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A careful analysis is presented of the most recent data for R(e*e~ — hadrons) using improved theoretical
techniques. The analysis is based on a generalized method for smoothing R. We show why the hadronic cross
section is potentially one of the best tests of quantum chromodynamics. The theoretical complications such as
unknown parameters and nonperturbative corrections are discussed, and resulting theoretical uncertainties are
estimated. Some previously neglected QED corrections are accounted for. We find that for 1/§ near 7 GeV, the data
lie about 15-17 % above the theory; the experimental uncertainty is £+ 10% (dominated by systematics). For 1/§
near 5 GeV, the difference is only 5-8 %. This apparent discrepancy may well be due to systematic problems in the
experiment. For completeness we consider the possibility that there is a threshold for new particles at /5 ~ 6 GeV.
We consider new quarks, Higgs bosons, color-sextet quarks, integrally charged and even fractionally charged
leptons. While most of these hypotheses are not particularly attractive, some cannot be ruled out.

I. INTRODUCTION

The problem of finding convincing tests of quan-
tum chromodynamics® (QCD) has proven to be
difficult. However, as a result of the efforts to
find such tests, many of the theoretical issues
involved in comparing QCD with experiment are
now better understood. The role of nonleading
perturbative corrections, in particular, has re-
ceived much attention recently.?~* It has become
clear that order-a,? contributions must be com-
puted if the theory is to be meaningfully tested
and if the parameters of QCD are to be reliably
determined.?"® It also appears that nonperturba-
tive effects proportional to inverse powers of ¢?
can complicate the analysis unless |¢?| is quite
large.®

In this paper, we will study the problem of test-
ing QCD in the context of e* e~ annihilation. In
particular, we will consider the ratio

o(e’e” ~ hadrons)
oglete™ = utp)

R (1.1)
The second-order QCD corrections to R have re-
cently been computed,* and for center-of-mass
energies Vs 2 3 GeV, these corrections are quite
small. This fact suggests that the predictions of
QCD perturbation theory should be quite reliable.
In addition, a thorough experimental analysis”
has recently been completed of data’ taken by the
Stanford Linear Accelerator Center (SLAC)-
Lawrence Berkeley Laboratory (LBL) collabora-
tion with the Mark I detector at SPEAR (the “low-
energy” e'e” storage ring at SLAC). New data
are also being reported at higher energies at
PETRA [the high-energy e*e™ storage ring at the
Deutsches Elektronen Synchrotron (DESY)].® Here
we will make a careful comparison of theory and
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experiment.

QCD is able to explain the successes of the
parton model within a theory of strong inter-
actions. At short distances, corrections to the
quark-parton model can be computed systematical-
ly in powers of a small, running coupling constant
a,(Q%) [where o (@%)~ In(Q%/A?)™}, and A is the
scale parameter of QCD]. These QCD corrections
lead to scaling violations in many processes. A
great deal of experimental and theoretical effort
has been devoted to searching for such scaling
violations. It is possible to study logarithmic
scaling violations using leading-order QCD calcu-
lations. However, in order to reliably determine
specific numbers such as ¢, or cross sections,
it is essential that the corrections beyond leading
order in o, be calculated.

We believe that e*e™ annihilation is a particularly
good context in which to examine QCD. The theo-
retical analysis of R in ¢*e” annihilation is con-
ceptually extremely simple. At high energies and
away from heavy-quark thresholds there is only
one relevant scale, the center-of-mass energy
Vs. Unlike processes such as deep-inelastic
scattering, where one needs to compile data over
a range of @2 and x in order to observe a logarith-
mic deviation from scaling, one can consider a
single number, the cross section at a fixed ener-
gy. Since this energy can be chosen to be quite
large, one can hope to minimize nonperturbative
effects, such as higher-twist terms, which plague
analyses of deep-inelastic scattering. While at
high energies the prediction for R is quite insensi-
tive to the value of A, there is a measurable dif-
ference (of order 10%) between the prediction of
QCD and of the quark-parton model. Thus e*e”
annihilation can be an outstanding test of QCD,
though it is not likely to yield an accurate value
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for A.

In our comparison of theory and experiment we
will consider a large number of possible cor-
rections and uncertainties. For example, there
are effects associated with quark masses, un-
certainties about the application of QCD in the
timelike region, and QED corrections. We will
see that, after taking account of these effects,
there is reasonable agreement between theory
and experiment up to energies of 5.5 GeV. Above
5.5 GeV, a potentially serious discrepancy exists
(about 15~17%). The theoretical prediction lies
at the edge of the quoted systematic uncertain-
ties (10%).” This potential discrepancy may well
be due to real systematic problems in the experi-
ment. It may, however, represent the presence
of new phenomena in this energy range, or diffi-
culties with QCD. We will consider these possi-
bilities in the final sections of this paper.

The plan of this paper is as follows. In Sec. II,
we briefly review the theoretical analysis of R
in QCD. The perturbative results are sum-
marized, and a variety of theoretical issues are
considered. The problems associated with new-
quark thresholds and the inclusion of quark masses
are described. We address as well the general
problem of applying QCD in the timelike region.
We describe our procedure for smoothing out the
local fluctuations in R due to resonances and
other, fundamentally nonperturbative, physics.

In Sec. III we consider certain QED corrections,
pointed out by Yndurain,® which have been neglected
in experimental analyses up to now. Inclusion of
these corrections tends to improve agreement be-
tween theory and experiment. However, these cor-
rections also enter the determination of the lumi-
nosity. We estimate this effect, and find that it
largely cancels the effect pointed out by Yndurain
for present experiments.

In Sec. IV, we confront theory with data, with
and without smoothing, and remark on the nature
and magnitude of possible discrepancies.

Section V of this paper is devoted to the pos-
sibility that the apparent discrepancy between
theory and experiment is due not to systematic
error but to thresholds for new phenomena. In-
clusion of an additional charge + quark is shown
to give dramatic agreement with the data, but
it is difficult to explain, in a conventional frame-
work, why there are no corresponding narrow
resonances. A new heavy lepton would give good
agreement with the Mark I data for R, but other
types of data may contradict such a hypothesis.
The possibility that one or more scalar-meson
thresholds have been passed is shown to give
marginal agreement with the data. Finally, we
engage in some more exotic speculations.

In Sec. VI we conclude with a discussion of some
of the uncertainties which can affect the com-
parison of theory and data.

II. e*e ANNIHILATION IN QCD
A. The theory of R

In the parton model, R simply measures the
sum of the squares of the quark charges. In QCD,
this value is approached asymptotically with in-
¢éreasing energy.’® For massless quarks, R is.
infrared-finite order by order in perturbation
theory. It is thus a function only of s and the re-
normalization scale . We can choose U =s; then
R takes the form

2
R= Z Qi2[1+ a_s(s__)+cz<gﬂ> e ] . (2.1)
7 s m
Here o,(s) is the running coupling constant, and
the sum runs over color and flavor. The coef-
ficient C, has recently been calculated.® This
constant cannot be specified without also specify-
ing a renormalization procedure. The modified
minimal-subtraction (MS) scheme of Bardeen

et al.? has been shown to yield small values for
higher-order corrections for both ¢*e” annihila-
tion and deep-inelastic scattering. In this scheme,

C,=1.98 —0.115n;, 2.2)

where 7, is the number of quark flavors. In de-
termining R to second order, one must also in-
clude the second-order corrections to the running
coupling constant which appears in Eq. (2.1). De-
fining
47
0(_ 2y =

as( q ) Bo h'l(— qz/AFSZ) H
where Ayg is a scale parameter to be determined
from experiment and

(2.3)

Bo=11-4%n;, (2.4)

we use the Gell-Mann~Low equation’! to write

0y(=4%) = 22(~4?) [1 B 4o mn(- WAZ)]

4n8,
+0([a(-a)]?). 2.5)
For SU@B),2
B,=102 - &y, . (2.6)

Fits to deep-inelastic scattering data give Agg
~ 0.3 GeV (within about 0.2 GeV).*®

The calculation of R in e’e” annihilation treats .
the final state as if it consisted of free quarks
and gluons. The effects which bind quarks into
the observed hadrons are not directly taken into
account. There are a number of arguments which
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make it seem reasonable to assume that these
nonperturbative, confining effects are soft, and
generate corrections to R which decrease rapidly
with s.

One can be more rigorous and use dispersion
theory to relate R(s) to the vacuum-polarization
amplitude evaluated at spacelike (¢%><0) momen-
ta., 14

,,(%) = (g°guv — 2, 0 (¢7) - (2.7

This amplitude is related to the Fourier transform
of the vacuum expectation value of the product
of electromagnetic currents by

1= [ aw SOITW WIONO . (2.8)

For ¢® large and negative, the right-hand side of
this equation may be evaluated using Wilson’s
operator product expansion.’® The usual perturba-
tive analysis corresponds to evaluating the coef-
ficient function for the leading-twist operator.
The renormalization-group analysis for this term
is given in the Appendix. Terms involving op-
erators of higher dimension (higher twist) will fall
off as powers of s relative to the perturbative
contribution.” One can try to estimate the con-
tributions of nonleading-twist operators by study-
ing data at low s (Vs ~ 1 GeV). Shifman ef al.,'®
for example, have attempted such an estimate.
These contributions to R fall off as 1/s? for large
s, and can be ignored in the energy region con-
sidered in this paper.

In the case of massive quarks, one must exer-
cise caution in applying the results of perturba-
tion theory. The problem is most simply dis-
cussed in the timelike region. The diagram of
Fig. 1 contains, near threshold, a velocity singu-
larity characteristic of the Coulomb force. It
diverges near threshold as v~! where

2\ 1/2
v= (%) . (2.9)
These divergences become more severe in higher
orders in perturbation theory. If the final-state
particles were electrons, these diagrams would
just sum to give the Balmer series for positron-
ium, below threshold. Above threshold, they

3 Q
FIG. 1. Feynman diagram for heavy-quark production
which diverges as 1/p near threshold. Wavy lines rep-
resent photons; spiral lines represent gluons.

would give a Coulomb phase shift. In QCD, the
bound-state problem is inherently more complex,
even within perturbation theory. In particular,
new contributions to the long-range part of the
force appear in every order, in contrast to QED,
where only the lowest-order Coulomb force ex-
ists. These contributions will presumably be
characterized by a coupling constant renormalized
not at s but at the much smaller scales typical

of bound-state momentum transfers. Thus per-
turbation theory is unreliable near quark thres-
holds.

For energies well above threshold, mass cor-
rections will fall as powers of mg2/s. One can
adopt a semiempirical approach to determine
whether perturbation theory should be reliable.
We expect that R will approach the perturbation
theory results once the important bound-state
channels have opened up and one is well into the
continuum. Even well above threshold there are
significant effects due to finite quark masses,
which must be included in comparing theory and
experiment. To deal with these contributions,
we have used an “on-shell” definition of the quark
mass. In first order in ¢, all the necessary
information can be extracted from QED results
(by including factors arising from color) and the
first-order calculation of the 8 function. To order
a,®, the necessary calculations are not available,
but since the mass effects are already small at
order ag, they should be negligible at order o,2.

For R we can write, using an interpolation
formula due to Schwinger,*’

R=4 3 00 =000 [1+4a, 6000 + S 0,20)]

(2.10)
where
_ 2 1/2
vi:<__s :’”) @.11)
and
om 3+vfm 3
=3 -5 - ) (2.12)

Here the sum runs over all quark flavors (and
colors) with thresholds below s. The zeroth-
order term is the familiar parton model result.
The 1/v term in f represents the Coulomb singu-
larity described earlier. As remarked previously,
as we approach thresholds, perturbation theory
breaks down in two ways. First, additional singu-
lar terms (higher powers of 1/v) appear in every
order of perturbation theory; second, near
threshold, the appropriate expansion parameter
is a,(p), where p=m,v. Thus one can trust this
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expression for R only well away from thresholds
or in appropriately smeared quantities (see Sec.
II B). Mass-dependent terms also appear in the
running coupling constant. The following expres-
sion provides a reasonable approximation even
below threshold:

a(s)= (2.13)
331n—-221 Z:f;’:n )

In all of our work, we will treat the u, d, and s
quarks as massless. The mass-dependent terms
will be kept only for the charm and heavier quarks.

B. The theory of smearing R

To apply the QCD calculation of R(s) to the ex-
perimentally measured R(s), we shall employ
smearing techniques. These smearing techniques
follow from the “optical theorem” which relates
a suitably normalized vacuum polarization ampli-
tude to R,

R(s)=ImIl(s). 2.14)

This equation follows from Eq. (2.8) upon in-
serting a complete set of intermediate states be-
tween J* (x) and J”(0). This procedure also es-
tablishes I1 (s) as an analytic function of s with
singularities only along the positive, real s axis.

The vacuum-polarization amplitude is a function
which is calculable in QCD. As discussed above,
for values of s far from heavy-quark thresholds,
and for |s|/A%>1, a perturbative evaluation of
I (s) should be valid. However, in the resonance
regions the perturbative evaluation is not directly
applicable and must be modified.

Among such modifications are dispersion-theory
techniques'® which relate R to the vacuum-polari-
zation tensor for spacelike s (s<0). These tech-
niques, however, are sensitive to data in the low-
energy resonance region and in varying degrees
to the unmeasured high-energy data. The inter-
pretation of phenomena at a given energy is also
obscure, since the dispersion relations involve
relating I1(s), for spacelike s, toIl integrated
over all timelike s (s >0).

An alternative modification to the perturbative
analysis was proposed by Poggio, Quinn, and
Weinberg.'® They suggested using a variant of
R which can be reliably calculated in perturbation
theory. This variant R is just a smoothed version
of R. The data (and theory) for R(s) are convoluted
with a function W (s, s’, A) which produces a weighted
average of the data in the interval (s =A) s s’
< (s+A). A is chosen so as to smooth out the re-
sonant structure.

In our analysis, we will use a slightly more
general version of the smearing method intro-

ANNIHILATION 597

Ims

= - Re s

FIG. 2. Integration contour C for Eq. (2.19).

duced by Poggio, Quinn, and Weinberg. We de-

fine the smeared R as

R(s)= f ds'W(s,s’, A)R(s"). (2.15)
am 2
An example of W is
W(s,s’,A)=exp[-23(s =s')?/a%. (2.16)

The smearing function W used by Poggio, Quinn,
and Weinberg was

W(s,s',A)x (2.17)

We shall now show that if W is an analytic func-
tion of s and s’ with no singularity within a dis-
tance A of the positive real axis, then R may be
evaluated in perturbation theory. [The parameter
appropriate for this expansion is a,(A)]. To see
this we use the “optical theorem” of Eq. (2.14)
to derive a contour-integral representation for
R. Using Egs. (2.14) and (2.15) we have

R(s)= f ds'W (s, s’, A) ImI(s") (2.18)
am 2
which can also be written as
= ds’ , ,
R(s)= fcz—i“’“»s ,AMI(s) . (2.19)

The contour C is shown in Fig. 2.
To show that R may be evaluated perturbatively,

" we deform the contour of Eq. (2.19) to the con-

tour C’ shown in Fig. 3. For values of s’ along

the contour C’, we may expand Il in perturbation
theory. For values of s far from quark thresholds,
and for |s|/A%2>1, the expansion parameter is

[ A
-4 e

AR SSS Res
4m2
t Al T,

FIG. 3. Integration contour C’ for R(s). A is chosen
sufficiently large that II(s) may be evaluated along C’
using perturbation theory.
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et q
e->ﬂ/\l\®/\/\/\< a
FIG. 4. Vacuum-polarization insertion to the virtual-
photon line.

a,(|s|/A?). Near a heavy-quark production thres-
hold, however, the expansion parameter is
as(a/A?). Although unsmeared perturbation theory
would break down, the smearing procedure re-
moves singularities from the perturbation ex-
pansion (for A/A? sufficiently large), and there-
fore R may be evaluated in perturbation theory.
These singularities would reappear as A— 0, and
perturbation theory would again break down. (For
s near zero, thatis, in the resonance region for
low-mass quarks, these same arguments hold.)

III. QED CORRECTIONS

Theoretical expressions for R are generally
obtained in the one-photon approximation. How-
ever, certain QED corrections which are nomi-
nally higher order in o (the fine-structure con-
stant) can be comparable to QCD corrections at
high energies and must be carefully taken into
account. Bremsstrahlung from the electron or
positron line, as well as contamination from the
two-photon processes, are accounted for in the
experimental analyses. Other QED corrections
are also substantial at SPEAR energies. In par-
ticular, diagrams with a vacuum-polarization in-
sertion on the photon line (Fig. 4) can be quite
large.® As an example, consider the diagram
with an electron loop shown in Fig. 5. This dia-
gram contains a term (a/37) In(s/m,?). For
Vs =3 GeV, the logarithmis 17.4. Thus, when
this amplitude interferes with the Born term
(Fig. 6), it gives a 3% contribution to the cross
section.

For the p-pair and hadron production cross
sections, these corrections correspond to replac-
ing a by «a(s), the running coupling constant of
QED, in computing the Born term. Thus if one
compared the measured hadronic cross section

ef

e 3
FIG. 5. Electron-loop contribution to vacuum polari-
zation.

e*>“ﬂl\/< q

e ]
FIG. 6. Born contribution to the annihilation cross
section.

with the measured u-pair cross section, such ef-
fects would cancel out. It is important to note,
however, that the quoted value for R is a corrected
hadronic cross section divided by the theoretical
point cross section for pu* U~ production. For the
analysis at Mark I, only loops of electrons were
included in the corrections. As Yndurain has
pointed out,® however, the other contributions to
vacuum polarization give a thiree to four percent
contribution at these energies. Since QCD cor-
rections to the parton model relations are only of
order 10%, it is important to include these ef-
fects.

However, such corrections also play a role in
the determination of the luminosity of the storage -
ring. The luminosity is determined by measuring
the Bhabha cross section (Fig. 7). At SPEAR (as
in many experiments), these measurements are
made at wide angles”; they thus involve large mo-
mentum transfers. For these momentum trans-
fers, the vacuum-polarization corrections are
again large. The luminosity is determined by com-
paring the measured Bhabha rate with a theo-
retical expression for the cross section. Once
more, this theoretical expression includes only
the Born term plus electron-loop corrections to
the virtual-photon line. As discussed below, the
inclusion of the contributions of other particles
to the vacuum polarization largely cancels out the
effect noted by Yndurain.

Most of the ingredients necessary for the analy-
sis have been presented® by Berends and Komen
and by Yndurain, and we review these briefly
here. The real part of the vacuum-polarization
tensor is easily computed for leptons. The con-
tribution of each is given by the formula

Rell(s) = —%QZV(S), (3.1)

e-O e+ e'f e+
>/\I\®I\J\l‘< + E
e” e” e” e
FIG. 7. Diagrams contributing to the Bhabha cross
section involving vacuum-polarization loops.
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where

V(s)=§+ 4?2 +2(1 - 4—"‘—2) <1+ 2—3"ﬁ>k(s),

S

(3.2)

@ and m are the charge and mass of the lepton,
respectively,

1-v

_1 2
X(S)ﬂZz) In 1+v |’ s> 4m
= -ltam"(l , 0ss<4m?, (3.3)
v v
and
- 21\ 172
v=( s s""" ) . _ (3.4)

The hadronic contribution to Il can be obtained
from experimental data using the dispersion re-
lation

s ©  o(s’ .
Relly(s) = 4n%q j; 2 -s,—(:)s—ds’ : (3.5)
m o

The integral on the right-hand side has been esti-
mated by Berends and Komen and by Yndurain
for several values of s, and they obtain similar
results.

For our analysis of the hadronic contribution,
we use the naive QCD expression

Rell,(s)
=_!;I_1r Z Q:%V(s) [1+ gi(sw/—AZ)— lnln(%)] ’

1

(3.6)
and determined the m; for light quarks by fitting
to results given by Berends and Komen. The sum
here is over quark flavors (and colors). Taking

my,=my=0.1 GeV,
my=0.4 GeV,
m,=1.25 GeV,
my=4.7 GeV,

(3.7

we obtained agreement to a few percent over the
energy range of interest. The resulting uncer-
tainty in the cross section is less than 0.05%.

The corresponding corrections to the Bhabha
cross section are computed from the diagrams
of Fig. 7, in terms of Rell (s). Denoting the change
in the differential cross section by 8(do/dS2), we
have

5% =_ s%;.{(z -2y +3?) Rell(t)
-1 - p)*[Rell(t)+ Rell(s)]
+92(1 = 2 + 22) Rell(s)} . (3.8)

Here ¢ =sin?(6/2), z=-sy, and 4 is the angle
relative to the beam direction.

To correct the Mark I data, we integrated this
expression over the angular range used in the
luminosity determination for various values of s.
Again, we included the effects of muons, 7 lep-
tons, and hadrons, all of which had been neglected
in the experimental analysis.

The effect of including these corrections is
largely to cancel out the correction to the hadronic
cross section. The remaining correction is never
more than half a percent over the energy range
of interest. This result is easily understood. The
vacuum-polarization corrections may be thought
of as building up the running coupling constant of
QED. Including them in the hadronic cross sec-
tion is equivalent to replacing o by a(s) in the
Born term. Similarly, in the Bhabha cross sec-
tion, « is replaced by a(s) in the s-channel dia-
gram, and by a(t) in the ¢-channel diagram. Since
the Bhabha measurement is performed at large
angles, s is of the same order as t. Then a(s)
~ a(|t]), tologarithmic accuracy. For complete-
ness, these corrections have been retained in all
the curves shown in this paper.

IV. COMPARISON OF THEORY AND DATA
A. Data

We consider here the most recent compilation
of data” for R taken with the Mark I detector by
the SLAC-LBL collaborations. Because there
may be 10-15% overall normalization differences
between the R data sets of different experiments,
we have restricted our analysis to the SLAC-LBL
(Mark I) data. This data set (unlike all others)
includes significant coverage of the region be-
tween Vs =5 and 8 GeV, which is of particular
interest to us. For comparison purposes, we
will display the world’s data on one plot.

We have used a fine grid of 147 data points from
Vs =2.6 to 7.8 GeV, with the highest density of
points in the resonance region (s =3.7to4.5
GeV). The J/¢ and ¥’ are included (as they must
be for the integrals described below). For
graphical purposes, we use larger bins in order
to reduce the number of data points. The error
bars shown are for statistical errors only. There
is a 10% systematic uncertainty in the overall
normalization. There may be a point-to-point
systematic error of about 3% for every 0.5 GeV
interval.

The contribution to R of the 7 lepton has been
subtracted from the SLAC-LBL data. The data
are also corrected for the two-photon component
of the cross section; this is a small correction
(~2%) because of experimental cuts. The QED
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radiative corrections from bremsstrahlung have
been accounted for.

One must be sure that one is comparing the
identical quantities for theory and experiment.
There has been confusion in the past for several
reasons. First, the muon cross section used in
obtaining the value of R quoted by experimenta-
lists is the theoretical, point cross section
g(e*e”= L' u~). Second, in the numerator
[o(e*e~ = hadrons)], the electron vacuum-po-
larization term (see Fig. 5) has been subtracted,
but the muon, 7, and hadronic contributions have
not been subtracted.® As discussed in Sec. III,
these corrections can be numerically significant
at SPEAR energies. Third, the numerator is
normalized to the measured Bhabha (e*e™~e*e™)
cross section at large angles; in this normaliza-
tion the theoretical Bhabha cross section is taken
to be the point cross section, again with correc-
tions only for electron vacuum polarization. It
follows that the quoted R is given by

_ (o=t ),

R (4.1)
e o0 ’
where
B 82+0¢
K ETIE G OO )
opeasured _g¢ =g%+gl +07 +0%, (4.3)
pmeasured _ §¢ = 50+ 5¥ + 57 + 62 , (4.4)

0} and o}, refer to the total cross sections into
hadrons and into muons. 0} refers to the Bhabha
cross section into the solid angle covered by a
given detector. The superscript 0 ono and 0 re-
fers to the point cross sections while the super-
scripts e, K, 7, and ¢ refer to the interference
terms involving e, K, 7, and quarks in vacuum-
polarization loops (as in Fig. 5). ojmeasured gnd
gpeasured are the measured cross sections with
bremsstrahlung radiative corrections included.

B. Theory

The theoretical curves used in comparisons
with data resulted from QCD calculations of R
with o, and o,® terms included. For a given value
of A, the magnitude of the a,® term depends on
the renormalization scheme and on the definition
of the correction term in q itself. We have used
the MS renormalization scheme of Bardeen et al.,?
and

0,(@") = a%(@") - [22@)* L2 Inln(@%/A".
(4.5)

In general the o, term in R is only about 1% of
the total, as expected.

22

The value of m, used was obtained in the smooth-
ing procedure (described below) and reflects the
inclusion of J/¥ and y’. The results are not very
sensitive to the value chosen for A; for compari-
son we will plot curves for A =200, 450, and 700
MeV. We have not included the contributions of
the weak interactions, since they are negligible
in the region of interest. For Vs <30 GeV, they
contribute less than 0.01 units of R, while at
Vs =40 GeV they add 0.08 units of R.

Since the QED radiative corrections for vac-
uum-polarization loops with muons, 7’s, and
hadrons have not been subtracted from the SLAC-
LBL (Mark I) data, we have added them to the
theoretical calculations. These corrections enter
in two places: in the hadron'cross section and in
the Bhabha cross section which is used to norma-
lize the hadron cross section [see Egs. (4.1) and
(4.2)]. The corrections to each of the two cross
sections are about 3% separately, but they tend
to cancel, resulting in corrections of about 0.5%.

C. Comparison of raw theory and data

In Figs. 8 and 9, the data and theory are shown.
Figure 9 shows all data available as of August
1979 except in the Vs =3.7-4.7 GeV (resonance)
region. Our attention will focus on Fig. 8 showing
the SLAC-LBL (Mark I) data. Of particular in-
terest to us is the region from Vs =5 to 8 GeV
which is far from both the ¢ and b quark thres-
holds. Theory and data appear to be in reasonably
good agreement around Vs =5 GeV, but the QCD
curves fall consistently below the data for Vs
=5.5 GeV. The significance of this discrepancy
will be analyzed following the discussion of the

6_Hlululllku|||‘H|l]ll||1|||1
by
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FIG. 8. Data for R from the SLAC-LBL collaboration
(Ref. 7). In our work we used smaller bins in the reso-
nance region. The contribution of the 7 has been sub-
tracted, and radiative corrections have been applied.
Only statistical errors are shown. The locations of J/¥
and ¥’ have been indicated, since they are included in
determining the charm threshold. The curve is the QCD
prediction for R with A=0.45 GeV (see discussion of
QED corrections in text).
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FIG. 9. All data (Refs. 7 and 8) for R above the charm
resonance region are shown. The contribution of T has
been subtracted, and radiative corrections have been
applied. Error bars are statistical only and neglect 10—
15 % systematic uncertainties. Data around Vs=30 GeV
are placed together in large bins as are all Mark I data.
The resonance region is drawn crudely, and some data
~ below that region are also shown. The location of J/v,

P’, T, and T’ are also shown, since they determine ¢
and b thresholds. The QCD calculations for R for sev-
eral values of A are given. A =0 indicates the results
of the quark-parton model (& =0).

smearing procedure. It can be seen that the re-
sults are relatively insensitive to A for larger
values of Vs.

D. Smeared theory and data

The theory behind the smearing procedure has
been discussed in Sec. II B. We have compared
the results of several different weighting func-
tions. In each case the theory and the data are
. smeared with the same weighting function. Two
of these functions are (with s=4E?)

W= [(si —s;)?+a%™? (4.6)
(of Ref. 18) and
W;;=exp[-4(s —s')/a%], (4.7)

where the smeared R=R is

_ Z} R(sj)Wij['%(snl—si-l)] 4.8)
R(si)= E Wild(sia=si2)] .

For both theory and data, the s; are chosen only
where data exist (except for Vs <2.5 GeV and

Vs >7.9 GeV). Since the smearing procedure re-
quires integrating (summing) over all s, we as-
sign the value R =2.5z 2.5 for points with Vs
<2.5 GeV and R=4.31+4.3 for Vs >7.9 GeV; since
these error bars are clearly exaggerated, the
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FIG. 10. A comparison of the results of smearing
theoretical and experimental values of R using two dif-
ferent weighting functions. In both cases A=5 GeV? and
A =0.45 GeV (for the QCD curves). The SLAC-LBL
(Mark I) data are from Ref. 7. In the resonance region
the data bins are too close together to show individually,
so we have shaded them instead. (a) Uses the Gaussian
weighting function Eq. (4.6). (b) Uses the power-law
weighting function Eq. (4.5) of Poggio, Quinn, and Wein-
berg (Ref. 18).

resulting error bars on the smoothed data are
also exaggerated. For the bin including the J/3
(and similarly for the y’, T, and T') we have as-
signed a value to R such that the integral over
the bin gives the experimentally determined in-
tegrated contribution’® to R (plus background).

In particular

~ Toe I'naa
Ries AE __I‘.u +background

- S haa 2

YN AR background, (4.9)

where Z, 4 is the integrated cross section to
hadrons. )

The results from smearing with the two weight-
ing functions are shown in Fig. 10. The error
bars (which are obtained by the standard pro-
cedure for statistical errors) vary according to
function, but the relative shapes of smoothed
theory and smoothed data are not significantly
different for different weighting functions.

Here we concentrate on results obtained with
the Gaussian weighting function [Eq. (4.7)]. The
results of smearing with this function for dif-
ferent values of A are shown in Fig. 11. Itis
evident that below Vs =5.5 GeV and above the
charm threshold region, there is good agreement
between the predictions of QCD and the SLAC-LBL
(Mark I) data. There is only a small (5-8%) dis-
crepancy in the relative normalizations. However,
between Vs =5.5 and 7.8 GeV, there is a signifi-
cant difference between the predictions of QCD
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FIG. 11. The results of smearing the theoretical and
experimental values of R with the Gaussian weighting
function of Eq. (4.7) with A=5 GeVZ, The SLAC-LBL
(Mark I) data used are from Ref. 7. In the resonance
region the data bins are too close together to show in-
dividually, so we have shaded them instead. The error
bars shown are statistical only. The curves are QCD
for several values of A. A =0 indicates the quark-parton
model (o= 0).

(with u, d, s, ¢, and b quarks) and the data. This
difference is about 15~17% and is far greater than
allowed by statistics, but is at the edge of the
limits set by systematic errors (which are
£10%).%° The rise of the data between Vs = 5.5

and 6.5 GeV is also at the limit of the estimated
energy-dependent systematic errors.?® If future
experiments are able to decrease the systematic
errors, then this discrepancy would become a
significant problem.

V. EFFECTS OF ADDITIONAL THRESHOLDS

Examination of Fig. 11 reveals a potential dis-
crepancy between theory and experiment. We
feel that the magnitude of this discrepancy is not
large enough to demand consideration of additional
thresholds. It is interesting nonetheless to note
the impact of various hypothetical particle thres-
holds on the theoretical predictions, since it is
possible that future experiments might give
credence to the discrepancy. It is conceivable
that there are new particles of mass 2-3 GeV
which have been overlooked.

The effect of a quark of charge —% and mass
3 GeV (compared with m,=1.38 GeV) is shown in
Fig. 12. The resulting theoretical curve appears
to be in excellent agreement with the data except
for a slight (6-7%) overall normalization dif-
ference. To eliminate the question of normaliza-
tion, we can consider the slope of R as in Fig. 13.

Given our knowledge about ¥ and T, it is easy
to estimate the magnitude of I',, for the ¢g re-
sonance expected for such a new quark (I,,= 1
keV). However, the Mark I detector has scanned
very carefully through the region Vs =4.5-17.5
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FIG. 12. The results of smearing the theoretical and
experimental values of R as in Fig. 11. The theory curve
represents QCD when a hypothetical charge —% quark of
mass 3 GeV is included (A =0.45 GeV).

GeV and such resonances have apparently been
ruled out, I',, = 0.15 keV at the 90% confidence
level.?* If this resonance, unlike  and T, is very
wide (2100 MeV) then it might well have been
missed. Such a width would require an entirely
different decay mechanism than that which op-
erates in the  and T systems. Note that results
from high-energy machines (Vs >10 GeV) cannot
easily rule out this hypothesis; because of syste-
matic errors in normalization, it would be neces-
sary to go down to Vs = 5.5 GeV and observe the
threshold region for such a quark. Soitis im-
proved experiments at SPEAR energies which are
needed.

Since the primary problem with proposing a new
quark is that the associated resonances have not
been observed, one should consider the possibility
of a new lepton of mass 2.9 GeV. As seen in Fig.
14, even the full contribution of an integrally
charged lepton is allowed by the Mark I data. An
additional full unit of R would appear to be ruled

SLOPE OF R
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FIG. 13. The slopes (dR/dVs) of the A=0.45 GeV
curves for R in Figs. 11 and 12. The data are repre-
sented by the dotted curve (Where error bars have been
omitted for clarity). The QCD curves are shown with
and without the hypothetical charge —§ quark of mass 3
GeV.
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FIG. 14. A comparison of theoretical and experimental
values of R as in Fig. 8. The theoretical curve repre-
sents QCD when the full contribution of a hypothetical
lepton of integer charge and mass 2.85 GeV is included
(A=0.45 GeV). It is not necessary to smooth R at high
energies since the lepton does not have QCD corrections;
the smoothed R plot closely resembles this plot for Vs
>5 GeV.

out at Vs = 30 GeV by data from PETRA (Ref. 8)
(see Fig. 9), but one should remember that the
experimental cuts used in determining R at PETRA
are quite different than those used at SPEAR.
In particular, PETRA experiments typically re-
quire E ;4 = 0.50E,,,, compared with 20.20F 1y
at SPEAR. The two-prong signal used for identi-
fication of 7 is also relevant to identification of a
new heavy lepton. The Mark I data®? for two-
charged-prong events (with the 7 background sub-
tracted and prong=e, K, or hadron) can be inter-
preted as showing that the two-prong rate in-
creases after vs ~ 5.5, but this may not be signifi-
cant because of low efficiency. The two-prong
(e +X) data®® from the DELCO experiment at
SPEAR are between 20% and 50% higher than ex-
pected from 7 for Vs =6-8 GeV. On the other
hand the Mark J data (i +X) of Ref. 24 at Vs = 13
GeV and the Mark I data?? for U +e events at Vs
=6-8 GeV appear to allow a new contribution
which is no more than 30-40% of that due to the 7.
Another signal which might be relevant at PETRA
energies is that of events with one prong in one
hemisphere and three prongs in the other.

A conventional lepton which decayed into a mass-
less neutrino (plus anything) would contribute to
R at SPEAR but would not contribute to R at
PETRA because of the visible-energy cut. Because
of the presence of additional decay channels (Cs
and 77), the two-prong signal would occur ap-
proximately 50% as often as for 7. This appears
to be slightly more than allowed by the data of
Ref. 24, but this and the “one prong +three prongs”
mode should be subjected to further experimental
scrutiny. If the new heavy lepton decays instead
into a massive (~2 GeV) stable neutrino, then the

one-prong +three-prongs mode would decrease
and the two-prong mode would be similar to that
for 7. However, the two prongs would each have
very little energy (~2 GeV) and some experiments
might exclude such events. A lepton which decays
into massive, stable neutrinos would contribute

to R at SPEAR but not at PETRA. If the massive
neutrino were not stable, then conclusions depend
on the decay modes assumed. If the dominant
decay was to 7 (plus anything) then few two-prong,
or one-prong +three-prongs, events might appear.
However, there would probably be a significant
contribution to R at PETRA. Depending on visible-
energy cuts (and other cuts) there could be more
or less than half a unit of R (see Fig. 9). One
could also consider more exotic decay modes of
the charged and neutral leptons.

One might also speculate on the existence of
new spin-+ leptons of fractional charge (we use
the work “lepton” to indicate the absence of strong
interactions). A lepton of charge £ and mass 3
GeV, or a degenerate multiplet of charge —3}
leptons, would give almost the same excellent
fit as in Fig. 12. These new leptons must be
short-lived. Long-lived particles of charge <
would have been identified as fractionally charged
particles by the Mark I and other detectors. Long-
lived particles of charge —-+ would most likely
escape detection at all present detectors, and
therefore would not contribute to R. If, however,
leptons of charge £ or —+ decayed into a charge
-1 lepton (of mass 1-2 GeV?) plus integrally
charged particles, then the events would con-
tribute to R and the outgoing charge —+ lepton
would most likely escape detection. We conclude
from our discussions with experimentalists that
while it is dubious that any present accelerator
experiment would observe leptons of charge -4,
experiments such as FQS (at PEP), JADE (at
PETRA), and Crystal Ball (at SPEAR) should be
able to find such a particle within half a year (if
it exists). ‘

A necessary consequence of this proposal is
that at least one of the final products must be a
stable, fractionally charged particle which should
be found free in nature. One experiment has re-
ported observing fractionally charged particles
residing in matter,2® but nothing is known about
their masses or interactions.

Let us return to the possibility that the reson-
ances associated with a new quark are not ob-
served because they are quite wide. There are
a number of speculative mechanisms which might
broaden otherwise narrow resonances. One could,
for example, imagine that these new quarks are
subject to some new, very strong interactions.
One could also consider the possibility that these
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quarks transform according to some larger rep-
resentation of the color group than the three
(possibly with some new charge assignment). The
existence of such quarks has been suggested be-
fore in other contexts. In particular, the pos-
sibility that these quarks transform as sixes has
been considered by several authors.?® These
authors considered the possible weak interactions
of such particles, and explained why they might

have escaped detection in stable-particle searches.

While others have not considered color-sextet
quarks in our context, such quarks could be rele-
vant since a charge -3 color-sextet quark would
contribute £ units of R. This is near the upper
limit of what one could tolerate to explain the
data. However, the widths of the associated re-
sonances would be only about fifty times larger
than those of ordinary heavy quarks, which is not
broad enough to hide them from narrow-resonance
searches. One can consider other representation
and charge assignments, but these usually suffer
from similar problems and in any case are
aesthetically unpleasing.

Another possible explanation for the apparent
rise in R is that pairs of charged scalar (Higgs)
bosons?” are produced. This production would
contribute 4+ units of R far above threshold. How-
ever, near threshold, this contribution would rise
quite slowly with s compared with quark pro-
duction. e*e” annihilation occurs through a spin-1
channel and, as a result, scalars must emerge
in a P wave. Fermions, on the other hand, may
be produced in an S wave. As a result, scalar
production near threshold is suppressed by a
factor of v? [v=velocity, Eq. (2.9)] relative to
quark production. While scalar bosons might
account for the magnitude of the discrepancy in
R, they cannot explain the apparent threshold
visible in Fig. 11 near Vs =5.5 GeV. Since one
scalar boson gives a very small contribution, we
have assumed in Fig. 15 that there are two scalar
bosons of mass=2 GeV. Such bosons would proba-
bly be difficult to observe.

Other possibilities are even more speculative.
One might imagine that the charm quark has some
structure on a scale of a few GeV, and that its
production should be described by a form factor.
This seems unlikely, since we have no evidence
that e, 1, and 7 leptons or #, d, and s quarks
possess structure at such scales. Nonetheless,
one can fit the data in this fashion. One could as-
sume that the form factor occurs because the
charm quark is composite with constituent masses
of order 3 GeV. There are at least three new
parameters (the scale of the form factor, the
mass of the constituents, and the magnitude of
their contribution) so it is very easy to obtain
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FIG. 15. The results of smearing the theoretical and
experimental values of R as in Fig. 11. The theory curve
represents QCD when two hypothetical charged Higgs .
bosons of mass 2 GeV are included (A =0.45 GeV).

excellent fits as in Fig. 16. Given the number of
parameters, however, the quality of the fit does
not provide motivation for this hypothesis.

As we have remarked before, the data do not
necessarily require hypotheses of the type we
have described, because of the large systematic
uncertainties. Moreover, none of the ideas we
have considered seem particularly attractive.
Nonetheless we feel it is worthwhile to keep in
mind that there remains the possibility that new
phenomena exist at what are now referred to as
“low energies.”

VI. CONCLUSIONS

In the previous sections, we have compared
theory and experiment in e*e™ annihilation. We

" have noted that there may be a discrepancy be-

tween the predictions of QCD and the values of R
determined by the SLAC-LBL collaboration. A
variety of explanations for this apparent dis-
crepancy have been considered. Unfortunately,
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FIG. 16. The results of smearing the theoretical and
experimental values of R as in Fig. 11. The theory curve
represents QCD when hypothetical form factor and con-
stituents are assigned to the charm quark (A =0.45 GeV).



none of the explanations which we have proposed

seem particularly appealing. As we conclude, it
is perhaps worthwhile to review the uncertainties
which enter into the theoretical determination of

R, and to present them in tabular form.

These uncertainties fall into three classes.
First, the numerical parameters which enter
into QCD calculations (coupling constant, masses)
are only approximately known. Second, the magni-
tude of higher-order, uncalculated QCD (and QED)
corrections are unknown. Finally, one must worry
about possible nonperturbative effects.

The numerical quantities which parametrize
QCD are the scale parameter A which charac-
terizes the running coupling constant o, and the
quark masses m,. Much effort has been devoted
to extracting A from deep-inelastic scattering
data. As in the case of e*e” annihilation, theo-
retical contributions through second order in o
must be kept, and (in comparisons) one must use
the same renormalization scheme as for e*" (here
the MS scheme of Bardeen et al.?). However,
there are uncertainties (beyond experimental
ones) in the value of A, since this value is depen- .
dent. on the method of extraction and on the pos-
sible presence of significant higher-twist cor-
rections.® As a result (if we are very conserva-
tive), A may not be known to better than +200
MeV (with A probably less than 400 MeV). This
uncertainty in A leads to an uncertainty in R of
about 2% for Vs =5-T7 GeV. Precision deep-in-
elastic scattering experiments now in progress
will decrease the uncertainty somewhat.

This uncertainty is quite small compared to the
systematic errors of typical experiments which
measure R (10-15%). Thus it is unlikely that even
greatly improved e*e” measurements will give a
better determination of A than that provided by
current deep-inelastic scattering experiments.
However, such experiments can hope to measure
deviations from scaling. The difference between
the parton model and QCD predictions are of order
10% in the energy range considered in this paper.

Uncertainties in the numerical values of quark
masses are important only for energies near
quark thresholds. For the energy region con-
sidered in our analysis, only uncertainties in the
charmed-quark mass are important. The mass
itself is quite accurately determined by matching
the energy of the theoretical rise in R due to
production of charmed quarks with the experimental
rise. In this paper we have used an on-shell defi-
nition of the quark mass. This mass was deter-
mined by matching the threshold behavior of the
theoretical and experimental curves for R(a, s).
The uncertainty in the value of the charmed-quark
mass obtained in this way was of order 5%. While
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the corresponding uncertainty in R may be as
large as 10% near threshold (Vs = 3 GeV) it is
less than 0.1% for Vs = 4.1 GeV.

The expectation for the theoretical value for R
is, of course, subject to uncertainties due to the
perturbative contributions of higher order which
have not been calculated. These can arise from
both QCD and QED. The QCD calculations are
naturally divided into two distinct energy regions:
energies far from quark thresholds, and ener-
gies within 1-2 GeV of a new-quark threshold.

Near a quark threshold, we have argued the
appropriate expansion parameter is roughly a(a),
where A is the smearing parameter. Since mass
corrections have only been calculated through
order a,, we expect uncalculated perturbative
contributions to be of order 3[a,(A)]?Q;%, where
Q% is the charge of the “new” quark. For the
charmed quark and values of A of order 5 GeV?,
this number is of order 0.2, or about 5% of R
very near threshold.

Away from quark thresholds, we expect the
theoretical calculation to err by an amount of
order a,*(s). In processes in the timelike region,
one frequently finds larger corrections. In Drell-
Yan processes, for example, second-order cor-
rections are comparable in magnitude to the first-
order corrections.?® Moorhouse, Pennington,
and Ross®® have studied this problem in e*e” an-
nihilation. The corrections which they con-
sidered can be included by carefully taking the
discontinuity of the renormalization-group-im-
proved expression for Il (-g°). At5 GeV they
are of order 1%, and tend to decrease the value
of R. We expect the sum total of effects in order
as’(s) to be 1-2%.

QED corrections of order (a/7)? which have not
yet been calculated will give contributions to R
which are small compared to the second-order
QCD contribution. We expect these corrections
to make at most a 0.2% contribution to R.

Among the uncertainties which arise from non-
perturbative effects are those due to thresholds
for new, exclusive channels. For example, one
may well ask whether the rise in R near Vs =5.5-6
GeV might be due to a threshold for the production
of charmed baryons. We believe this explanation
is implausible since this rise begins at an energy
well above the threshold for production of charmed
baryons. The measured rise of charmed-baryon
production® begins at Vs 4.5 GeV and levels off
at about Vs =5.1 GeV. The more general question
of whether, far from the threshold for the pro-
duction of a new species of quarks, the opening
of new exclusive channels affects R significantly
can only be answered by considering the concept
of local duality. We address this question below.
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It is quite reasonable to think that we can calcu-
late quantities such as I1 (¢2) in the deep Euclidean
region. Quantities relating to the timelike region,
on the other hand, involve inherently nonperturba-
tive phenomena. We have at best a limited under-
standing of the manner in which quarks “evolve”
into observed hadrons. The comparison of the
unsmeared R with data away from resonance
regions relies on the hope that these nonperturba-
tive effects are soft, and have little effect on the
total cross section.

In applying smearing techniques or dispersion
relations, however, we are relying on much
weaker assumptions. Essentially, all we are as-
suming is that I1 (¢?) is a smooth function away
from the real, positive ¢ axis. The smoothness
assumption is almost equivalent to the assumption
of local duality. Consider, for example, the
heavy-quark resonance regions. If the cross sec-
tion is smeared over an interval A much larger
than the spacing and widths of the resonances,
we expect that the result should be insensitive to
the detailed resonant structure. This will cer-
tainly be true, as we say in the discussion of Sec.
II B, if l1(¢®) is sufficiently smooth at a distance
A from the real axis.

The arguments of Sec. II B also require that
11 (¢%) behave sufficiently well at infinity that the
relevant integrals converge. Of course, at high
energies 1 (¢%) is determined by unknown physics,
but it would be surprising if the high-energy be-
havior were so bad as to destroy the smearing
arguments.

Some notion of the validity of the smearing argu-
ments can be obtained by comparing the results
obtained from theory and experiment with dif-
ferent smearing functions. This tests the “smooth-

ness” hypothesis implicit in the smearing pro-
cedure, as well as the importance of unmeasured
high-energy data to the comparison of theory and
experiment. It is particularly useful to compare
the power-law-type smearing with the exponential
smearing we have proposed in this paper. The
exponential smearing function gives less weight
to high-energy behavior than the power-law
smearing functions; in fact, high-energy behavior
cannot significantly alter the results obtained
with exponential weighting. On the other hand,
the validity of exponential weighting requires
smoother behavior for II (¢?) in the complex plane
than power-law weighting. It is reassuring, then,
that the difference between theory and experi-
ment obtained using the smearing function of
Poggio, Quinn, and Weinberg!® and the difference
obtained with the Gaussian weight of Eq. (2.16)
differ by only about 1% in the entire energy range.
The conclusions were similar with other smearing
functions.

Certain nonperturbative effects can be treated
more quantitatively. Several authors have con-
sidered the effects of operators of higher twist
generated by low-mass quarks and the effects of
instantons. Instantons appear to give contributions
which fall off as very large powers of s.*! Both
of these effects are negligible at high energies.
Near thresholds for production of heavy quarks,
additional higher-twist effects occur®? associated
with the inverse velocity contributions to R [see
Eq. (2.10) and the discussion below it]. The re-
sulting uncertainties can be estimated using the
local-duality arguments discussed above. We find
that such contributions should be negligible for
energies which are 1-2 GeV above the Vs = 3 GeV
charm threshold and less than 5% very near thres-

TABLE 1. Estimates of the uncertainties in the theoretical calculation of R.?

' Magnitude uncertainties

Source Vs=3-5 GeV Vs 25 GeV
Uncertainty in value of A 4% 2%
N 10%°
Uncertainty in value of m, c <0.1%
0.1%

QCD effects beyond the calculated order! 5% 1%
Higher~-order QED effects 0.2% 0.2%
Uncertainty inherent in the smearing

1% 1%

technique

2More specific remarks appear in the text.
bMagni(:ude of uncertainty for Vs ~3 GeV.
°Magnitude of uncertainty for Vs >4.1 GeV.

dThis item encompasses nonperturbative corrections, higher-twist effects, running-mass

effects, etc.
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hold.
Now we summarize the results of this section
in Table I.
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APPENDIX: RENORMALIZATION GROUP FOR II(g?)

I1(¢®) is not multiplicatively renormalized. Its
divergences, which are associated with the wave-
function renormalization of the photon, are cured
by subtraction. The renormalization-group analy-
sis of I1 (¢?) is particularly simple if ’t Hooft’s
minimal subtraction scheme is used.?® In this
scheme, one first computes the appropriate Feyn-
man diagrams (Fig. 17) using the dimensional
regularization procedure of ’t Hooft and Veltman.?*
Here Feynman diagrams are continued to 4 —€
dimensions, and ultraviolet divergences appear
as poles in €. The bare coupling has dimension

go~m?. (A1)

To keep the renormalized coupling constant di-
mensionless, one writes

g=1"Z,g,, (A2)

where U is an arbitrary mass and Z; is an ap-

O

(a)

AP Do

(c)

FIG. 17. Diagrams contributing to II,,: (a) lowest-
order term (quark-model result), () order—g2 correc-
tions, and (c) examples of order-g4 corrections.

propriate (dimensionless) combination of wave
function and vertex counterterms. These counter-
terms are chosen to cancel only the poles in €.

In this appendix the quark masses m; are re-
normalized according to the same prescription.
(The “on-shell” procedure used in the text is
discussed briefly at the end of this section.) Thus
for II we have

S C,
I(g? g% m? 1) =Ilo(% g6%, m %, €) = ™ 2 e(,.g) .
. n=1
(A3)
Defining
9 €

b 8=—38+R(8) (A4)

and
9

Yn= g (A5)

we have

2 K 2 (e o2
&‘afﬁ(g)ag +7mmam]ﬂ(q 8% m, 1)

- {6 +le/2 -ﬁ<g>1§g—}2=31 Lalal

The left-hand side is finite, so we obtain

(AS6)

o 5 B 12 L2
[u o +B(g)ag +Ymmam]ﬂ(q,g y, 1)

o, _
"5z % C,(g)=D(g) (AT)

and

[£%Cpiy(2)] =B(g)-3?§ Cal2) - (A8)

8g?
The second relation just reflects the well-known
fact that the leading divergences in each order
are determined in terms of lower-order calcula-
tions. It appears explicitly, for example, in the
calculation of Dine and Sapirstein.*

For simplicity we consider massless quarks
in the rest of this section. Equation (A7) is readily
integrated using the running coupling constant.
With 1 =1In(~ ¢%/12) we define
9 _ _

T EM=8(). (49)
The first two terms on the right-hand side are
known, and are independent of renormalization
convention. Writing

5

3
B(8)= =By 167 ~Bi (Tasy (a10)

we have
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Bo= ¥C, - 2N, (A11)
B1=%C 4% = RCAN; - 2C,N, (A12)

where C, and Cy are the quadratic Casimir op-
erators for the adjoint and fermion representa-
tions, respectively, and N; is the number of
flavors [for SU(N), C4,=N, Cr=(N*-1)/2N]. De-
fining [a (%) =g2Mn)/4n] :

47
aAg®) = ———7n Al3
(@ BoIn(- ¢2/A%) (A13)
one may write, with an appropriate definition of
A

’

0, (@) = 02(%) [1 — a%e?) —L— - laln(~ Z/AZ)] +0(a).

(A14)

Note that, to determine A, one must keep all
terms in a given process to order asa. To see
this, note under the rescaling A ~A’=al, al(¢?)
- ad +(B,/47) In(a)(a?')?. In terms of g(¢), the
solution of (A7) is

1(¢?) =11, s, m) - [ D(E@Nan' . (A15)

(4]

Using well-known QED results®® and the results
of the second-order calculation, we have

4q?
+Cp[B +B,/8(L -4D)](g?%/471%)*+0(g°),
(A16)
where ‘ .
B =0.212C; - 0.0506C 4 +0.00579N , (A17)
D=0.0564, ‘ ' (A18)

and L reflects the freedom to make finite re-
normalization of the coupling constant. In par-
ticular, the MS scheme, due to Bardeen et al.,?
tends to yield small results for higher-order cor-
rections, and is defined by

L=(Indm -y)/2, (A19)

where y is Euler’s constant. It is now a straight-
forward matter to evaluate the right-hand side

of Eq. (A15). The result can be used as input for
dispersive analyses. Taking its discontinuity to
obtain R gives Eq. (2.1) for large s.

For including finite-mass effects in first order
in a,, an “on-shell” definition of the quark mass
is convenient. Such a scheme is discussed, for
example, by De RGjula and Georgi.** In this
scheme, the B function and the running coupling
constant depend on the quark masses. Such a
definition is used in the text when effects of the

~charmed-quark mass are included.

'H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973); D. J.
Gross and F. Wilczek, ibid. 30, 1343 (1973); Phys.
Rev. D 8, 3633 (1973); 9, 980 (1974); A. Zee, F. Wil-
czek, and S. B. Treiman, ibid. 10, 2881 (1974);

H. Georgi and H. D. Politzer, ibid. 9, 416 (1974);
S. Weinberg, Phys. Rev. Lett. 31, 494 (1973).

w. A. Bardeen, A.J. Buras, D. W Duke, and T. Muta,
Phys. Rev. D 18, 3998 (1978).

3E. G. Floratos, D. A. Ross, and C. T. Sachrajda, Nucl.
Phys. B129, 66 (1977); B139, 545(E) (1978); B152, 493
(1979); Phys. Lett. 80B, 269 (1979); W. A. Bardeen
and A. J. Buras, ibid. 8 86B, 61 (1979).

M. Dine and J. Saplrstem, Phys. Rev. Lett. 43, 668
(1979); K. G. Chetyrkin, A. L. Kataev, and F. V.
Tkachev, Phys. Lett. 85B, 277 (1979); W. Celmaster
and R. J. Gonsalves, Phys. Rev. Lett. 44, 560 (1980).

M. Bacé, Phys. Lett. 78B, 132 (1978).

61,. F. Abbott and R. M. Barnett, Ann. Phys. (N.Y.) 125,
276 (1980); L. F. Abbott, W. B. Atwood, and R. M.
Barnett, Phys. Rev. D 22, 582 (1980).

TAll Mark I data used are from J. Siegrist, SLAC Re-
port No. SLAC-225, 1979 (unpublished), except where
better data exist from the “lead-glass-wall” collabora-
tion (of Mark I): P. Rapidis et al., Phys. Rev. Lett.
39, 526 (1977); 39, 974 (1977); see also R. F. Schwit-
ters, in Proceedings of the 1975 International Sympo-
situm on Lepton-Photon Intevactions at High Energies,

edited by W. T. Kirk (SLAC, Stanford, California,
1975), .p. 5; J. Siegrist ef al., Phys. Rev. Lett. 36,

700 (1976). Data from other low-energy experiments:
E. D. Bloom et al. (Crystal Ball), in Proceedings of
the 1979 Intevnational Symposium on Lepton and Photon
Intevactions at High Energies, Batavia, Illinois, edited
by T. B. W. Kirk and H. D. I. Abarbanel (Fermilab,
Batavia, 1980); J. Kirkby (DELCO) private communi-
cation; Ch. Berger et al. (PLUTO), Phys. Lett. 81B,
410 (1979); R. Brandelik et al. (DASP), ibid. 76B 361
(1978); references to data below vs=3 GeV are con-
tained in C. Bacci et al., ibid. 86B, 234 (1979).

8A1l PETRA data in Fig. 9 appear in Proceedings of the

1979 International Symposium on Lepton and Photon
Interactions at High Enevgies, Batavia, Illinois, edited
by T. B. W. Kirk and H. D. I. Abarbanel (Fermilab,
Batavia, 1980). See also (JADE): W. Bartel et al., -
Phys. Lett. 88B, 171 (1979); (TASSO): R. Bradelik
etal., Z. Phys. C 4, 87 (1980); Phys. Lett. 83B,
261 (1979); (Mark J): D. P. Barber et al., ibid. 85B,
463 (1979); Phys. Rev. Lett. 43, 901 (1979); 42, 1113
(1979); (PLUTO): Ch. Berger et al., Phys. Lett. 86B,
413 (1979); 81B, 410 (1979).

’F. J. Yndurain, Nucl. Phys. B136, 533 (1978); F. A.
Berends and G. J. Komen, Phys Lett. 63B, 432 (1976);
Nucl. Phys. B115, 114 (1976). -

top, Appelqlust and H. Georgi, Phys. Rev. D 8, 4000



22 PROBLEM OF R IN e*e-

(1973); A. Zee, ibid. 8, 4038 (1973).

M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300
(1954).

2W. E. Caswell, Phys. Rev. Lett. 33, 244 (1974);

D. R. T. Jones, Nucl. Phys. B75, ;531 (1974).

135ee the review by A.J. Buras, Rev. Mod. Phys. 52,
199 (1980).

45, 1. Adler, Phys. Rev. D 10, 3714 (1974); A. De Réi-
jula and H. Georgi, ibid. 13, 1296 (1976).

15K. Wilson, Phys. Rev. 179, 1499 (1969); W. Zimmer-
mann, in Lectures in Elementavy Particles and Quan-
tum Field Theory, edited by S. Deser, M. Grisaru,
and H. Pendleton (MIT, Cambridge, Massachusetts,
1970).

16, A. Shifman, A. I. Vainshtein, and V. I. Zakharov,
Nucl. Phys. B147, 389 (1979); B147, 448 (1979); B147,
519 (1979).

115, Schwinger, Particles, Souvces and Fields (Addison-
Wesley, New York, 1973), Vol. II, Chaps. 4 and 5.
18E. C. Poggio, H. R. Quinn and S. Weinberg, Phys. Rev.
D 13, 1958 (1976); R. Shankar, jbid. 15 755 (1977).

19Partlcle Data Group, Phys. Lett. 75B 1 (1978);

H. Meyer, in Proceedings of the 1979 Intevnational
Symposium on Lepton and Photon Intevactions at High
Energies, Batavia, Illinois, edited by T. B. W. Kirk
and H. D. I. Abarbanel (Fermilab, Batavia, 1980).

205, Siegrist, Report No. SLAC-225, 1979 (unpublished).

g, g, Feldman, private communication.

2For two-prong events see Fig. 32 in J. Siegrist, Report
No. SLAC-225, 1979 (unpublished); for pe events see
Fig. 4 in M. L. Perl, Report No. SLAC-PUB-2446,
1979 (unpublished), and M. L. Perl, private communi-

ANNIHILATION 609

cation.

3W. Bacino et al., Phys. Rev. Lett. 41, 13 (1978).

D, P. Barber et al., Phys. Rev. Lett. 43, 1915 (1979).

%G. S. LaRue et al., Phys. Rev. Lett. 38, 1011 (1977);
42, 142 (1979); 42, 1019(E) (1979).

263 N. Cahn, Phys. Rev. Lett. 40, 80 (1978); Y. J. Ng
and S. H. H. Tye, ibid. 41, 6 (1978). H. Georgi and

S. L. Glashow, Nucl. Phys. B159, 29 (1979); F, Wil-
czek and A. Zee, Phys. Rev. D 1 16, 860 (1977);

H. Fritzsch, Phys. Lett. 78B, 611 (1978); P. G. O.
Freund and C. T. Hill, Phys. Rev. D 19, 2755 (1979).

L. N. Chang and J. E. Kim, Phys. Lett. 81B, 233
(1979); J. F. Donoghue and L. F. Li, Phys. Rev. D 19,
945 (1979); C. H. Albright, J. Smith, and S. H. H. Tye,
ibid. 21, 711 (1980); G. L. Kane, Report No. SLAC-
PUB-2326, 1979 (unpublished).

%G, Altarelli, R. K. Ellis, and G. Martinelli, Nucl.
Phys. B157, 461 (1979).

%R. G. Moorhouse, M. R. Pennington, and G. G. Ross,
Nucl. Phys. B124, 285 (1977).

3%\. Piccolo et al., Phys. Rev. Lett. 39, 1503 (1977).

31T, Appelquist and R. Shankar, Phys. Rev. D 18, 2952
(1978); N. Andrei and D. J. Gross, ibid. 18, 468
(1978); L. Baulieu et al., Phys. Lett. 77B, 290 (1978).

32y, Novikov, L. Okun, M. Shifman, A. Vainshtein,

M. Voloshin, and V. Zakharov, Phys. Rep. 41C, 1
(1978).

33G. °t Hooft, Nucl. Phys. B62, 444 (1973).

%G, *t Hooft and M. Veltman, Nucl. Phys. B44, 189
(1972).

35R. Jost and J. M. Luttinger, Helv. Phys. Acta 23, 201
(1950).



