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A statistical model in which higher-multiplicity enhancements are generated from lower ones in a

completely determined fashion is presented. Full account is taken of isospin and G-parity conservation as

well as the finite width of the produced resonances. It is applied to diffractive dissociation on nucleon and

deuteron targets, for which multipion mass distributions and relative cross sections are calculated.

Agreement with available experimental data is seen to be excellent.

I. INTRODUCTION where

New data on diffractive five-pion production
have been published' and constitute a good test
for statistical models which, at relatively high
multiplicity, should provide a good description of
the mass distribution of multipion systems. In this
paper, we present a generalization of a statistical
model proposed by Margolis and collaborators'
a few years ago. Specifically, a fireball consist-
ing of an incoherent superposition of overlapping
resonances is dynamically formed through Regge
exchange in the t channel and then decays statis-
tically and sequentially in the s channel according
to the statistical bootstrap model of Hagedorn'
and Frautschi. '

The cross section for this process (shown in
Fig. 1) is as follows".

do 1
dM' 16vX(s, rn, 2, m~2) M

x dtR s, t, M I' F-n7t

X(X, y, e) =x '+y'+e'-2xy —2xz —2yz,

R(s, t, M) is the fireball production matrix element,
and P(E -n)) ) is the decay probability into n pions.
In this picture, a fireball decays according to the
relative proportions of its constituents. Since it
consists mainly of a heavy particle and one or two
light resonances, 4 we are led to a cascade-decay-
type model as depicted in Fig. 1(b). At each step
i of the cascade, we associate a decay probability
into n bodies:

P(M.)=" "
p(M,.) '

where p„(M,.) is the contribution of the n-particle
states to the total density of states p(M, ). P(&

nv) will then be a convolution of all P(M;)'s over
the different steps of the cascade. In phase-space
language, the total density of states is given by4

This equation has been solved in the asymptotic
limit using the strong bootstrap condition
p„(M) „=„p,„,(M) and the result is ' p(M) =ae"~ /
M .

Margolis and Rudaz' and Harris et al. ' applied
this model to the three- and five-pion enhance-
ments assuming pion emission only along the de-
cay chain and a pion plus a resonance at the end.
While the three-pion spectrum is well described,
the five-pion spectrum is less well described and
the three-to-five-pion ratio is off by roughly a
factor of 2.5. This suggests that many more con-
tributions must be taken into account, for instance,

I

resonance emission along or at the end of the
chain. We thus generalized Eq. (4) to incorporate
G-parity and isospin conservation as well as the
finite width of the emitted discrete resonances.
Using the formalism presented in Sec. II, we de-
veloped recursion relations enabling us to calcu-
late explicitly the isospin- and G-parity-dependent
total density of states. Applications to diffractive
pion-proton scattering at high energy in both the
linear (two-particle vertices only) and the nonlin-
ear (two and three-part-icle vertices) versions
of the model can be found in Sec. III. Up to nine-
pion mass spectra were calculated as well as the
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where p(M, I, G) is the isospin- and G-parity-de-
pendent density of states. Clearly, the normal-
ization condition reads

that in a statistical model the decay is symmetric
in isospin space. Following Margolis et al. , we
now define an auxiliary probability:

P„(M,I, G) = p(M, I, G)P„(M,I, G),

g P„(M,I, G)=1. (6)

We thus have

b()
FIG. l. (a) A fireball is formed through Regge ex-

change in the t channel. (b) Statistical decay of a fire-
ball in the linear (upper diagram) and in the norQinear
gower diagram) version of the model.

I'„M, I, G = p M, I, G

and the probability that a fireball decays into n
pions is given by

( )
P ( ,I G)

PP„(M, I, G)

relative production cross sections. In Sec. IV,
similar calculations are performed for a deuter-
ium target at P„b=15 GeV/c.

II. GENERAL FORMALISM AND CALCULATION
OF THE TOTAL DENSITY OF STATES

We shall denote by P„(M, I, G) the probability that
a fireball of mass I, isospinI, and G parity G

decays into n pions. The third component of iso-
spin does not appear as a label since for I&2 (we

do not allow for exotic fireballs), it can be shown'

Consider, for instance, the process

P(M) -S', (m, )+P(m, )-n~, (9)

where E,(m, ) is a fireball of mass m„of four-
momentum q„of isospin I„and of G parity Gy
and P(m, ) is a light particle of mass m„of four-
momentum q„of isospin I„ofG parity G„and of
spin 8,.

Generalizing the Frautschi bootstrap equation
making use of the appropriate Clebsch-Gordan
coefficients, we obtain with the above definition

P„( l, G)M= g (22 + ))P lf(s ) f 'dm fdm S. (m )d(M, m, m )2
P . gg mme+ . g m2 fr

x {'6„I5, ,P„„(m„o,G,)+6, ,P„„(m„1,G, )]

(P„„(,0, G,)+P, „(,1,G,))]}

+P„,22, (M, I, G), . (10)

where we have summed over all possible light par-
ticles. Here, e(n, ) is the branching ratio of par-
ticle P(m, ) into n, pions and p(m, ) is its mass dis-
tribution. A(M, m„m, ) is the two-body phase-
space factor

xX' '(M' m ' ')

The lower limit of integration m „is simply de-
termined by the zeros of X'~'(M', m, ', m, ').

We thus obtain a recursion relation independent

of the density of states of any fireball which, given

appropriate initial conditions, allows us to calcu-
late explicitly the density of states for any M, I,
and G.

Clearly, every resonance with compatible quan-
tum numbers can be produced. Here, we shall al-
low for the emission of 7t, g, p, (d, g~, 5, f, A2,
and g. All these resonances have a width of the
order of the pion mass or less. Resonances such
as E, A„p, and A, are not so well established
and shall be considered as kinematical effects.
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( )
2mmp

r

r(m) is given by

r(m)
(m ' m')'+m 'r'(m) '

(q ) 21+1 2q 2

r( )=r.
~

—
( (. ',),

II, CO) 0 + 9'o

where

(i3)

q — X'~'(m' m ' m ')1

For instance, broad structures in the A, and A3
regions are predicted by the statistical bootstrap
model as statistical enhancements. '""

We shall neither allow for the production of
strange fireballs which, according to Zweig's
rule are strongly suppressed —thus direct emis-
sion of kaons or of strange resonances will not
be taken into account —nor for the emission of
nonstrange resonances such as S*, Q, and D
which decay mainly into kaons. Empirically, we
know that at high energy the amount of kaons is
about ten times smaller than the amount of pions. "
On the other hand, our model does not reflect this
SU(3) symmetry breaking in the coupling constants
and would overestimate the amount of kaons pro-
duced. Finally, due to their high masses, baryon
production is negligible in the relatively low-mass
range we shall be dealing with.

Therefore, the only vertices considered are
those shown in Fig. 2. In these, photons have been
counted as neutral pions. The mass distribution
of very narrow resonances like n, p, +, and q&

have been taken to be Dirac 6 functions, while the
following relativistic Breit-Wigner distribution"
has been used for the larger ones: N-m)

dm, p(ml)A(M, m„m, ).
m5+m6

(i8)

Here, m, and m4 are the masses of the decay prod-
ucts of particle 1 and m, and m, are those of par-
ticle 2.

Figure 3 shows the resulting density of states.
A summation up to n =15 has been necessary to en-
sure a very good convergence over the whole
range considered. We have used a volume of rad-
ius 1.1 fm, a value favored by Margolis et al. in
e'e annihilation' and in other reactions. '" Above

I'0 and l are, respectively, the width at m =m,
and the spin of particle mp while m, and m, are
the masses of the decay products. This form had
originally been chosen for the p resonance" but
we shall adopt it for any two-body resonance of
spin l.

However, Dirac & functions were taken for all
resonances which start contributing to P„(M, I, G)
at n =6 or higher. Their production rates are
small and the use of a finite width would not change
the result appreciably while complicating its eval-
uation.

Initial conditions that we used can be found in
Ref. 5, one example of which is

P, (M, i, -) =0.38S(M, m„, m, ) +3S(M, m„m, )

+0.02S(M, m„, , m, )

+4.05S(M, m~( f -2m), m, )

+1.68S(M, m (g-2w), m, ),
where

u- (m5+m6)

S(M, m„m, ) = dm,' p(m()
m3+m4

n= 2,0.38
n=3, 0.62 n= 2, 1. 00

n= 2,0. IOI
n= 3 aO 899

n= 2,0.02
n= 5) Oo 304
n= 4,0.257
n= 5,0.419

n= 5,0.38
n=4, 0, 62

B
n = 5,0. 101
n-" 4, 0e 899

n= 2,0.81
n= 4) 0.028

n =3,0.766
n= 4,0. 102
n =5,0 ~ 084

n= 2, 0 ~ 24
n =4,0 e70

FIG. 2. Vertices taken into account in the linear bootstrap model to calculate the total density of states. Branching
ratios into different number of pions are also given.
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FIG. 3. ln [M3p(M, I,G)] vs M for different isospin
and G-parity combinations. Upper fu11 curve: I =1;
lower full curve: I~=0; short-dash curve: I =1';
dash-dot curve: I~=0' long-dash curve: continuation
of the asymptotic form to low masses.

1.6 GeV, we observe a rather weak dependence on
the quantQm numbers of the fireball. Indeed, both
I=0 and I=1 curves can clearly be parametrized
with the same analytic function p(M, I,6) =a~e"~rj
M' and the same parameters (T =160 MeV) except
for overall normalization constants which are
slightly different. We note a complete indepen-
dence of the 6 parity for each isospin.

At lower mass, E(l. (10) does not really apply
since the recursion relation does not account for
discrete resonances, i.e., m, p, etc. , which con-
stitute the low-mass density of states. But ther@
a direct counting of states" leads to the same an-
alytic form provided the denominator is replaced
by (M+M/' to avoid the divergence at the origin.
Thus we can use the asymptotic density of states
over the entire range. It is clear, however, that
a full statistical behavior is not expected to set in
in the discrete resonance region and that results
obtained there should be interpreted cautiously.

III. APPLICATION TO PION-PROTON SCATTERING

A. Contribution of two-particle vertices

We now proceed to evaluate the production cross section of n charged pions. Only a subset of all dia-
grams building up the total density of states contribute to such exclusive channels. In pion-proton scatter-
ing, the only vertices contributing are those shown in Fig. 4. But since the only particles produced are
either charged pions or resonances decaying into charged pions, we no longer have isospin symmetry and
cannot embody every case into a single recursion relation. However, interestingly, it turns out that we
can write two different recursion relations, each being independent of the third component of isospin and
actually of the G parity as well. The first holds for odd numbers of pions and the second for even numbers.
These relations are

P (I, )) = g (2s pl)c (P)g d2I )f: dm, f dm p(m )A(M, m„m )
P ft2 n2m

+P„,2(M, 1) (if n is odd),

II
( Q I!

)[P„„( O)+ m'P„(m„ 1}l—„
(P~ g~ A2

~( g 2» )P„„(m„()IPj) 8 tl2

where C(P) (=1 for v,f; =2 for A„p,g) are appropriate Clebsch-Gordan coefficients, and

P (11, ))= P. .(SS +1)C(P)g p(p, ) f dmfdmdI(m , )A(M m„m )
P fl2 sk n2m

6I,2,
~
[6~0 ~ P.„(m„1)+5~,P„„(m22 1)]

+P„«(M, I) (if n is even).

+Ppf(dmp„. (m 2)+Pr P. . (m, ))I}
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FIG. 4. Vertices contributing to the calculated ex-
clusive channels in the linear bootstrap model. Branch-
ing ratios into different numbers of pions are also given.
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FIG. 5. Five-pion mass distribution in pion-proton
scattering. The upper curve is the result of the full
calculation; the middle curve takes into account only
diagrams where the fireball decays into a pion plus
another fireball —a pion plus a resonance at the end of
the chain —[first term of Eqs. (17) and (18)j; the lower
curve is the same as the middle one, but here all ini-
tial conditions yielding more than three pions have been
removed.

Here, C(P) =1 for v, p, f, g and ~ for A, . We note
that for odd values of n, P „(M, 0) = 0. Initial con-
ditions used to evaluate these recursion relations
can be found in Ref. 5.

The fireball formation mechanism R(s, t, M) is
taken to be a triple-Pomeron exchange which dom-
inates the cross section for small values of M'/s. "
A PPR term could be added but would not affect
our results appreciably. "

Figures 5-7 show our predictions for the five-,
seven-, and nine"-pion mass spectra. We display
three different contributions to stress the impor-
tance of adding all relevant contributions —in par-
ticular, resonance emission along or at the end of
the chain —when generalizing the model to higher
multiplicities. We note, however, that the sim-
plest version of the model is sufficient to deter-
mine with good accuracy the mass of all enhance-
ments.

FIG. 6. Seven-pion mass distribution in pion-proton
scattering. The curves are identified as in Fig. 5.

Three-pion enhancements are also predicted by
the statistical bootstrap model as discussed in
Refs. 1 and 8.
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( i I

3,0 4.0 5.0
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FIG. 7. Nine-pion mass distribution in pion-proton
scattering. The curves are identified as in Fig. 5.

B. Contribution of three-pion vertices

So far, we have considered only a simpler ver-
sion of the model in which a fireball decays into
two particles. We shall now take into account the
next dominant contribution' . the decay of the fire-
ball into three objects. Again here, we write re-
cursion relations but since the diagrams are ex-
pected to contribute much less than the two-par-
ticle vertices, we neglect resonance widths. For
the same reason, we shall not reevaluate the total
density of states assuming a Priori that the asymp-
totic temperature is not changed. From the re-
sults obtained, it will be easy to judge a Posteriori
if this was indeed a good guess. ,

Along the decay chain, the only vertices con-
sidered are those shown in Fig. 8. They are all
of the type zmE and wRF and dominate the nonline-
ar contribution. RRF vertices are suppressed be-
cause, firstly, the integrand is smaller for larger
masses and, secondly, the integration interval is
narrower. However, all nnR, ERR, and RRR ver-
tices are allowed at the end of the chain. " Thus,
recursion relations in the nonlinear version of the
model are



22 STATISTICAL DESCRIPTION OF MULTIPION PRQDUCTION. . . 62l

N-(m&+m )

P„(M, 1) = g (2S, +l)C(P) g e(s,) dm, I(M, m„m, m, )
"2 mmin

ij (Pj"-gw A2

8» '~ [~P„,(m„O)+-;P„„.(m„ 1)]
(P~=pg g ~)

" "2

+terms of Eq. (17) (if n is odd),
N- (m2+m )

P „(M,I) = g (2S +1)C(P)P w(e )
'

dm I(M, m, m, m, )
n2 m

&&

~
Q 5» ~(5~o[wP„„,(m~, 0)+—,

' P„q (m~, 1)]
Pl ewA2 ]

~ 8„[P„„,(m„O)+-', P„„,(m„ 1)]]

+~ g 5» ~[5~o
—', P„„,(m„ 1)+5~, 4P„,, (m~, 1)]

'j

+terms of Eq. (18) (if n is even), (2o)

where C (P) = 2 for A, and 1 for w, p, f, g and where m~w=n, + l. Here I(M, m„mw, m, ) is the three-body non-
invariant phase space'

2I

where

X=(Z,' m, ')[(1 -m, '-m, ')'-4m, 'm, '],
F =M2 —2ME2+ m2,

E2~ =m2,

E„= [M'+m, ' (m, +m, )'],1

and 1/n, t is the statistical factor for n identical
particles of type i.

Having done the calculation, we found firstly that
the effect of these nonlinear diagrams on the shape
of all spectra is totally negligible. Indeed, the new

spectra, once properly renormalized, can be su-

I

perimposed within plotting accuracy on the old
ones. Secondly, their effect on the magnitude of
the cross sections is also pretty small and, as ex-
pected, slowly increases with the number of pions
produced. This can be seen from Table I where
the integrated branching ratios relative to the
three-pion production cross section are given for
all versions of the model presented here.

Therefore, it is clear that unless very precise
experimental data become available the statistical
bootstrap model, in its simpler linear version,
is completely satisfactory.

'

In addition, these re-
sults provide us with a full a posteriori justifica-
tion for our use of an unmodified density of states.
Three-particle vertices would contribute very

I

TABLE I. Multipion branching ratios in pion-proton scattering.

Full calculation
Linear Nonlinear

Vertices: &/F
Initial condition: &/R

Linear

Vertices: &/F
Initial condition: &/p

w//-2w, w/g 2w

Linear

o (3x) /o (5x)
0 (3w) /a (7w)
0 (3x) /0 (9x)

7.57
60.9

460

7.46
59.0

447

12.99
234

3533

19.83
353

5957
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FIG. 8. Vertices taken into account to calculate ex-
clusive channels in the nonlinear bootstrap model.

FIG. 10. Seven-pion mass distribution in pion-deu-
teron scattering (&, ~

= 15 GeV/c).

little, thus having a negligible effect on the tem-
perature.

IV. APPLICATION TO PION-DEUTERON SCATTERING

do' n I((T n ~g AT p (22)

where t „=-[(M'—m')/2P„J'. Here m and M
are the masses of the incident and outgoing par-
ticles, respectively, and b is a parameter related
to the rms nuclear radius which can be extracted
from experimental differential cross sections. It
has been determined""" to be 3o-32 GeV ' cor-

It is an easy matter to extend the results ob-
tained in Sec. III for pion-proton scattering to
pion-deuteron scattering. Since in the latter case
diffractive events are highly, .concentrated in the
very-low-t region, multiple scattering is neglig-
ible. Thus, it is sufficient to multiply our results
on hydrogen by the deuteron form factor and a
relative normalization constant. We used"

responding to a radius of approximately 2.7 fm.
However, we found our results insensitive to the
precise value of b.

In the predicted spectra presented in Figs. 9-11,
b =31 GeV ' was selected. The agreement of the
five-pion mass spectrum with data' is excellent;
even structure details usually associated with dy-
namical effects are very satisfactorily explained.
A prominent shoulder on the low-mass side is
seen to be at least partly explained by our statis-
tical picture, the result of competition among
classes of diagrams peaking at somewhat differ-
ent masses. The few unexplained events above
3 GeV may be due to some coherence setting up
among the different partial waves and leading
to Regge behavior. '

Integrated cross sections relative to the three-
pion production cross section are displayed in Ta-
ble II. It is obvious that the actual slope of the
deuteron form factor is of little importance re-
garding the difficulty of measuring high-multipli-
city events. Indeed, in this energy range (P„b= 15
GeV/c), relative to the number of five-pion events,

&~ 24
X
O20

6 16
Z
LLJ

m 12

0
8

LLJ

1 ~ 2

v)o 10
Z

hl 0.8
JJJ X

K0 o0.6
K
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6) a. 0.4

L-

Z,

0 2

n
1.0

I 1i i I

2.0 3.0 4.0
M(5 n. ) (GeV)

2.0
I I I

3.0 . 4.0 5.0
M (9 n ) (Gev)

FIG. 9. Five-pion mass distribution in pion-deuteron
scattering (P„„=15GeV/c). Data from Ref. 1.

FIG. 11. Nine-pion mass distribution in pion-deuteron
scattering (PJ,b=15 GeV/c).
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TABLE II. Multipion branching ratios in pion-deuteron scattering at J'h, &
=15 GeV/c. Normalization to hydrogen is

provided by Eq. (22) with {0~D/0„&) =3.6. b is in GeV

Full calculation
Nonlinear

b = 31 b =33.67
Linear

b =31 b =33.67

Vertices: &/I
Initial condition: ~/R

Linear
b = 31 b = 33.67

Vertices: x/E
Initial condition: x/o

vP -3s, s/g-ss
Linear

b =31 b =33.67

a (3x)/a (5m)

0(3x) /0 (7n)
o (3v) /o (9w)

17.19
1121
2.82 x 105

18.12
1320
3 87x10

16.94
1089
2 70x10

17.87
1284
3.78 x10

26.71
3056
1.10x10'

27.97
3532
1.45 x10~

46.38
. 5793
2.].1x 10

48.87
6716
2.79 x 10

only 1.6% yield seven pions. However, we have
calculated that 21% of the absolute number of five-
pion events obtained at P„„=15GeV/c is reached
in the seven-pion channel if P„b= 50 GeV/c is used
(28% at P„„=100GeV/c).

The only available piece of data is the relative
three-to-five-pion cross section. Lubatti and his
collaborators' measured a ratio of 17.4+ 3.5 in
excellent agreement with our predictions for all
versions of the full calculation. This is suggestive
of some sort of precocious statistical behavior due

to the rapid approach to the asymptotic density of
states, certainly the best applicability criterion
for our statistical model.

Finally, while the three-pion enhancement is
basically easily identifiable two-body states
(pw, fs, gw), we found the five-pion one to be the

sum of many diagrams of different numbers of
steps in the decay cascade with no dominating sing-
le contribution. This is also in agreement with ex-
periment. ' In this regard, seven-pion measure-
ments will be very interesting since, if this be-
havior persists, the statistical bootstrap model
will provide a very reliable tool to predict the
characteristics of high-multiplicity diffractive
dissociation.
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