostlein et a/. in the region of near
overlap. Thus it is certainly too soon drawn any
firm conclusions.

Complementary information on quantum-number
correlations is provided by the ratio (we use the
exact numerical-integration numbers of Table II)

('No. of opposite-sign charges of equal pr on opposing side)
No. of same-sign charges of equal pr on opposing side (3.6)

We obtain (p r = 3 GeV, xr = 0.25)

gcIM K @+77 K
1 4

g 'g'+ m'K'

& 'IT +77 K
7T g +@K (3.7)

KK +K7r-
r+ K+K+ K+ + —1.3,

KK+ K +

K"g +K K"

There are, in fact, preliminary indications that a
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TABLZ H. Meson pairs in CM.

Observed pair Standard relative value ~

1.5 x4.3 xlp-8 GeV+
(]..5) x (4.3 xx10 GeV )

0.7 (0.7}
2.2 (2.2.)

1.2 (1.2)

Analytic form

0.1 ~2/3(1 + r) (1 ~,)8 T{xz,4, 1,8)
p~10

(1-~ )"0.1 (0.4 + 0.4r) (0.0583)

0.1 &2/3(0. 5 + 0.2r)2(l —xp) 8 I(x~, 4, 1,8)
p~i0

K+7r

0.6 (0.6)

0.46 (0.46)

0 45 {0.45)

0.15 {0.15)

0.1 42/3(0. 1 + 0.4r)2(l —xp) f0p~i0

0.1 v'2/3 f(0.4+ O.lr)&z+ {0.3+ 0.8r)4]0. -x2}—, I(~„4,1,8)
pg i0

0.1 ~2/3 f(0.5+ 0.2r) («+ ~) I(1-~,)' I(xz, 4, 1,8)

0.1 42/3(0. 5 + 0.2r) 260'~ {1-x&)
8 I( 2,4, l, 8)

p~i0

K E'

0.015 (0.015)

0.0619 (0.062)

0.018 (0.017)

0.201 (0.204}
0.296 {0.298)

0.042 (0.041)

0.023 (0.022)
0.065 (0.063)
0.019 (0.019)

0.016 (0.016)
0,035 (0.035)

0.0017 (0.0015)

0.1 v'2/3(0. 3 + O.lr)+ tc(0.66)(1-xg)
p~i0

0.1 &2/3(1.0 + 0.8r) (1/16) ~&(1-&z)8
I (x~,4, 1,8)

O.l 42/3(0. 36) ~ay(1 -x~)"
p i0

g(1 ~ )10
0 1(0,3 + O,lr) (0 0583) ( ) s

0.1 42/3(6+ ~~y)(0.18)(1-x )"
p i0

0.1 l2/3(0. 3 + O.lr) v z o'(0.66)(1-xz )
2 I(gr 4, 1,12)

P~i0

p 1 g2/3(~ ~&+ $)(p 082){] ~)12 Ts
p~i0

0.1 42/3 {0.3r+ 0.1)0' ~&{0.66) (1-xp) f0
'i2 I (x'z, 4, 1,12)

p~i0

0.3. v 2/3tco'{p+ 6)2(0 043}{1 xz)
«r(~, , 4,1,16)

p i0

~This standard relative value is for pr= 3 GeV, sr= 0.25, ()) )= (t ) = 0.5 GeV, all SU(3)-breaking parameters (o.', n'
~

5, 5', ... ) =~, and r= ~. ( ) gives numerical result for the analytic form.

strong positive charge excess is seen opposite
both s & and a v trigger in pp collisions. 's '""
The observed ratios (of the order of 2) are not
as large as those computed in Eq. (3.V). This is
partly because we have quoted values for exactly
syxQmetric pair production, at which point the
fusion mechanism is very important. Also, the
calculations given here have not incorporated
resonance-production feedthrough [e.g., q,~,
-It*'q' (K*'-K )] which will tend to diminish
the large ratios. The third, and most important,
effect is that presence of other contributions (in
particular the elementary QCD subprocess con-
tributions) would decrease the R values. 'These

effects also result in relative cross-section ratios
nearer those obtained by Jostlein et a/. Below
we will make a more quantitative comparison,
including the contributions of the elementary QCD
processes. Ne wiLL also estimate the effects of
resonances. Qualitatively, the fact that a number
of different experiments have yielded &, ~- & 2
is strong support for an approach which considers
a mixture of CIM and QCD; the elementary QCD
terms alone always predict & values near one.

In order to aid in a comparison between the
QCD subprocesses and the CIM subprocesses it
is useful to tabulate results for QCD subprocess
contributions to meson pairs. These results will
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ignore scale breaking and thus can only be re-
garded as rough approximations. However, for
u, = 0.15 it has been shown' that the closely re-
lated predictions for the Pz subprocess contri-
butions to single-particle spectra, do a remarkable
job of describing the observed transition between
the CIM (Pr ' or Pr ") realm and the QCD (Pz, ~)
region as p~ increases. Table III presents the
QCD contributions for meson pairs. The final
SU(3)-breaking parameter appears in this table:

the present framework the numerically obtained
absolute normalizations of the cross sections of
Tables II and III will be used. Our normalizations
imply that the z'~ cross section, at the p~=3
GeV, sr =0.25 point, is composed of 73/o CIM
and of 279o elementary QCD contributions. We
thus take the relative values at the standard
kinematic point from Tables II and III in the fol-
lowing proportion:

Table IV = Table II+ 0.177 Table III . ' (3.13)
dw/g
d:/g ' (3.8) For instance,

~'~'& ~'~-& ~-~-&K'm' &K'~-&K-~

&K-g-&K'E' &E'K-&E-K-, (3.9)

which is different from that of the CIM subpro-
cesses. Next we record the values of the A' s
for QCD alone (numerical-integration results
are used):

a~. =0.80,
a~ =1.40,
R~~ =0.85,
a~P =1.45 .

(3.10)

We may also look at the numerical cross-section
ratios. The QCD subprocesses yield a prediction

[w'w: w K'. K w': K'K

]caco

——1.0:0.50:0.29:0.15.
(3.11)

The relative size of cross sections appears to
be in better agreement with the Jostlein et al.
experiment than for the CIM, but there'is corres-
pondingly little charge correlation. Note that the
above QCD predictions are close to obeying fac-
torization

[(w'w )(K'K ): (w K')(K w')] =0.15:0.145,
(3.12)

which is indeed an indication of the smallness
of correlations in the QCD (Pr~) subprocess
approach.

Of course, in reality, we must consider a com-
bination of CIM and QCD contributions. Within

For details of QCD parameters and cross section
forms see Ref. 5. For totally symmetric pairs
we numerically compute & in (2.15); we also
(in parentheses) indicate the results obtained from
the listed analytic forms (derived in the Appendix).
We sum over the elementary subprocessess —qq
-qq, qg-qg, and gg-gg and over all possible
fragmentations. Again we tabulate relative cross-
section magnitudes at p~=3 GeV, x~=0.25 taking
allSU(3)parameters = o, r= a and (k')=(P) =0.5
GeV'. Note first the ordering of the cross sec-
tions

w'm = 2.2+ 0.177 x 4.6

= 2.2+ 0.814 = 3.014, (3.14)

gQ CD+ CIM
I'+

gQcD ycIM 2 6

gQCD + CIM

gQCD ycIM 2 4

(3.15)

The absolute size of QCD relative to CIM con-
tributions will be pursued shortly. For the mo-
ment we simply note that it is possible that the
data at P~ &3 GeV represents a mixture of these
contributions. One must, however, be cautious
as some of the resonance feed through effects
present in CIM subprocesses will result in both
an increase in the K m+ cross section and a de-
crease in the A values obtained in the direct-
production CIM calculations given earlier. An

example is ud-E E*' following by E*' decay to
w' (and w ). This enhances the K w' cross sec-
tion and decreases quantum-number correlations.
It is thus remotely possible that the CIM alone
could explain the B values and yield cross-section
ratios similar to those of Eq. (3.5). Unfortunately
it is difficult to compute the resonance feed-
through with precision without a thorough know-
ledge of high-P~ resonance production. In single-
particle spectra it is estimated that indirect pro-
duction via resonances is responsible for about
20%-50% of the cross section. An extreme esti-

which yields a QCD w'w percentage of 0.814/3.014
=0.27. We obtain the relative magnitudes of
Table IV. We see that with this combination of
QCD and CIM one obtains

[w'w: w K': K w': K K ]=1.0:0.29:0.10:0.14
(3.15)

which, of course, is in better agreement with
the Jostlein et al. experiment than ratios pre-
dicted on the basis of CIM subprocesses alone.
We note further that the large charge correlations
typical of the CIM have not been shielded by the
above combination. In particular we have, from
the Table IV relative PE cross sections,
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TABLE III. QCD contributions for meson pairs. GeV units (at, = 0.15).

Pair Subproceqs

Standard
relative
value ~ Analytic form

o.es (1.1) 1.8V{1+r)' x1O
J (x)

PT5

[Absolute value at standard point is 7.2 x10 (3.2 x 10 )l

2.3 (2.16)

1.sv (1.4)
4.6 (4.66)

o.91 (1.ov)

2.6e (2.52)

2.86(2+ 2r) x]0 6 J (xT)

p 5

5 ex10~ Jgg(xT)
PT5

2.73(1+r) x10~ J (x)
PT'

2.86(3+ r) x10~ J (xT)
PT'

7r 7r

K+K

qq qq

qq. qq

qg qg

gg gg

qq

qg qg

gg . gg

1.Sv (1.4)

4.97 (4.99)

0.406 (o.5s)

1.92 (1.80)

1.sv O..4)

s.v, 5 (s.vs)

O.4v (O.55)

1.15 (1.O8)

0.68 (0.70)

2.SO (2.33)

0.47 (0.53)

1.34 (1.26)

0.68 (0.70)

2.4e (2.4e)

0.23 (0.27)

0.67 (0.63)

o.s4 (o.s5)

1.01 {0.98)

o.s4 (o.31)

0.34 (0.35)

O.68 (O.66)

0.67 (0.63)

o.68 (o.v o)

1.35 (1.SS)

5.9 x 10+ «
PT'

2.73(1+r)rx10~ « '(x )
PT5

2.86 (3r + 1) x 1p
J (

PT'

(xT)

p 5

~(1+r)'1.8»1O J«( T)/p, '
[(3+ r)& + (3r +1)6']1.43 x 10 J«(xT)/PT
~' 5.9 x 10 Jgg(xT)/pT

~ (1 + r) 2.73 x 10 J«(xT)/PT'

(3 + r) (& + & )1.43 x 10 J«(xT)/PT
' 5 ex10& Jgg(xT)/pT5

& (1 + r)2.73 x 10 J«(xT)/PT

66' {3+ r)2.86 x 10 J«(xT)/pT

.9 x 10+
gg (xT)/PT5

66'(3+ r)1.43 x10~ Z«(xT)/PT'

5.9 x 10 Jgg(xT)/PT5

(3 + r)1,43 x 10 J«(xT)/pT
6' 5.9 x 10 Jgg(xz)/PT
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TABLE III. (Cont jnged. )

Pair

K7r

Subpro cess

gg

Standard
relative
value

0.48 (0.45)

0.68 (0.70)

1.16 (1.15)

O.34 (e.35)

Analytic form

6'(3~+ 1)1.43 x1O J„(,)/p,
P' 5.9 X 10& J«(&T)/PT&

5.9 x 10 J«(xT)/pT

See footnote of Table II.

mate of the resonance feedthrough effects upon
correlations in the CIM can be obtained by con-
sidering (for simplicity) only pion pairs. We con-
sider the following two models:

(a) 7{ pairs are all produced directly in relative
proportion as given in Table II.

(b) Only p pairs are produced directly and all v

Pairs arise indrectly via p decay; e.g., ~,'w,

comes from

(P'+P'), (P +P'), =P'P, +Pip +P P +P P

with the relative p-pair cross sections obtained.
from Table II. [We estimate p'p'= (up'p'+ p'p ),
etc.]
The compar ison is

m'm 2 2 m'm 6.85

2.2 37 t m P' 6.85 138
direct 0.6 r esonjace

It is clear' that the pion charge correlations are
considerably reduced in the model where all m's

arise indirectly via p decay. Including & decays to
&m we would find that if all &'s and m's arose
either from p or &*decay, the ratios &, and &K
of (3.V) would be approximately cut in half. This
is of course an absolute extreme since the observed
ved {{and K pairs arise at most only 50kof the

TABLE lV. CIM + QCD (weighting described in text).

(3.17)

I

time from resonances.
To complete this discussion of basic results we

also present predictions for meson-baryon and
baryon-baryon pairs. These appear in Tables V
and VI. We have not computed all possible cases,
only certain representative choices. Subprocess and
distribution function parameters are from Ref.5,
except that for numerics we choose a=f~/~/f „»
= u. A few more SU(3)-breaking parameters are
re{luired for the pK case: Analogous to (b) we
choose

7r 7r

K+x
K+x+
K+K+
K+K
Kw+
K 7r

KK

3.01
2.08
1.26
0.87
0.89
0.33
0.42
0.30
0.24
0.062

2.90
2.60
0.97
0.92
1.10
0.45
0.465
0.33
0.215
0.062

)fB {uuu)/d fB{{{uuy/p .

In addition we consider (for this one case)

(f) bad" fragmentation, u K or d K;
we assume that through resonance mediation this
is allowed at the level

+K /lord

This, via Eq. (2.13) introduces an extra p/pz
relative to the standard u-m' or d- g cases.
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TABLE V. CIM meson-baryon and baryon-baryon pair s.

Pairs Subprocess Standard relative value Analytic form

d "p" —pd(-~-)

u"n" pd( m )

d "~"-~-u(- p)

3.73 x 0.819 x 10

(3.73 x0.822 x10 )

3.0(1 + -) I (xz, 6, 1,6)
p 14

d "~-"-~-d(- p) 0.30 (0.24) 0.06(1+- ) i I (xz, 4, 3,8)gp 2 (k ) (1—xg)P—

pE- d' Z'" —ps{-K-)

u" Z'" —ps(-K-)

d "p"—pd(- K-)

1.10 (1.10)

5.13 (5.O7)

O.57 (O.57)

0.18 (0.18)

(1-~,)4
2 k2 pT12

(1 x )'—
0.93m {1+ -'r)

4
I (x~, 6,1,6)

p i4

6.57 —(1 +-y) I (xz, 6, 1,6)
pr 2 pr'4

d "~+'"-p {-Z-)

s "~'**-K-u(- p)
+

s "~-"-K-d(- p)

(ud) '7t:
'

pu( K )

0.007 (0.005) 0.038/~K IQz, 4, 3,12)
2 (kP) (1-xz)iP—

p~i2

(uu) m pu( K)

gp pl(
-(&)—

0.09 (0.09)
o.s5 (0.85)

0.186 I (xz, 6, 1,6)
p~i4

dg pu( x')

(ud)"m~ pu( ~')

0.012 (0.011) (1 —x )0.1(1+w) I(x&, 6,1,14)
pTi4

(uu) "7t' pu( ~')

d "p '" p'd( pQ

d'm' . ~m' u(~p)
—fusion

pp

o.o3o (o.o2s)

0.021 (0.016)

O.O63 {0.055)

(1-~ )'4-
0.38 I(~, 6, 1,14)

p~i4

0.041(1-xp) I (xz, 4, 3,12)„2(k')-
pri2

(ud)"~'" —pu(- p)

(uu)" r " pu( p)

1.90 (1.95)

0.016 (0.01)

1.92 (1.96)

(1-~ )"
2 Q2) p~i2

(1-x )'
0.515 (g 2 (k )l(sp, 6, 62)

p i6
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Pairs Subprocess

u"p" pu ( p)

TABLE V. (Continued. )

Standard relative value Analytic form

d "&"" pu ( p) 0.37 (0.27) (110.2(1 + —~) I (xz, 6, 3,6)
143 p~16

un" pd( p)

/

d "u" pd( p)

d "4""
pu ( p)

d "p"—pd(- p)

s p -p@-p) 0.002 (0.001)

u n pd(. pg

~See footnote of Table II.

We crudely estimate p =,'0 to —,'0 GeV. The pre-
cise definition of P is

2pd„i„(1-x)'
E+Ig (2 (y2) )

1/2 (3.18)

[v ~:v-p]„„=2.0:1.0, (3.20)

i.e., they are comparable in magnitude. This
relative ratio is typical of existing data; more
discussion of relative normalizations appears
shortly.

(3) The pair cross section for pp is very strong-
ly dominated by the fusion subprocess qq-pp with
consequent strong charge correlations, For in-
stance, for a p trigger

Examination of the CIM numerical results of
Table V at the standard p~ = 3 GeV, x~ = 0.25 point
indicates the following:

(1) The cross sections we have computed within
the CIM are ordered as

(3.19)

(2) The v p absolute cross section at this point
and the g g' absolute cross section are in the ratio

Table VI.
Again examining the numerical results at the

standard p~ = 3 GeV, x~ = 0.25 point we observe
the following:

(1) The cross sections are ordered for QCD
subprocesses as

~ p&pp&p "»& &up»p . (3.23)

[m'v '. v p] = 3.1:1.0 . (3.24)

(3) The charge correlations within QCD are
much smaller than those in the CIM:

(3.25)

The z'p and pp cross sections are relatively
enhanced compared to the CIM. This is because
of the presence of scattered gluons, in the QCD
framework, which do not distinguish between
quantum numbers. The PP cross section is rel-
atively smaller because of the absence of a fusion
diagram in QCD.

(2) The v-p and g g' absolute cross sections
from purely p~ subprocesses are in the ratio

ciM -1000,(pp
&PP

(3.21) [(pp)(pp): (p p)']...-1.0:12. (3.26)

and factorization is violated:

[(PP) (PP): (PP)']„„=1:5000. (3.22)

Finally we present corresponding analytic re-
sults for the QCD subprocess contributions to
these same pair cross sections. These appear in

As for the meson pairs, indirect resonance
feedthrough in CIM processes will tend to modify
the predictions given here for the CIM on the
basis of direct production. Again these modifica-
tions as to correlations, etc., are like those that
would result from a mixture of CIM+ elementary
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TABLE VI. @CD meson-baryon and baryon-baryon.

Pair

pX

Subpro cess Standard relative value

qq qq

qg- qg

gg

(0.81)

(0.55)

(1.36)

qq 0.92 (1)

[Absolute values: 2.39x»0 (1.2 x»0 )J

2.4 (2.4)

1.2 (1.1)

4.5 (4.5)

Analytic form

0 +407 (1 + v) (1 + 1+733v)10 Jqq (xT)/pT

0.208 (9 +»»+)»0 J~(xT)/pT

1.51 x10 Jgg(xT)/pT

0 208 (7 + 5f ) x 10 Jqt (xT)/PT

1.51 x10 J~(xT)/PT

0

0.383(3 + r) x 10 J~(xT)/pT

1.51 x»0+ J~~(xT)/pT'

(2.2)

(1 xT)«
[1-(1-2r) 2]2 [2((k2)+ (l2))]1/2' '~ [1—(1-2r)I2-P

pp qq qq (0.72)

(1.29)

(0.34)

(2.35)

1 (1 -xT) »

[2((k2) + (l'))]' ' ~~ [1—(1 —x ) 2] [2((k2) + (I ))

3.86(1 + x}(1+ 0.554r) x»0 Jqq(xT)/pT

1.558(7+ 5x) x 10 'J~(xT)/pT

5.6 x 10 Jgq(xT)/pT'

qq qq

qg qg

gg gg

qq qq

(0.65)

(0.34)

(0.99)

0.779(7 + 5&) x 10 'J~ (xT)/pT

5.6 x»0-'J' (x,)/pT'

0 0

(0.34) 5.6 x 10 Jgq(xT)/pT

(» 1 (» (1-x )~7 1
[1 (1 z ) ] [2( (k2) + ($2))]1/2 ~ I1 [1 (1 & ) 1]7 [2( (k2)+ ($2))]1/2~ EE [1 (1 & ) 1]8 [2( (k2)+ (f2))]1/2

See footnote of Table II.

QCD. The important point is that elementary
QCD subprocesses alone predict an almost com-
plete absence of charge correlations.

We now turn to a more detailed discussion of
charge correlations for meson pairs. The exist-
ing experiments employ pp collisions. This tends
to increase the CIM charge correlations. For
instance, at our standard symmetric point xT
= 0.25, pr = 3 GeV we may use Table VII (with
r = a ) to convert the pN Table II results to pp
results. The relative normalizations are altered
somewhat. This yield RcIM values as follows:

RCIM y P

RCIM

RCIM 0 9

RCIM 13 8K

(3.27)

Again we remind the reader that resonance feed-
through and presence of elementary QCD terms
will reduce the large R, and RK- values. The
effects of QCD terms can be established by taking
the new relative QCD values computed in Table
VII and forming the superposition (3.16) which cor-



22 HIGH- TRANSVERSE-MOMENTUM SYMMETRIC-PARTICLE-PAIR. . .

TABLE VII. Conversion table for pN to pp collisions.

(M eson pairs)
New

relative
value

@CD
pp

New

relative
values

(1+r)

(0.4+ 0.4r)

(0.8 + 1.2r)

(0.4+ 0.4r)

2.1 (1 + r)~

2(1+ r) 2(1+r)

0.827

2.3

K+K

(0.5+ 0.2r)

(0.1 + 0.4r)

(0.4+ 0.1r)

(0.3 + 0.8r)

(0.5 + 0.2r)

(0.5 + 0.2r)

(0.3+0.1r)

(1 + 0.8r)

0.36

(0.3 + 0.1r)

0.18

(0.3 + 0.1r)

0.8

0.4r

0.4

1.2r

0.8

0.8

0.4

(1.2 + 0.8r)

',—', (0.36)

0.4

0.4

1.6

0.4

0.4

0.6

0.2

0.017

0.071

0.0195

0.23

0.338

0.046

0.026

0.072

(1+ r)

(3+ r)

r(1 + r)

(3r+ 1)

(1+r)

(3+ r)

(3r+ 1)

(1+ r)

(3+ r)

(1+ r)

(3+ r)

(3+ r)

(3+ r)

2r2

4r

4.50

1.21

3.07

1.37

5.65

0.307

1.536

1.37

3.21

0.42

1.15

1.37

2.94

0.61

1.53

0.68

2.82

0.30

0.77

0.34

1.41

0.38

0.34

0.72

0.77

0.68

1.45
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TABLE VII. (Continued. )

CM
pN

(Meson pairs)
New

relative
value pN

@CD
pp

New
relative

values

0.082 (0.082)
6 0.015

(0.3r + 0.1)

0.043

0 4r

0.043

0.013

0.028

0.0017

(3r+ 1) 0.38

0.68

1.06

0.34

rectly accounts for the predicted relative absolute
normalizations. The results are tabulated in
Table IV. We obtain for pp collisions

RcIM+QcD 0 87

RCIM+QCD

RcIMiQcD 0 89E+

RcIMyQGD 2 q

(3.28)

Note that by combining CIM and QCD subprocess-
es the large value of Rz has been reduced, so
that R~ -R, . That R~- is reduced more than

R, is due to the fact that the CIM contributions
to K production require sea quarks and are thus
much smaller than CIM contributions to g pro-
duction. Therefore these contributions are more
strongly shielded by the QCD terms, especially
gg gg, which contribute roughly equally to z"
and K . By comparing (3.16) to (3.28) we see that
charge correlations for negative triggers in pp
collisions are expected to be even larger than in

PN collisions.
The existing experiments do not use a symme-

tric momentum point. Only for the Albrow et al. '
experiment do we have a good idea of the relative
size of pT' and pT'. There we have

We have also computed the R's at the Fermilab
energy 200 GeV. We have chosen PT'= 3 GeV/c
and PT'=1.2 GeV/c. This ratio corresponds to
the x~=0.4 cut employed by Bromberg et al.'
in plotting their R values. We do not know, how-
ever, if the PT'=3 GeV/c cut is appropriate.
Nonetheless, we plot our QCD+ CIM results and
their experimental R values on the same figure,
Fig. 4. (Note that their R„and Rr, are the in-
verse of ours. ) Clearly the predicted R, and R»
values are too high unless

(a) the actual pT' cut is much lower and uncor-
related backgrounds are present, or

(b) resonance effects are much more significant
than we expect.

We next turn to a comparison with the beryllium
data of Jostlein et al. ' at a more detailed level.
In Fig. 5-we give our absolute prediction for p'm

pair production at p'„b=400, 300, and 200 GeV
as a function of

T +- ~TNT PT

5 = Theof'y (pT=BGev, pT= l.5Gev)

$ = Data(Albrow et al. )

PT'=3 GeV/c,

pT'=1.5 GeV/c .
(3.29)

We have used numerical integration to evaluate
both the CIM and elementary-QCD meson-pair
cross sections in pp collisions at this asymmetric
point. The results for the R's including both
contributions are shown in Fig. 3. The general
features of the data are reproduced. The R,
value predicted by the. theory is above the data;
this is probably due, in part, to our not including
resonance feedthrough effects which will cause
R,- to decrease. R~ is less effected by reson-
ance feedthrough.

RK+

FIG. 3. Plot of experimental points and theoretical
predictions for R rdefined in Eq. (3.7)J. Data are from
Albrow et al.—Ref. 7. Theoretical calculations use the
p ~-3 GeV/c, p ~ 1.5 GeV/c cuts of the experiment.
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5
)g( = Theory (pT/pT =.4, pT =3 Gev/c)

f = Dote (Bromberg et. al. —pTt--'p)

which one should assign to our fundamental coupl-
ing strengths

4- e~ =2 GeV', n, =0.15. (3.30)

2-

I

RK

FIG. 4. Plot of R, Kq. (3.7); data from Bromberg
et al. Theoretical points presume x&= 0.4 and p z
= 8 GeV/c. The cuts of the experiment have not been
published. Our R~+ and RE+ are the inverse of those
defined by Ref. S.

Both CIM and QCD contributions (obtained by
exact numerical integration) are included. We
have used pointlike A. dependence, that is, we
multiply our pN cross section by a factor of 9.
(The measured A dependence of the experiment
is near 1; however, one must be cautious as the
A. dependence obtained by the Finley et al . at
low pr is different. ) We see that the shape and
relative normalizations of the three energies are
excellent; our prediction is a uniform factor of
1.5-2.0 too high. This is well within the errors

Io 3I

It is perhaps worth noting that the CIM alone is
in complete agreement with the data shown. The
QCD contributions can be said to cause the nor-
malization to be too high.

In Fig. 6 we display the experimental points and
@CD+CIM predictions for the dependence of the

spectrum on the difference P~=p~'-p~ be-
tween the momenta of the g' and 7I . The weak
dependence of the data on p~ is reproduced. %'e

plot this dependence for other pairs as well. In
Fig. 7 we compare predicted and measured p~
pr -~r dependence for various pr =pr +pr

values. Again agreement in shape is generally
good. Note that the absolute cross-section value
is also very good (using linear A dependence).
Figure 8 shows corresponding results for g+E
pairs with generally good agreement. Finally Fig.
9 exhibits the corresponding spectra for p'g
pairs. The theoretical curves are in excellent
agreement with experiment for p~=p~~-p~ (0
but tend to lie above the data for p~&0. This can
be traced to the dominance of the CIM contribu-
tion in which an initial proton (or neutron) emits
(with ease) a secondary baryon which then pro-
duces directly (via the Bq pq' subprocess) the
observed proton. The proton is obviously made
with a higher momentum than the symmetric 7I-

produced in the decay of the q'. For negative p~
the reverse process'-ttq (q' p) which

Io

Io3'-
C4

E

gl OJ
b ~&

Io
N

LU

LLI

eV IP3l

Io"-

lO CU

b ~
0-34~~- lo

ftT'tT
[

x4&'4xk~h 4.2 GeV

p j~ 4.8 GeV

pgpTT f'$f TT I~ 5 46eV

66Gev
i'i.

7.2 GeV

$ 40
4 30
y 2O

N
LIJ
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IO"-

IO"
O.I

I

0.2
XT

0.3 0.4 0.5
-36

Io -2 -I 0 I 2 5 4

pT (GeV/c).

FIG. 6. As in Fig. 5 except that the absolute normali-
zation and dependence on p z=p z -pz is compared for
various values ofp $, .

FIG. 5. Comparison of QCD+ CIM theoretical curves
with the data (Ref. 6) of Jostlein et e/. for x'x pairs,
as a function of x r= (Per +Per )/Ws= P'r /Ws. —
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FIG. 7. As in Fig. 6 for K'~ pairs;P'z=P z -P z
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FIG. 9. As in Fig. 6 except for p7r pairs.

favors p~ &p~ becomes significant and agrees well
with the data. Conceivably our choice of

@~=10 GeV4, (3.31)

IO"

IO

which normalizes the Bq -pq' subprocess, is a
bit too large. Certainly a 20% adjustment is
within the errors allowed by earlier determina-
tions and single-particl. e spectra fits. We also
note that the pg pair spectrum is dominated by
the CIM terms. The QCD contributions are much
smaller than the data in this region; for p'r =4.4
GeV they are a factor of 4 to 8 below the data.

Overall the predicted spectra are in surprisingly

good agreement with the experimental observa-
tions. The theory has certain intrinsic uncer-
tainties which render absolute normalization
calculations to better than 50% impossible. In
addition we have chosen our SU(3)-breaking par-

1ameters a' = n = 5 =. . . = a on the basis of rea-
sonableness rather than direct experimental
determination.

Unfortunately on the basis of the J5stlein et al.
data a clear ease for the presence of only QCD
or only CIM subprocesses or a mixture, as used
here, cannot be made.

The QCD+ CIM mixture predicts values for n,«
for g'g pairs at x~=0.15 as follows:

num I (Vs =19.4 toVs =23.7)=9.46,
(3.32)

n ' (Vs =23.7 to 2V.4)=8.77

whereas CIM alone would predict

cf'
I

(9
5J

E
O

tO OJa
(0 O— IO"-

CLa

IO"-

4.2 GeV

4.8 GeV

-~L 6.0 GeV

6.6 GeV

S
PT

n~~~ (Ws= 19.4 to Vs = 23.7) = 9.84,
(3.33)

n~i'p (v s = 23.V to 27.4) = 9.5 .
Clearly as Ms increases at fixed x„ the QCD terms
if present should substantially alter the power of
p~-+"'~ expected on the basis of the CIM. Cer-
taintly if only QCD were present the n,t, value
should lie below 8. Smearing in k~ should not
effect this difference. The experimental value
(for xr o 0.1V)

IO -2 -I 0 I

p (GeV/c)

I I

2 3 4

FIG, 8. As in Fig. 6 except for 7r 'K pairs.

~ox' ~ 8 7etf (3.34)

is perhaps already a bit larger than is comfor-
table for pure QCD. The above experimental
fg ff aver ages over data which inc 1udes 200- GeV
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data at y&0. Correcting for the y dependence
(which increases the difference between the p, ~
= 200 and 300 GeV data) yields an n,«value& 9.2.
To clarify the situation very precise measure-
ments on a proton target and/or measurements
over a larger energy range would be very useful.
Note also that the difference in p~ dependence
between CIM and elementary QCD for pairs in-
volving baryons is considerably larger. Thus
measurements of, for example, p7t pairs over
a larger kinematic range will be interesting.

Next we turn to a consideration of the dN/dxz
distribution —in this paper our g is identical to
x~. The CIM subprocess predictions are quite
different from those obtained from elementary
QCD subprocesses. We illustrate the basic features
by comparing v w and z w dN/dxz distributions in
Fig. 10. For m m .pairs the fusion contribution
is zero when m's are directly made in the sub-
process. Fusion contributions through indirect
modes, such as qq- z p' (p' z ) are quite small.
In any case these indirect terms yield a dip struc-
ture at x~=1. Thus for m 71 pairs we predict a
dip coming from the transverse restrictions on the

qM -Mq (q -M') CIM contributions near xz = 1.
In contrast g 71' pairs have a strong fusion contri-
bution which fills in this dip and even creates a

1000—

bump at xz= 1 in the dN/dxz distribution. The
normalization of the fusion relative to the other
CIM contributions is proportional to I/(k') but
otherwise completely fixed.

Elementary QCD subprocesses in contrast
predict nearly identical dN/dxz spectra for v z
z'z and, unless a large peak inthe quark (or gluon}
decay function occurs at z = 1, will yield (even in
the absence of kr fluctuations} a completely struc-
tureless curve near xz —1. -(The nonvanishing

flat' forms used by Feynman and Field' are not
sufficient to produce structure. ) Such a distri-
bution peak has not been observed in the SPEAR-
DORIS measurements of quark decay distributions.
In Fig. 10 we also plot the prediction for the g'g
dN/dxz spectrum obtained by combining element-
ary QCD and CIM subprocesses. The xz=1 struc-
ture becomes very difficult to see at the particular
pr =7 GeV/c trigger value chosen. At lower trig-
ger pr's the QCD terms should be relatively
smaller and any CIM x~ "1 structure easier to
resolve. (Note that we have arbitrarily normal-
ized the dE/dxz curves in Fig. 10 to best display
the differences in structure. }

There are in fact some recent experimental
measurements" of dN/dxz in v'v' pair production
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FIG. 10. The dN/dxz spectrum predicted in the CIM
for 7t '~ pairs compared to 7t 7r" pairs, at a trigger
momentum for one pion of 7 GeV/c and for v g = 63 GeV.
Normalizations of the curves relative to one another
are arbitrary and chosen for ease of shape comparison.
The fusion contribution to 7t '7t is shown separately.
Also shown is the effect of including QCD terms in the
~"~' case.

FIG. 11. Comparison of CIM dN/dxz spectra for 7t 7t

pairs to recent ISR data (Ref. 14) at v s = 63 GeV. The
structure of the data is larger than that produced by
CIM. Including QCD terms weakens the predicted
structure further. Absolute normalization of the curves
was chosen for ease of comparison to shape of data.
Relative normalization of the curves is that given by
the theory.
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at the ISR which indicate a structure near g~ = 1.
We have, in Fig, 11, plotted the expectations for
dN/dxs from CIM terms alone (arbitarary over
all normalization) compared to data for several
different (k') values. The fusion contribution
just manages to fill the dip coming from the
other CIM terms and produces a very slight
structure compared to that observed. Elementary
QCD contributions (which should be present in
substantial proportion) should mask this structure.
However, there is a background (which the exper-
imentalists are unable to subtract) coming from
direct y production [as well as v' Z(y) they also
trigger on a single direct y]. Thus mechanisms
such as gq pq (q-M), Mq yq (q M), qq )M)
etc., are all potentially significant. We will ad-
dress this problem elsewhere. "

Next we consider extrapolation of our p'g' cross
section to large-pr values at v s = 63 and 53 GeV.
In Fig. 12 the predicted mixture of QCD and CIM
is compared to earlier results obtained on the
basis of scale breaking of naive QCD terms. The
exact scaling of the QCD calculation presented here
is certainly too naive and should only be used to
indicate approximate trends. ln Fig. 12 we also
plot the CIM contribution alone, which lies about
a factor of 3 below the predictions of Ref. 4 from
scale-broken QCD. A reasonable procedure in
this realm is to add the CIM predictions (which
will be only slightly affected by inclusion of scale
breaking) to the scale-broken QCD distributions
plotted from Ref. 4. Certainly the indicted range
of possibilities brackets the preliminary data ob-
tained at the ISR." These data have substantial
absolute normalization error.

IV. CONCLUSION

In this paper we have concentrated on a study
of production cross sections for a pair of high-p~
particles —one on each side of the center-of-mass
axis. This configuration is important since hard-
scattering models for such symmetric-pair cross
sections are insensitive to the transverse-momen-
tum fluctuations of the colliding constituents
(mesons, iluarks, gluons, . . . ). Even the ap-
proach, ' which employs on-shell kinematics for
the subprocess so that the fluctuations yield large
"smearing" corrections to single-particle spec-

iO33-

o'4-

C9
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E
ED

)0-36
K) N

CL

Q.

OJ
LLj

Ui

10

)p-40
2

with scale breaking )

I I I

6 8

T (GeV/c)

i

Io

tra, predicts very little "smearing" alteration
in the case of symmetric-pair production. 4 Thus
the scaling power laws for pair cross sections
predicted by the constituent-interchange subpro-
cesses and by the elementary two-body scat.tering
QCD subprocesses can be compared without am-
biguity. We have demonstrated that the CIM and
elementary QCD contributions yield the following
scaling laws at fixed xr = (Pr'+Par)/v s, Pr' —Pr2

small:

FIG. 12. Double-differential cross section for pro-
duction of exactly back-to-back 7r m pairs at 90' cm.
Three sets of curves are shown. One corresponds to
the total CIM contribution alone; the second to the sum
CM+QCD discussed in the text—scale breaking is not
included in the QCD terms; the third set of curves shows
the scale-broken QCD calculations of Ref. 4. Data are
preliminary —presented by Jacob at EPS meeting, Gen-
eva, 1979 (Ref. 17). Since the data presented by Jacob
are integrated over the azimuthal-angle difference (P»
—4&0) we have corrected by multiplying it by the theore-
ticaliy obtained factor of = [v 2m ((k2)+ (lt) )'~'/p rj '. '

subprocess

CIM qM qM

Scaling law

1/p 10
T

1/pr' Meson pairs

qq M~M2

1 2

I/pr'



22 HIGH- TRANSVERSE-MOMENTUM SYMMETRIC-PARTICLE-PAIR. . . 649

subprocess

qB' qB

Scaling Law

14+

1/pr" ~

Baryon-meson pair

qB' qB

qq ~ B~B2

I/p 16

1/pr "p
Baryon-(anti)baryon pairs

QCD qq-qq

gq

1/p, '

All pairs

Scale breaking will increase the effective power
of the elementary QCD subprocesses to at most

QCD- (1/pr)'

while having a much smaller effect on the CIM
contributions which involve color-singlet ampli-
tudes and distribution functions. Thus a signifi-
cant difference of 1 to 2 powers in the scaling
laws for meson pairs is predicted between CIM
and elementaryQCD subprocesses; a much larger
difference is expected for pairs in which one or
both particles are baryons. 'The pion pair data
of Jostlein et al. ' (especially after correction
of the 200-GeV/c data for its nonzero rapidity)
appear to indicate a power larger than 9 and con-
sistent with CIM expectations. Indeed, the abso-
lute normalizations we employ for CIM and QCD
contributions imply that the CIM terms shouM
dominate the pion-pair data obtained by Jostlein
et al. at moderate pr and Ms= 17 to 24 GeV. Of
course, both the CIM and elementary QCD nor-
malizations should be regarded as uncertain to
within a factor of 2. For instance, Baier et al.'
use a larger value of n, and obtain a satisfactory
fit to the pion pair spectra from QCD alone. It
is also true, however, that the scale-broken QCD
scaling law is not quite the same as that of the
experiment. 'Thus the CIM alone yields an even
better description, in normalization and shape,
of this data. Adding QCD terms results in a net
cross section which in absolute normalization is a
bit too high. (Of course, the absolute normaliza-
tion of the data is very sensitive to small differ-
ences in the A dependence assumed. ) The Pv
pair data present a cleaner situation. Our cal-
culated QCD subprocess contributions lie a factor
of 4 to 8 below the Jostlein et aE. experiment at
pr =p~r+p'r= 4.4 GeV/c while CIM terms predict

correctly the normalization and shape of the
cross section. The QCD subprocess calculations
of Baier et a/. 4 lie a factor of 3 increasing to 8
below the p~= 4.4-GeV data as p~= p~ -p~ in-
creases from 0 to 2 GeV/c.

Of course, as p~ increases at fixed x~ or fixed
v s the elementary QCD terms will become more
prominent. For instance, at p, ~=400 GeV/c,
without scale breaking, we have the following
crossover points at which QCD=CIM:

v'w: pr-4. 5 GeV/c,

w'K: pr-2 GeV/c,

K'w p —2 GeV/c,

K'K: pr -5 GeV/c,

P11: Pr-4 GeV/c.

Scale breaking will cause an increase in these
values and, in general, makes the CIM and el-
ementary QCD spectra more similar in shape.

A particularly important feature of the CIM sub-
processes is that they predict large charge (and
other quantum-number) correlations. Typical of
such correlations are the large "fusion" contri-
butions (qq MM or BB) which are among the CIM
contributions to m'm pairs and dominate E.'E and,
especially, pp pair production at moderate p~;
fusion contributes only indirectly (through reso-
nances) to m w and K K and is negligible for pp
pair cross sections. In contrast quantum-number
correlations are predicted to be almost completely
absent when the elementary QCD subprocesses
alone are used. 'Typically current data exist in
kinematic regions where we expect a mixture of
elementary QCD and CIM subprocess contribu-
tions; this mixture predicts that charge correla-
tions opposite a m, E, or p trigger are moderate-



6.&0 JOHN F. GUNION AND B. PETERSSON 22

ly large. Such correlations are observed in a
variety of experiments. Quantitative agreement
with the charge correlation results of Albrow et
a/. ' is a natural consequence of the relative nor-
malizations of the QCD and CIM terms at the ap-
propriate kinematic point. These data represent
a coarse measure of the detailed pair spectra for
all meson-pair types as obtained here. We have
also given predictions for meson-baryon and
baryon-baryon pairs. An experimental compari-
son of Pp, pp, and pp symmetric pairs over a
substantial kinematic range will provide an even
clearer demonstration of CIM correlations, if
present at the expected level.

Another way of exposing these charge correla-
tions and particularly the fusion contributions
of the CIM is through the dN/dx~ spectrum. We
showed that, if CIM dominates, dN/dxs should ex-
hibit adip near xz = 1 for m m production, while for
m'w productionthe addition of the fusion term causes
a small bump to appear. Unfortunately even a rela-
tively modest contribution from elementary QCD
will obscure the CIM structure; the QCD terms alone
predict a smooth dN/dxs spectrum even if the
fragmentation functions of the quarks and gluons
do not vanish as z -1. 'Thus it is important that
the 7t'n -w n comparison be done at modest p~
and energy.

Finally, though we have not dealt with it in de-
tail here, we recall the importance of measuring
the momentum accompanying a trigger particle.
For single-particle triggers CIM subprocesses
predict a very small amount coming entirely from
resonance production and decay. Indeed, 25/o to
50'%%uo of the momentum observed accompanying
a single-meson trigger of moderate p~ has been
shown'4 to reside in well-known resonance decay
products. Some portion of the remainder is ac-
counted for by background from the beam and
target jets. Certainly the nontrivial accompanying
momentum'is less than 10% of the trigger momen-
tum. Even including k~ -fluctuation smearing this
figure remains very uncomfortable for QCD sub-
process models. Similar contrasts are present
in the symmetric-pair situations. Because smear-
ing, and the resulting bias towards the trigger,
is not important in pair production, QCD subpro-
cesses predict that a much larger percentage
of the momentum of a trigger will be carried by
accompanying particles for a pair trigger. Here
we used numerical methods to obtain quantitative
estimates as follows. Neglecting scale breaking,
one finds that as the transverse momentum of
each of two symmetric r"s increases from 4 to
8 GeV/c (at v s = 63 GeV), the accompanying mo-
mentum on each side goes from 48% down to 36/p.
Including scale breaking, one obtains somewhat

smaller percentages: -40% at p'r~= 4 GeV/c down
to -30%%uo at P'r = 8 GeV/c. The CIM contributions
yield a much smaller increase when going from
the single-particle to the symmetric-pair trigger.
A precise percentage requires more complete
knowledge of contributing resonances; certainly
it should remain below 15%%uo. For large Pr a mix-
ture of QCD and CIM contributions will be present
yielding an intermediate result. Certain triggers,
such as K and p, for which QCD terms are rel-
atively large compared to CIM terms at high p~,
should exhibit the largest percentage of momentum
accompanying trigger particles.

In summary, it is apparent that the study of
high-p~ symmetric pairs will provide a fruitful
testing ground for theories of high-transverse-
momentum production. A careful study of scaling
laws and correlations should indicate a transition
from large-inverse-p~ scaling powers to smaller
powers and from large-quantum-number correla-
tions to small ones as p~ increases and the el-
ementary QCD subprocesses overtake the higher-
twist CIM subprocesses.

APPENDIX

In this appendix we will derive the expressions
used in the numerical calculations and the analy-
tic approximations mentioned in the text.

We treat separately the three cases illustrated
in Figs. 2(a)-2(c). In the first, no fragmentation
case, formula (2.1) simplifies to

der
c D g3p d3p

Eked ckg cP~gQ ~g
2m J

&& x.G.»(x„k, )x, G, &,(x„a,)

go eb ~CD
X - 5'(P, +P, Pc -P~) . - (AI)

We will assume that both C and D are produced at
90' in the center of mass and that all momenta of
4, B, C, and D lie in the same plane, i.e., P~„,
= 0 where p,„, is the momentum component of D
perpendicular to the P» P» P~ plane. We may
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parametrize, at large s and p~, the momenta as k~+k" =0a b

k", + k» = (1 —z)pr, (A3)

p» = (k*„k», -x» —,'Ws),

Pc =(Prp 0, 0),

p, =(-zp„o, o) .

(A2)

We assume that [pri - [pri. The momentum com-
ponents of the 5' function yield

Xg XQ

We use a Gaussian form in the transverse fc fluc-
tuations as defined in formula (2.2). For pr large,
and z near one, we can neglect the transverse
Quctuations in the energy component of the 54 func-
tion; we can then do the integrals over %. and k, :

de,*de," exP[-(ace)(e," )]exP[-a(e,*)'-e(e,*-(1-z)P„)']=—
4 exPI- 4 [(1—z)Pe]'I. (A4)

Here we have also neglected the weaker dependence of do/dF on k, and k, . We define

ab
a+5 2(k )

(A5)

The maximum point of the integrand in (A4) occurs at k", =k» = r(1 -z)/2] pr. We thus see that for z near
one, the approximations mentioned above are consistent. This will be typical for all three cases, and

means that for nearly symmetric pairs the complications due to the transverse fluctuations are minimal.
At the maximum point

z, =x»=Mz 2PT (A6)

and the invariants of the ab-CD subprocess have the values appropriate to 90 scattering:

Itl =I~I =2& 2zp=r'

We obtain [including a (1+z)/sos Jacobian factor]

do 11+z 1 (1-z)'p,"«4»""
~ d'p d'p )p 2' 2p[(k') ' 'i" ' ' »/z 2(k') (dt i; „» 2," „»» (Aa)

From this formula, using the parametrizations of the structure functions and the cross section given in

formulas (2.6)-(2.8) we immediately get the expressions (2.10).
In the second case, illustrated in Fig. 2(b), with one final fragmentation, expression (2.7) takes the form

~ d'pod'p~ 2)[ J

dgD/d( de d) 64(p +p p p )
se '

The momenta configuration is as in (A2), except that we have now a new relation between pD and p, ;
including the transverse fluctuation k~ we have

(A9)

p, =p~+tl, . (A10)

The transverse fluctuations in the fragmentation functions are often taken to be Gaussian, as defined in

formula (2.3). To a good approximation the components of k~ in the z and x directions may be neglected

and k„=k„sing where Q is the azimuthal angle of Rd about the primary direction p„. The three-momenta

part of the 54 function then yields

Xg X$ y

k,"+ k" —k' = 0d

k", +k; -pr(1-z/»o, ) =0 .

(A11)
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For strong k', k'b and kd damping we obtain the transverse integral

7-y 7-y -a (AV)2 d(~ y.)2 b(py ~P)2 1 g 1 g d(Qs )2 -a(~) -b)p& p (1 4/ )) 2
d (A12)

which reduces to

(1 z/w, )'p, '
2~(k') 2(k2)+(I') ~ 2(u2) (A12)

where we have defined (l') =- 1/d to specify the average fragmentation fluctuation. It is clear that z =w, is
preferred. The energy-conservation 5 function then can be approximated by

(x,+x, )-,'Ms =pr(1+z/w~) (A14)

or

x, =x, =(2pr/vs )-,'(1+z/w, ) .

The s of the subprocess is best constructed from the final momenta:

s=4p', z/w, .

(A15)

(A16)

Inserting the explicit parametrizations for G, /„, G~/s, d(&/dt, and Ge/~ from formu]as (2.6)-(2.6), we
get

do 1 1 f 2(k') l'/',
~ ~ (1-x )~ra/~ ' +/ (s

C 8 d3p d3p &( 2(Q2) I( 2(„.),(I 2) ) o/A ((/s goO (2p )2s ( P p T) (A17)

where

ea/h +eh/B
&au, ( -x,((+z/M, )')

p /(/ &, & wg (1 —xr)
++&g/d & ( ] &~/d

Z ~
(ZOd

(1 —z/w, )'p, '
&( exp —

(~2) (A16)

We can, of course, integrate this expression numerically. In order to obtain a useful analytic approxi-
mation, we change variables and obtain

d (2(a'))' ' ' ( x, a(2(a'))' ')"I*"~lI (z p )
— (&/d do' e

pr „'(, ) /(, (,2&)x/' & 2(l -xr) pr

( (2(ym))&/ ~ }es/&

/ (2(y2))&. /2 N+g /
-z 1 z+ o(

p
I (A19)

PT

(A2O}

»r z & 1, and pr reasonably large compared to 2(k'), the integral is we]1 approximated by setting a =O

in the factors multiplying the Gaussian and we get

] (2($2))1/2
I(z, P,) =- I&,/, (z)W~

z PT

For z =1 we have a zero from the D functions as n~»d. A good approximation is obtained by evaluating
the factors multiplying e'»d e " at the maximum of that expression. %e then get

ga/d

2 0' ~'u/u" ""
O&~g)/d g o n,

(A21)

(A22)

where f(xr, J(/, g»„, g, /„+g»s) is given by



22 HIGH- TRANS VERSE-MOMENTUM S YMMETRIC-PARTICI E-PAIR ~ ~ .

g &/2 (2(P2))&/2 &z /&++b/B

1 xf 2 2 Pr
N+g g)/g1/2 (2(y2)}l/2

PT

(A23)

This is a very good approximation for g~/„= 1, and only somewhat worse for gD~~ = 3. As can be seen
from this analytic approximation, I (z, Pr) approaches the asymptotic limit (9.13) from below. Thus,
e.g., for 2& Jr&6 GeV and 20&vs &30 GeV, we get for n'm pairs at z =1,

0 175
p 10

PT"

GeV ' (asymptotic formula),

GeV '(parametrization of numerical integration).
(A24)

Finally we must consider the double-fragmentation case, Fig. 2(c). Here we have two fragmentation func-
tions and

EcEn „3 s = dguu dao, dx, dxsd'k, d'knd2k d~kuxoG /s(xe R )xnGo/a(xs~k
p~ w

x D~/, (s/, , %, ) D~/, (au~, k~) 5„)
C d

We have the same momenta definitions as before only with

(A25)

p, =~+k, , p„=~ +k„. (A25)

The 5' function now yields, for small [%, [ and (k~(,

x,—,'Ws -x, —,'v s =0,

~T p
ZU

(A27)

(tU~ 'Ng /

1
(&~'&+(t '))"' '

with &"„0",, I|', and 0„' unconstrained except to be much less than p~, because of the Gaussian falloff. We
can do the &", ~ and k, ~ transverse integrals trivially, leaving k", integrals of the form

~b&tI'c d a b gw gv gs &-4(A +0& -4 ~ ) &-e(A) -b (0&) -g (0") 1 1

(A25)

(Note that had we defined k~ and k, as the transverse momenta of the hadrons relative to their source
quarks, rather than of the quarks relative to the hadrons, e.g. , p~ = pD/sv~ -k~ /w~; our final formula
would be altered. ) The ao, integral now yields

p~ zp rl~
1

Kq ZO~ SUg ) Pz
(A29)

= ='p' —'xg xy
d

(A30)

with a net 2/s Jacobian. The subprocess cross section is evaluated at 90' with s =4 Pmr z'/w„'. We are
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left with the form

do
EcEa pe pe

1 t 8 Q~ dDOb Cd

[2&r((g2)+(f2))]1/2p J 2 a/A bIB D/d CIc 4p 2Z2)// ( T
"T'

2
Q)g j

(1 bed -/Z)'c Ia (1 b-cd )d»d

(bed /Z)
(Aal)

in terms of the parameters defined in (2.6)-(2.8).
For an approximate analytic expression we note that since so„ is constrained to lie between zx~ and z we

can make the variable change

Kd=zzU, K = 1 —(1 —xT)p
a

and use mean-value techniques to perform the p integration.

, We obtain

p
~C /c for z 41

a /~+ ga/s + &c /c

(AS2)

l(T 1
c D $3p d3p [2&(($2) + (f 2)}]1/2p 4 /A b/B D/d c /a

(1-x ) /A' b/B' c/ " F(g, /„+g, / +1)I'(g /, +1)
(4P')" g' (ga /A+ &b/B &C /a +

x[1 —(1 xT)p]» da/A db-/B 4-[1-z+z(1 xT)p]dD/d (A22)

Note that for z t1 the double-fragmentation scaling law and the single-fragmentation scaling law are the
same:

1
g($2) p

2B+ 1

For fixed Ibpr = (1 -z)pT, z - 1 as pT-~ and a different approximate analytic form applies

with

cf0'

tfP ~P
g -+1 @ah~cd

[2 ((y2) (f2))]l/2 4/A b/B D/d C/a ( 2)JV

x 4a/A+gb/B+ ) (gc/a+ ~D/d+ ) [1 (1 & )p](2B-4da/A-db/B&
F(ga/A+A/ B+«Ia+&D/d+2)

(A24)

(A26)

The approximation (A34) to the true integral is good to 20% for xT & 0.6.

«/ a+/."D/d

gg/A, +gy/B+~C/c gD/d

Corrections are of order bpT /pT. Note that in both double-fragmentation situations the symmetric-pair

cross section scales with one more power than the single-particle cross section based on the same sub-

process. For later use we define the function

[1 (1 ~T)p] da/A db/-B--
J(xT)= [2((~2) (f2))],/2 (1-xT) a/A b/B /c D/d. .
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