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Static meson yotentials
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The potentials between static sources of meson fields are computed for various cases of interest. For
isoscalar mesons, the interaction via a scalar-meson field is the well-known Yukawa potential; the
interaction via an isoscalar vector-meson field is shown to have the expected Yukawa form when an
appropriate Hamiltonian is used. For isovector mesons, which interact through non-Abelian current
operators, numerical computations of the potential are presented for vector-meson field interactions. In
contrast to the Abelian cases, the non-Abelian interactions are not the. same as the one-meson-exchange
potentials.

I. SUMMARY AND RESULTS

Recently, renewed effort has been devoted to
developing meson field theories of nuclear sys-
tems. One branch of this effort deals with covari-
ant quantum field theories, ' where the main tool
must be perturbation theory. The other branch
treats noncovariant Hamiltonians; here variation-
al methods can be applied.

The meson theoretic description of infinite nu-
clear matter is relatively simple. However, nu-
clear matter provides too few data to determine
the parameters of a meson theory. The two-nu-
cleon system gives a wealth of experimental data,
but its description in terms of a meson theory has
proved to be difficult; none of the meson theories
yet gives a satisfactory picture of the deuteron.

As a first step toward describing two nucleons
interacting through virtual meson exchange, the
related problem of static sources interacting
through virtual meson exchange is considered in
this paper. For the case of an isoscalar scalar
maison field, the interaction of static point sources
is the Yukawa interaction -ye™/R,with R the
source separation, m the meson mass, and y
=g /4m the coupling. The derivation of this result
is straightforward and well known; it follows di-
rectly from calculating the ground-state energy of
the Hamiltonian H»,

ass = „~(k)a'(k)a(k)dk

[u(k)a t(k) +u*(k)a(k)]dk,

(o(k) =(k'+m')'~'

ups(k)
[le'(g(k)]'" '

Ps(k)'= e Ps(r)dr .

Here a(k) is the annihilation operator for a meson

of momentum k and ps(r) is the scalar source den-
sity. The ground-state energy of H&~ is easily
seen to be

fair r' I

Ess ——-- ps(r), ps(r')drdr',
2 . l~-~'I (1.2)

l~ [n(k)a~(k) +v*{k)a(k)]dk

r V Pf(k}p~(k) dk+ 2 ~ 2 dk',
4m

gmp(k)
k[167r3(d(k)]~ + '

P (k) = Zb «(k)

for the interaction with the longitudinal scalar
quanta of the vector field, which are annihilated by
a(k}. The sources are treated as distinct, with

p, {k}the source distribution of source i. The in-
teraction with the transverse part of the vector
field gives spin-dependent corrections to the lon-
gitudinal field interaction that will not be con-
sidered here.

from which follows the static Yukama potential.
If the meson field is isovector in nature, the

above simple derivation cannot be carried out.
Moreover, for a vector field, a Hamiltonian that
gives the desired result +ye™/Rdoes not seem
to have appeared in the literature. Thus, in these
cases the mesonic interaction between static
sources is of some interest.

Section II of this paper discusses the appropriate
Hamiltonian for a vector meson field interacting
with static sources. A consistent treatment of the
relativistic Hamiltonian for a Dirac particle inter-
acting with a vector field with mass has been given
earlier; reduction of the Hamiltonian to the case
of static sources gives

tO

Hsv = &u(k)a (k)a(k)dk
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The ground-state energy of Hs~ is easily
found:

&sv= &~+

ym "(p)(k) J

4v & k~uP(k)

e ™lcml

V;& ——y
&

p,(r), p~(r')drdr'.)r -r'l

(1.4)

H„„= (o(k)a'(k) 'a(k)dk

[v, (u)a (k) + v)*(k)a(k)]dk
&=1

+y E '~'~ „p~(r)) .
)

pg(r')««'Ir -r'l

Note that, in contrast to the case of a scalar field,
the self-energy 4, is finite even in the point-
source limit where p, (k) =1. The fact that V„has
the expected Yukawa form can be regarded as a
justification of the Hamiltonian of Eq. (1.3).

The genera1. izations o:f the above Hamiltonians
to the case of isovector mesons interacting with n
sources are clearly

Hv~= (o(k}a (k) 'a(k)dk
n

[u&(k)a (k) +u&*(k)a(k)]dk,
&=i

In the special case of zero-mass mesons, v, (k)
vanishes and H« is simply solvable. It might
seem that the ground-state energy is y7&

' 72/R,
that is, y/R for T =1 and -3y/R for T =0. Not so,
since the T =1 state will emit a meson (through
the transverse interaction) and convert to T =0;
the correct ground-state energy is -3y/R for both
T =0 and T =1. This same conversion occurs for
m WO whenever the energy of the T =1 ground state
exceeds the energy of the T =0 ground state by an
amount greater than m.

The Hamiltonian of Eq. (1.6) is symmetric under
the operation of P„,which interchanges ri with r2
and 7& with &2. It follows that the eigenstates of
H«are either even or odd under P„,. The bare
two-fermion states ~t=0) and ~t=1) are odd and
even, respectively, under P„„asare eigenstates
of H containing any component of ~t=0) or ~t=l).
For identical fermions, the P -odd state with
T=O has spin S=1, the P„,-even state with T=1
has S =0, and only these two ground-state energies
are computed in this paper. For nonidentical
fermions, such as particle and antiparticle, the
spin. is unrestricted, although the states are, of-

course, still eigenstates of P„,.
The essential step in obtaining a ground-state

energy for H« is to consider only a few modes of
the meson field. In particular, for two sources it4

seems reasonable to allow one symmetric mode
and one antisymmetric mode. The annihilation
operator for the mode with mode function Q, (k) is

gmp, (k)
k[16& (a(k)]'

where a(k) and the ~~ are isovector operators. The
Hamiltonians II&s and H«appear quite simple, but
they have not been solved exact1y. Instead, a nu-
merical treatment must be used to provide infor-
mation about the ground-state energies. Because
&&s has infinite self-energies for point sources,
a cutoff function is required to guarantee finite re-
sults; a satisfactory way of providing a cutoff is
available, but it does involve the introduction of
an extra parameter. Qn the other hand, II« is
finite even for point sources. Therefore, in this
paper results are given for II« in the case of two
identical point sources located at ri and r2, so that

gm
k[mn'&o (k)]'~'

H„„= (o(k)a (k) 'a(k)dk

'

[v&(k)a (k) + vt'(k)a(k)]dk
&=1 4

+yr) 72/R, (1 6)

R=[r, -r, j.

A& ——
~ Ql'(k)a(k)dk .

For the two modes; the annihilation operators will
be denoted A.„with the alternate notation

P=A, , M=A (1.8)

W, = (g(k) (Q,(k)
~

dk,

y*(k)[vg(k) + sv2(k)]dk

T~ =~2(Tg 6 72),

The phases of V, have been incorporated into P
and M.

The mode functions P,(k) and Q (k) are symmetric
and antisymmetric, respectively, under inter-
change of r& and r2, the two source positions; they
are taken to be normalized and are obviously or-
thogonal. In the two-mode subspace generated by
P and M, matrix elements of H«are equal to
matrix elements of II», where

Hu~=W P 'P+WM M —P 7, '(P +P)
—V r .(M'+M)+yr, v-, /R,
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(1.10)

I v, (k}+sv2(k)1'

l. &(k) + &,]'
and b, are real parameters. Hence, the ground-
state energy of the system in the two-mode ap-
proximation is

(1.11)

The ground-state energy E» of
the constants W, V, and y/R. Therefore, a sim-
ple variation shows that Q has the form

v, (k) + sv2(k)
4's(k) =os

(k) + b

where c, is a normalization constant

0.5

V
/ym

-0,5—

~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ s ~ ~ ~
~ ~ 1 ~~ ~

~ ~

(1.12)E(R) =minE„~(&„R),
bs

The potential energy is V(R),

V(R) =E(R) E(~) -. (1.13}

Section III gives details of the method of obtaining
ground-state energies of II».

Figure 1 shows V(R) for both T=0 and T=1
with y =1. Also shown are the second-order per-
turbation values V'2'(R); these are ye /R and
-3ye /R for T =1 and T =0, respectively.

The variation with y is shown in Figs. 2 and 3 ~

1In these figures, V(R)/y is plotted for y =-„1,
and 4, together with V' '(R)/y. Figure 2 is plotted
for T =0 and Fig. 3 gives the T =1 potentials.

In every case, V(R) is more attractive than
V' '(R). The function V(R)/y is monotonic in y ~

(2)For T =0, V(R) is attractive, as is V (R), but
for T =1, V(R) is only repulsive for weak coupling
and/or distances greater than about y/m; for short
distances and/or strong coupling V(R) is attrac-

—I.O

mR

FIG. 2. The T =0 potentials for various values of y.
The dotted curve is the one-meson-exchange poteotential
the dashed, solid, and dash-dotted curves are for y = 1/4,
1, and 4, respectively.

(2)tive, opposite in sign to V (R).
For the case of an isovector scalar exchange,

the corresponding results are conjectured to be
that for T =1, V(R) is somewhat more attractive
than V' '(R). For T=0, V(R) is repulsive for weak
coupling and/or large separations; for short dis-
tances and/or strong coupling, V(R) is attractive,

(2)opposite in sign to V (R).
Thus, there is a qualitative difference in the

static potentials between isoscalar fields that cou-
ple through the Abelian current operators 1 and
isovector fields that couple through the non-Abel-

0.5
0.5

I'x ~ .
, ~

~ ~ ~ ~ ~

Vj

V
/ym

-0.5—

- I.O—

mR

FIG. 1. Static meson potentials V(R)/m for y=1. The
dashed and dash-dotted curves are for T=1 and T=O, re-
spectively. The dotted and solid curves are the one-me-
son-exc ange po n ih tentials for T=1 and T=O, respective y.
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FIG. 3. The T= 1 potentials for various values of y.
The dotted curve shows both the one-meson-exchange po-
tential and the potential for y= 1/4. The solid and dashed
curves show the potentials for y = 1 and y =4, respec-.
tively.
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ian current operators &. In the Abelian case, the
static potential is identical to the second-. order
perturbation potential or one-meson-exchange po-
tential; in the non-Abelian case, the static poten-
tial need not even have the sign of the one-meson-
exchange potential.

The computation of quark-quark and quark-anti-
quark potentials in a static limit of quantum chro-
modynamics (QCD) is a considerably more com-
plicated problem than the interactions treated
above. However, several points discussed in the
present work may be applicable to the QCD poten-
tials. The static limit of the vector-meson inter-
action discussed in Sec. II seems potentially use-
ful, and the use of both a symmetric and an anti-
symmetric mode may be a practical extension of
Tomonaga s original ideas. The instability of the
T =1 state discussed after Eq. (1.16) and evident
in Figs. 1 and 3 will also need to be taken into ac-
count.

H. HAMILTONIAN FOR VECTOR MESONS

g&,, ~(g, ~z„VI,) =-gV~ ':g ug:+, :g g: V ml„

2

+2 2:0 0('0: ~ (2.1)

In this form, the field g depends on the gauge. In
Ref. 3 it was shown that a gauge-invariant Dirac
field can be defined by

X(r) =exp -&g V 'VL, (r) ig(r)

~ fll

=exp —
~ - V V~(s)ds ig(r). (2.2)

&i(r) =~i(r) +—2&0'(r)4(r)1 (2.3)

then the interaction Harniltonian density is
2

%hen the necessary change in ~l. is made to make
the transformation canonical, namely,

The old form for the interaction Hamiltonian
density in the case of a longitudinal vector field
Vl, interacting with a Dirac field g is

(2.4)

and the interaction Hamiltonian can be written

ik g"

Hz 2
——-gm

~ „-~ ~ &)]&&2
..X (r)X(r):[b(k) +5 (-k)]dkdr 6 ~

-~ .X'(r)X(r)X'(s)X(s):drds . (2.5)

When the density X'(r}X(r) is replaced by a static
source density p(r), the Hamiltonian of Eq. (1.3)
is obtained; the restriction iej in Eq. (1.3) comes
from the normal product in Eq. (2.5).

For particle-antiparticle interactions, tbe sign
of the source density p(k) must be changed for the
antiparticles because of the normal ordering. It
follows that for isoscalar-meson interaction,
particles and antiparticles couple oppositely. For
particle-antiparticle interactions there is also a
contact term that can be dropped for nonoverlap-
ping static sources.

The isovector interaction corresponding to Eq.
(2.5) has: X'X: replace by: X 7X: in Eq. (2.5). As
is shown in Ref. 2, the antiparticle part of:X'YX:
is $„7$„, so that particle and antiparticle static
sources have the same static isovector-vector-
meson interaction. Again the contact term is ig-
nored for nonoverlapping sources.

III, APPROXIMATE EIGENSTATES OF H~ p

Consider first the single-mode subspaces gen-
erated by M' or P'. In. the M-mode subspace, H„~
is equivalent to H&, in the P-mode subspace to HJ„

Ea,p ——-3y/R . (3.3)

On the other hand, the M-mode Hamiltonian H„
has parts that are diagonal in t and parts that are
off diagonal. For T =0, the M states are relative-
ly simple because

(r 'M") it =0) =(Yi 'M ) if =0) =M 'M it =0),
7„'M it=0) =0, (3.4)

+'~, X'=0

H~ —W M 'M —V 7 '(M +M) +y7& '72/R,

Hp=W P 'P —V,7, '(P +P)+y7'( 'rg/R. (3.1)

I,et t be the fermion isospin; states with t= 1 and
0 are symmetric and antisyrnmetric, respectively,
under fermion isospin exchange. It follows that 7,
and 7 are diagonal and off diagonal, respectively,
in fermion isospin t. Moreover, 7, annihilates
states with t = 0. Thus, the P-mode Hamiltonian
H~ is diagonal in t,

Hp g p=W P 'P 3y/R

Hp q q
——W,P 'P-V, v, '(P +P)+y/R, (3 2)

and it follows directly that the lowest eigenvalue
of H~ in T =0 states is
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so that the general form of an M -mode state with 1"=0 is

g a„(r 'M )" jf =0) = pa„jM, n, T =0) .
0 0

(3.5)

The basis states jM, n, T = 0)

3i /2v

3'"v v +I

can be normalized and used to evaluate the matrix of H&, with the result

2i /2V

(H~) = -2'"v 2w -3r
-5'"v

-5'/2v

Sg +r
4~ /2v 4w —3r -7~ /2v

(3.6)

-7'"v etc ~ p

H„=WA 'A —V(A +A), (3.7)

r 0

8 -2'"v
0 0

(H~) = 0 -2' "V 2W

0 3$ /2v 3~ 4i /2v

0 -O'"V etc. . .
(3.8)

This matrix can be diagonalized by brute force on

a computer, but it suffers the same problems that
arise in treating the corresponding famous matrix
for isoscalar scalar mesons interacting with a
simple source

T =0)~:Dp (yT 'M ) jf =0&
(3.13)

N(y T=O jy T=0&x=Dp, e(y ) ~ (3 14)

In contrast to the state jy&„of Eq. (3.11), there is
not a value of y for which jy, T=0)„is an eigen-
vector of II„. However, the value of y that mini-
mizes

e" sinhx
Do „(x):

[Remarkably, D, „(x) is identical to the function
that gives the special coherent state for an iso-
vector field interacting with a single fermion
source. ] The special coherent state jy, T =0) ~
has been chosen so that Do „(0)=1; for y -0 it re-
duces to the bare state jf =0). Its normalization
then follows from Eq. (3.12):

Here the eigenvector has components FD.~(y) = ~( y, T = 0 IH ~ ly, T =0)~ (3.15)

v„=(V/W) "/(n! )' ", (3 9)

so that for V/W & 2 or 3, very large matrices must
be used to get reasonable accuracy in the lowest
eigenvalue. In the case of H„of Eq. (3.7) the
exact ground state is the simple coherent state

jy)z -=e"
j II), y = V/W, (3.1o)

where jQ& is the meson vacuum. For any y, the
coherent state jy& satisfies

(3.11)

In the case of H„, the convergence difficulties
for large values of V/W can be circumvented by
using a coherent state as a starting point. Vari-
ous coherent states can be imagined; as is dis-
cussed in Ref. 6, the useful choice is the special
coherent state jy) & that satsifies

(3.12)

gives the variationally best special coherent state
for H&. Moreover, it is possible to evaluate the
matrix of II„in the basis constructed on

jy, T =0) ~, it turns out that only a few (up to four)
basis vectors are needed for six or eight decimal
places of accuracy in the ground-state eigenvalue
of II&for any value of y.

Since Eo „(y) is less than Zo ~ of Eq. (3.3), it is
natural to use the state jy, T = 0)„as a starting
point for diagonal. izing H». For this purpose,
eigenstates of t are useful:

jy T=O, ~=O&= (jy2, T=O&u+ j
-y T=O&u)

(3.16)

j y, T = 0, t = 1) = 2( jy, T = 0) gg
-

j
-y, T = 0& ~) .

Then the set of single-excitation states is spanned
by the basis vectors

This condition is the isovector analog of Eq. (3.11).
For T =0, the state jy) „is given by

jy, 0,0), jy, 0, 1), v, 'P'jjy, 0, 1),
M'jy, o, o), ~ M'jy, 0, 1&,

(3.17)
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., S jz), =z jz), (3.18)

gives a lower expectation of H» than the special

where it can be shown that M 'M jy, 0, t) can be
written as a linear combination of the basis vec-
tors. The T=0 energy shown in Sec. I is obtained
by diagonalizing II» in the subspace spanned by
the basis vectors of (3.17), then minimizing with
respect to y and b, . For T =0, the ground-state
eigenvalues of H» computed by this procedure
have an accuracy of better than 1/g. However,
since V(R } is a difference of Z(R), it can be sub-
stantially less accurate for large values of R.

For T-= 1, the procedure is similar. In this
case, the special coherent state jz, T = 1)~ defined
by

coherent state jy, T=1)„. The state jz, T=1)~ has
f =1. The subspace used for Z(R} is spanned by
the vectors

jz), 7 &'jz), &' Q jz), r M'jz), (7 'M') jz),
(3.19)

where one double-excitation state is included be-
cause it was found to give a 5% correction to E
for y = 1. No other double-excitation state was
found to give a correction to 8 of as much as 1/o.
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