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The importance of the caloron and other contributions to the thermodynamics of the Yang-Mills gas is

discussed. Recent results and outstanding problems are summarized.

I. INTRODUCTION

As emphasized recently by Aff leek, ' one way to
make a quantitative test of the instanton method in
a scale-invariant field theory is to work at high
temperatures. This rigorously and naturally in-
troduces an infrared cutoff which removes the di-
vergence in the integration over instanton scale
sizes. For the CP" ' model, Aff leek has dem-
onstrated that at high temperatures a dilute gas
of calorons'4 (finite-temperature instantons) gives
the same nonperturbative contribution as a large-
N calculation. He argues that similar behavior
may be expected in quantum chromodynamics
(@CD).

In this note I summarize the consequences which
recent work by several people will have on our
original estimates4 of the caloron contribution to
the thermodynamics of the four-dimensional Yang-
Mills gas [pure SU(2) or SU(3) with no fermions].
In addition, I shall try to answer some questions
which were implicit in the earlier work and to
emphasize some still unsolved problems.

H. CALORON CONTRIBUTION TO THE PARTITION
FUNCTION

SU(N) theory. For high temperatures (and setting
the number of fermions equal to zero), their re-
sult becomes

~(P, p) = exp[-(2'' —1)m'p'/3 P']. (2.2)

where C, = 0.26 and C, = 0.097 for SU(2) and SU(3),
respectively, and &o(P, p) is given by Eq. (2.2).
Inserting the renormalization-group result for
g' in the asymptotically free regime, this may
be written

In addition, a number of authors"' have noted
that the original value for the one-loop quantum
fluctuation around the (T= 0) instanton was in error
(too large) by a factor of 2'".'

Incorporating both of these changes, I have re-
calculated the caloron contribution to the parti-
tion function. Writing Z=Z0Z„where Z, is the
dilute-caloron-gas contribution and Z0 normalizes
the result in the no-caloron limit (Z, = 1),"we
have
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In Ref. 4 the finite-temperature infrared cutoff
on caloron scale parameters p was approximated
by a sharp step function at p = P= (kT) ',

~(P, p) =8(P p). - (2.1)

Recently, in a beautiful and elegant calculation,
Gross, Pisarski, and Yaffe' have determined the
one-loop fluctuation about the caloron and thus
have derived the precise form of the cutoff in an

4(11K
lnZ, = 2 cos8b„VPp'~

where

OO 1x d»»""~3 'in~ —exp( p„»')
0 x

b, = 0.016, b, = 0.0015, p, = (v/g p)',

p, =-', (v/pp)', »= p, p

(2.4)
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From lnZ all of the thermodynamic functions can
be calculated. ' For example, the ratio of con-
tributions to the pressure from the dilute caloron
gas and an ideal SU(N) Bose gas is (setting 8 = 0)

—'=(0.08V)(pP)" 'ln' ', for SU(2),
8.5

P$ (v p)'. (2.6a}

5.5 "

p; (vp'
—'=(0.0043}(p,P}"ln', for SU(3). (2.6b)

The resulting numerical values are considerably
reduced from the estimates in Ref. 4. The great-
est change is for SU(3) because both the instanton
determinant correction factor 2~ and steepness
of the cutoff function Eq. (2.2) increase strongly
with N. From Eqs. (2.6) we find that the maxi-
mum value for this pressure ratio is 8/o for the
SU(2) case and 0.2/q for the SU(3) gas, if we re-
strict estimates to the region p, P&0.5 where the
dilute-gas approximation is expected to be valid.
(This region varies somewhat with N. ) As be-
fore, ' the. ratio decreases to zero as T- ~.

III. OTHER CONTRIBUTIONS TO THE PARTITION
FUNCTION

One of the most troubling questions which
plagues any calculation which approximates a
functional integral by just taking some class of
minima is how to estimate the importance of what
has been ignored. For example, are there other
periodic Euclidean field configurations besides
the caloron which might make a significant con-
tribution to the partition function'P The following
remarks are intended to make it plausible that
for high temperatures the contributions from the
dilute caloron gas and "ideal gas'"' are probably
the dominant configurations in the functional in-
tegral.

(1) At high temperature, calorons with topolog-
ical charge q =a 1 dominate multicaloron ( ~q ~

&1)
contributions in the dilute-gas approximation
(DGA). The cutoff function Eq. (2.2) and the re-
normalization group ensure that the important
scale sizes and the effective coupling g are both
small at high temperature, and thus the density

and p. is the renormalization scale parameter.
Equation (2.4} may be evaluated by approximating
the integral

dxg" ln —
~

exp(- px')1)
S]

of calorons is low enough to guarantee the valid-
ity of the DGA. Assuming that fluctuations about
the multicaloron solutions behave reasonably, the
factor exp(-S„) in InZ, (where the classical action
S„=8v'N/g' for q =N) strongly suppresses q &1
contributions relative to those with q = 1.

(2) Since our single-caloron solution has the
maximum number of free parameters for a q=1
configuration, "it is the most general such T c0
solution. We base this assertion on the fact that
the q =1 caloron reduces to the usual instanton
solution at T = 0 and on the claim" that there are
no other solutions with unit winding number. (The
q &1 calorons of Ref. 3 are obviously not the most
general multicaloron solutions since they do not
have the correct number of free parameters. )

(3) The original calorons were derived in sin-
gular gauge since we constructed them from the
singular-gauge multi-instanton solutions of 't
Hooft" and Jackiw, Nohl, and Rebbi. " This of
course is necessary if one intends to consider the
superposition of calorons in a DQA. In Ref. 3,
starting from the standard ansatz A„=io,„b,in/,
we only considered solutions to (1/p)s'p —0 and
ignored the other possibility s'p = cg'. The T=0
instanton of Belavin et al.ie in regular gauge obeys
the equation s'g„„= 8p'p„„'. Transforming this
solution to singular gauge one finds that it satis-
fies (1/P, )B'$,=0. Thus the two equations for $
are not independent, and [as also follows from
(2) above] we need not search for periodic solu-
tions to O'P=cP'.

In a somewhat different context [see also (4)
below] Rossi'7 has determined the form of the
gauge transformation matrix 0 [where A,'= 0 '
(A„—is„)Q] which removes the singularity in the
p - finite-temperature singular-gauge caloron.
It is likely that this same gauge transformation
converts the caloron to the regular gauge for arbi-
trary scale size, since near the singularity (y,
~-0 in the notation of Ref. 3) calorons with any p
are identical. His gauge transformation reduces
for T =0 to the one which transforms the usual
instantoni6 from the singular to the regular gauge i8

(4) Among the possible periodic Euclidean solu-
tions are those which are trivially periodic, viz. ,
the static (v independent) monopole configura-
tions. Manton" and others" .have pointed out that
there is an equivalence between the static solu-
tions of the Bogomolny" equations for the SU(2)
Higgs theory in Prasad-Sommerfield" limit and
Euclidean solutions of the SU(2) Yang-Mills the-
ory, with the Higgs field reinterpreted as Ap in
the Yang-Mills case. Thus the Prasad-Sommer-
field monopole" and its accompanying Higgs field
furnish us with a static (hence periodic) Euclid-
ean monopole solution:
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A; = r",(Cr cothCr —1)/r,

A;. = q„.~r~(I —Cr/sinhCr)/r,

where

(3.1)

The contribution of such monopoles to the func-
tional integral for the partition function would then
naturally seem to be of interest. Pisarski and
Yaffe'" have considered this rather subtle ques-
tion. (The following remarks are based on their
work. )

As might be expected from (2), the caloron so-
lution in fact includes some of these monopoles,
viz. , those whose action/time slice = 8v'/g' =

classical action of a caloron. These correspond
to monopoles with boundary. behavior

i.e. , those with C = 2vP in the solution Eq. (3.1).
As Rossi's calculations" show, the p- ~ caloron"
may be directly gauge transformed into these par-
ticular monopole solutions.

But what of the monopoles with C x2vp ' which
correspond to objects with nonintegral topological
charge'7 Pisarski and Yaffe"" have argued that
quantum fluctuations will eliminate the contribu-
tion of such dyonic configurations.

In the mathematical limit T- ~ (p fixed) all
calorons are again gauge equivalent to monopoles,
but physically we are reducing the caloron density
to zero. Rossi's work raises the possibility that
calorons may be related generally to monopole
configurations. This deserves further study.

IV. CONCLUSIONS

If we accept the arguments in Sec. III that the
dominant (high-temperature) contributions to the
functional integral come from expanding about the
classical saddle points at A, =0 and A;""",where
does that leave the problem of describing the ther-
modynamics of the Yang-Mills gas (without fer-
mions) '?

(1) Using the results of Ref. 5, we have seen in
Sec. II that the dilute-caloron-gas contribution
can be reliably calculated, modulo the unknown

(but presumed small) value of 8.
(2) Surprisingly, the contribution from fluctua-

tions about the perturbative (A„=O) vacuum S,
is less certain. The natural assumption is that
because of asymptotic freedom at high tempera-
tures, we simply have [for SU(N) j an ideal gas of
N2 —1 massless noninteracting gauge bosons. This
contribution Z,. is what we compared the caloron

contribution to in Sec. II. But several authors2'
have presented arguments that a plasmon mass
is generated in @CD at high temperatures. " As
is obvious from dimensional reasoning, such a
mass would be proportional to the temperature, "
or T/lnT, "and thus does not vanish as T- ~.
If this is true, we clearly have a massive inter-
acting gas rather than a massless ideal Bose gas,"
and we cannot naively use Z,. as an approximation
for the actual Z,. In the limit of extremely high
temperatures it is still reasonable to expect that
the perturbative contribution will dominate that of
the caloron and that it should behave as an ideal
(i.e. , noninteracting) gas, since g vanishes as
-I/In(pP) for T-~. For somewhat lower tem-
peratures there may be a region where both con-
tributions must be included.

In addition, it should be noted that the arguments
which were given for a plasmon mass are not
rigorous —and probably incorrect in at least one
of the cases.

Linde" has summarized the situation and em-
phasized the importance of determining the in-
frared behavior which is controlled, at finite tem-
perature, by the static screening Limit: k, =0,
k-0. He distinguishes between the electric and

magnetic gauge boson masses as manifested in
the corresponding longitudinal and transverse
Green's functions G»(k) and G, ,(k). In a very re-
cent study, Pisarski" has examined the question
in detail and concluded that a magnetic mass is
dynamically generated at high temperature in a
manner similar to that proposed by Polyakov. 26

Pisarski finds that to rigorously demonstrate such
a magnetic mass acts as a true infrared cutoff on
the theory is a delicate matter requiring control
of the theory to all orders in the loop expansion.

In addition, there are other possibilities which
must be considered, such as condensation of the
vector fields" or a phase transition into some
other state."

We conclude that further work is necessary be-
fore one can confidently describe the thermody-
namics of the Yang-Mills gas.
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