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Relativistic harmonic oscillator for sinn-1/2 particles in the Bethe-Salpeter formalism
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A kernel for the spin-1/2 relativistic Bethe-Salpeter equation is proposed and the equation is solved in the
nonrelativistic limit for the mass spectrum in the case of vector coupling. Numerical results are also presented for
the fully relativistic case. It is found that in addition to the ordinary, evenly spaced energy levels of the nonrelativistic
harmonic oscillator, the spin coupling produces another family of states with level spacing proportional to n, the
principal quantum number. It is also found that in this model the phenomenology of the mesons can be reproduced
qualitatively only for couplings strong enough to produce signi6cant relativistic effects in the lowest-lying levels.

I. INTRODUCTION and the partial-wave decomposition is defined by

In a previous paper, ' a kernel was proposed for
the spinless relativistic Bethe-Salpeter equation
which reduced in the appropriate nonrelativistic
limits to the Schrodinger equation for the simple
harmonic oscillator. Our model is similar to one
proposed by Droz-Vincent using relativistic wave
equations for spin-zero particles. Generalizing to
the case with spin yields some interesting results
in these models and will be the subject of this pa-
per.

In Sec. II a brief review of the construction of
the Bethe-Salpeter kernel in the spinless case is
presented. In Sec. III we review the separation of
the fermion equation into covariant parts and the
decomposition into partial waves. These first two
sections allow us the opportunity to establish a
notation as well as to lay the foundation for the
spin--,' problem. In Sec. IV we construct the actual
set of coupled equations we wish to solve, and the
nonrelativistic limit of these equations is dis-
cussed. Finally, in Sec. V we present the results
of numerically integrating the fully relativistic
equation and show some of the phenomenology of
this model.

II. THE SPIN-ZERO RELATIVISTIC HARMONIC
OSCILLATOR

The spin-zero Bethe-Salpeter equation is given
by

[(-,'P+p) -m +iri][(sP -p) -m +t'tl]X(p)

~(p,p')x(p')d'p'. (1)

In the center-of-mass coordinate system,

p =(po»)

P =(M, ti),

Thus, in the center-of-mass frame,

[(-~t+kt+m'--,'M'-tri)t -M'J]X,(k, ~)

V, (k, (u; k', (u')X,(k', to')der 'dk'. (4)

If one takes

2. , 12+ -(p'-p) -& irl-
V(p, p') =lim2tg s ) [ (, )t & . ]4

it can be shown that

l(l +1)
&t(k, ~;k', ~')=-sg' bi(pt) —

ks &i(pt)

l(l + 1)+s(-1)g' &,"(»)— t &,(ps),

where

pt'=(k'-k)'-(to'-to)'
ps' = (k'+ k)' —(pv

' —~)',
X

0~(P)=-, ps~ ~t,

82
&,"(p) =, t &,(p)

(cf. Ref. 1). Because of the 0-function structure
of this kernel, this equation can be separated if we
take

Xt(k~ ~) =ti(& —~p)lp t(k) ~

where
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(s, = -,M - (k + m )
2 2 i/2

The resulting equation for %, is

M[-,'M -(k'+m')' "]W,(k)

(k +m ) +3k-'
m' au' au

l
+i ——

q l(l+1) W, (k) . (10)

This ordinary differential equation is the subject
of Ref. 1 and no more needs to be said about it
here except that in the appropriate nonrelativistic
regime of weak coupling and low-lying states, this
equation reduces to the Schrodinger equation for
the simple harmonic oscillator with a classical
spring constant g /m . In the strong-coupling
limit, the solutions to this equation depart signif-
icantly from those of the Schrodinger equation.

III. THE FERMION BETHE-SALPETER EQUATION

The Bethe-Salpeter amplitude for spin- —,
' parti-

cles is a 16-component bispinor whose various
constituents are coupled. As a result, the equation
for spin-~ particles is very much more compli-
cated than that for the spin-0 case. In shorthand
notation, we write

fr'(P. + 'P. ) — ]X(P-)h'"(P.—lP,)—

~ Z.,i'"(P P')X(P')I'"(P, P')d P' (»)

Here y, X, and I" are 4&4 matrices which are
multiplied together where indicated. I character-
izes the interaction entirely and the product
g„„I'I""forms the Bethe-Salpeter kernel for this
problem.

For convenience, we shall write (11) as

[(e+-'P)'-m'1[(e --'P)' -m']e(e)

~
Z..I'"(P P')e(P')I'"(P P')d'P', (12)

where

[~"(p.+-'P.) -m] [~"(P.--'P. ) -m]e(P)= [(P~.P) ]
X(p)

[(P P) ]
(13)

«P) =IV "(P.+-'P. ) +m]4(P)[r"(P. —-'P. ) + m] .

Since the wave amplitude Q has components which
characterize both singlet (scalar) and triplet (vec-
tor) states, it is impossible to extract the angular
dependence of this equation in as trivial a manner-
as in Eq. (3). There are two parts to solving this

problem. The first is to decompose Q into parts
that transform as vectors or scalars under rota-
tion and, second, to decompose these separately
into scalar and vector spherical harmonics.

%e begin this program by writing

e(P) =0'(P)+ 0".(Pb" +-'&'.(&)""
+it".(ub "~'+'0'(Pb',

where

Similarly,

«» =0'(P) + 0'(Ph '+ I.',(P)r""

+ it.(pb'~'+ it'(ph '.
Using the properties of the y matrices it is easy
but laborious to show that4 6

=(P -«M +m )Q +2mP"Q~+P"p"Q, „, (18)

ti."=2mP. A'+(&O'P, 'P'P. )4-."-
-(P ——,'M -m )Q„

+mP'Q, „-ip ~P PqQ«,

$ „=P„P„g +mP„Q„"—(2P'p —'P'P, )/-
+2(p —«M +m )Q,„

(19)

'0 +4+(0 -0 ) 'c' 0 +40+(7 7) 'o-
.(~ -6+(V+0 )'c ti Fo+(0 +7)'-~.

(23)

where the components g and g~ form the tensor
part of the amplitude in the following way:

-ime „„(P~&f)«-~P~pqg ), (20)

g"=is,(P,Pap«™PQe )-«(2P'P„-~P'P„)Q,"
+(P' ,'M'+ m—')—y„"+mP„y', (21)

qP 1 go!8«lkPJ y
r + P«yA (P2 1M2 m2)yP

(22)

In order to do an angular decomposition of the
equation, it is necessary to pick a specific coor-
dinate system and identify the parts of the wave
function which are components of vectors and those
that are scalars under rotations in three-space.
Under such rotation, the zero component of a four-
vector transforms like a scalar. The tensor part
of the amplitude is antisymmetric and, like the
electromagnetic field tensor, can be broken into
two three-vector parts. These various components
appear explicitly in the block form'
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0

O

-zg~

yE yE

ig, -ig„

0

s(p}=- Qs, (k, )Y;(k),t,. '

V(p) =—Q[Vg '(k, (o)Yp, &(k)

(29)

P =(M, t)) (25)

P =(& k). (26)

Also, to keep the proliferation of indices under
control, we shall define the center-of-mass amp-
litudes

S =(4 ')z.
TI

U =(4p )K=tt

V =(4' )a=tf

G =(0'ht=p

F=(0')a=)

B=(4p)X p,

A =(0")a.If
P=(g )it.p',

where Q and Q are related to p as in (24), and

K is the spatial part of the center-of-mass mo-
mentum P. With these definitions we find the fol-
lowing set of equations for the components of g in

the center-of-mass coordinate system:

=(td -k ——,'M +mt)s+2mppU-2mk 'V

+Mk' F,
gp

——2murs+(&o +k —~M +m )U —2&uk 'V,

gp ——-2mkS -2(okU+ 2k(k 'V)

+(&u -k ——,'M -m )V+mMF-iM(kxA),

=-MkS -mMV -(uP +k ——,'M -m }F

+2k(k ' F) + 2i&p(kx 6) —2im(kxA), (28)

= —2i(o(k x F) + ((g'+ k ——,'M + m )G —2k(k 'G)

-2m~A + 2mkB +MkP,

iM=(kx V) + 2m+G —2im(kx F)

—(&o —k —4M +m )A —2k(k 'A) +2~&kB,

trp"=-2mk G+(-aP -k'+ ,'M'+m')B-
+ 2(dk 'A+mMP,

=-Mk 'G+mMB —(ur —k —4M -m }P.

i|t)~ -$$„0
Obviously, the center-of-mass coordinate system
is the most convenient, since analysis in this par-
ticular frame gives the intrinsic properties of the
composite system. Thus, in what follows we take

x@~p (k', (c)')d(g'd k' . (31)

The quantities in (31) are defined below in Eqs.
(32)-(35). For H =1,

(1)C( ——Cs,
C2 ——C3" ——C4" ——C v,(1)

(1) (i) 0 ) (3
C5 ——C6 ——C7 ——Cq,

(i)
A&

and for H =2,
, (2)c, =cp,

C (2) C (2) C(2) C3 4 — As

C (2) C (2) C (2)
5 6 7 T~

C (2)

(33)

Cs, Cv, C~, C„, andC„depend on the type of
coupling and are given in Table I. For both H = 1
and H=2, the orbital angular momentum index is
given by

I) =I2 =lt =ls

I3 —l5 —g —1,
/4 I6J+1 ~

(34)

TABLE I. Relative couplings for the scalar, vector,
tensor, axial-vector, and pseudoscalar parts of the

eguatioD.

Type coupligg cs Cv Cr Cz

+ V,"(k, i~)YP,(k.)+ Vg'~(k, u)) Yfg„(k)] .
Also, the interaction is decomposed in the follow-
1ng way'.

g„,r"(P,p') 1'"(P,P ') =kk, g,„V;"(k,~;k', (o')1

)m

x Yp*(k')Yp(k) . (30)

This decomposition results in a set of sixteen cou-
pled equations, which breaks up into two indepen-
dent sets of eight because of the conservation of
parity. These we write in the matrix form

[(p + —,'P)' —m'][( p ——,'P)' —m'] 4,'", '(k, (o)
fe

The scalar functions ip, gp 5p 5 S U B
are now to be expanded in ordinary spherical har-
monics and the vector-valued functions g, P, P,
g, V, F, G are to be expanded in vector spheri-
cal harmonics. ' Thus, for example,

Scalar
Pseudoscalar
Vector
Axial vector

1
1

~2
2

1
-1

0
0
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The Bethe-Salpeter amplitudes 4&"' are defined
as

S,

U,

constructing an infrared-singular interaction like
that used in Sec. II can be carried over almost
verbatim. The case with spin is richer by virtue
of the various possible spin couplings, but the
core of the interaction kernel, i.e., g„„I'"I'",re-
mains simple. We shall assume vector coupling
so that (following Ref. 1)

(23)
J

@(2) (35)
g ..I'"(P,P')I'"(P,P ') =g..y'y"(2 g')

I&

. 2
t'&2m't

-(p'- p') —~'-iq
I-(p'-p)'+Z'-ir/]'

and, hence,

V) (k i (d q k, (d )

(37)

Finally, K,") is given in Table II and SR,
' ' in Table

III.
In the tables and what follows,

= 'g (k'+m')'"
m2

3 l( 1+ 1)
(k +m ) ski2+ k ski+4 kl2

2o 1 ) 2' 2o + 1
0 (36)

&&6„(k' -k)y "y" . (38)

As per the comment above, we note that 4&
' char-

acterizes the J +1~ states, which have parity
(-1) while the amplitudes 4/' ' characterize the
(-1) '-parity '3J~ states.

IV. THE RELATIVISTIC HARMONIC OSCILLATOR
YfITH SPIN

Despite the fact that everything has been greatly
complicated by the addition of spin, the idea of

l

The left side of Eq. (31) is the same as the spin-
less case and the reasoning that drove us to the
conclusion that the wave amplitude had a 6-function
structure is still valid if (38) is used (cf. Ref. 1).
As a result,

C /" '(k, (u) = )/), ,'(k) 6(~ —-',M + (k + m )
/ ) (39)

and the y,', ' amplitudes solve the following differ-
ential equation:

3 I I +I l C'H)
(4O)

where &u3 ——M/2 —(k +m )~/ . It is this set of
equations that is to be solved.

Our first object must be to find the weak-cou-
pling limit of this equation. We find, for g2/m3

m3 P
2 2 2 je8+jie

(]) I/l }(" ~/2f (~)
~a&

(42)

(41)(2 m

where $ =k/m and 8» is the nonrelativistic ap-
proximation to the binding energy M —2m.

To proceed further, it is necessary to assume

E() ~ ~ +(&.+ l -)) , -l(t. +-** -—)/2))~/ "'sf's"'.
2m' g Z NR y(H ) (44)g Sa 4am

which, if it were not for the coupling matrix K&
'

would be the equation for Laguerre polynomials.
Thus, we expect that since the exponential is
present in the amplitude p,' ', and cuts off every-
thing for g & (g2/m3)'/2, it is only necessary to
keep the constant terms in It~"'. The resultant
set of equations exhibit some simplicity. First,
since C&=0, q and q are zero. A solution exists
where all the amplitudes are zero except y ' ' and
cp"' '. Since y ' ' is independent of y""' in this
limit, we can set a = —,'(M'/g')'/' and find

where

i=a) .
This results in the equation

(43)

and

~)'(~ ) ~ I /+3/2(( 3/ 2)1/2(2) -(1/2) (nP/g2) 22
(48)
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FIG. 3. Angular momentum versus mass squared for

the JJ—2Jz states in the nonrelativistic approximation
and for {g2/'~3)1/2 0.1.

( Sp)

( So)(Pi- P()( Fq- Fg)

{'P, -'PI)('0, -'0,)

('Sp)('PI-'PI)

{ SI- DI)( 03- 63)

('Pp)('P, -'F2)

(3S 30 )

{~Pp) 3
A(-) ~I i+ /2i(m (47)

sion for the energy levels of a nonrelativistic sim-
ple harmonic oscillator, as expected.

Another family of solutions is also easily ex-
tracted. The equation for q"' ' is independent of
all the other amplitudes, though it appears in the
equation for them. Thus we find

FIG. l. Schematic energy-level diagram for the non-
relativistic region of g /m~.

( """' =(g'/m')'"(2n+q+-, ') n,q=o, I, . . . .
2m

and, more importantly, we find the spectrum
2

(&„„)„,, =
3 (2n+j+ —,'),

(46)

(46)

y~""' is complicated because the equation for it
contains y; '='. Nevertheless, (46) is the expres-

3.44

This is a surprising result. The energy spec-
trum of this family of solutions has spacing pro-
portional to the energy, rather than being evenly
spaced. Also E ~g /m rather than (g /m )'
therefore, these levels lie very much below the
ordinary levels represented in Eq. (46). It is easy

3. I 2

2.96
I)II

2, 80

2.64

2.48

2, 32

2. (6

2.00
0.02 O. l 0.2 0.3 0.4

I

0.5 20 40 60 80
M2 (j~

for —
6

= I.O

IOQ I20

FIG. 2. ~80(0 ) energy levels as a function of coupling
strengths in the nonrelativistic approximation.

FIG. 4. Hegge trajectories in the nonrelativistic ap-
proximation for (g /m )~~2=1.0.
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3.28

3. l2

2.96
M

2.80

2.64

2.48

2,32

2.l6

2.00
O. I 0.2 0.3

(&

2

8'

0.4
I

0,5

FIG. 5. Comparison of the fully relativistic numerical
calculation of the ground-state energy with the nonrela-
tivistic approximation.

to show that (46) and (48) exhaust the possibilities
for the energy spectrum in this problem. In gen-
eral, the wave functions are more difficult to ob-
tain and we shall not concern ourselves with them
at this point. The first five figures show the non-
relativistic results explicitly.

Figure 1 is an energy-level diagram for the low-
est-lying states in the nonrelativistic, regime.
Figure 2 shows the 'S(&(0 ) energy levels as a func-
tion of coupling constant in the nonrelativistic ap-
proximation. Figure 3 shows the relationship be-

tween angular momentum and mass for weak cou-
pling. Figure 4 shows the nonrelativistic approxi-
mation to this for a coupling that is much stronger
but the effect of the anomalous family of energy
levels is clearly shown.

V. NUMERICAL RESULTS

Because of the complexity of Eq. (40), it is
necessary to resort to numerical techniques to
solve it. Luckily, standard approaches work well.
If we change variables in Eq. (40) by setting

I)/r&) = tang (49)

then we obtain an equation on the finite interval
[0, ~/2j

8 I . 8
(reechy-s)9)~) = cos'& 2+-,'sin2&—

S I.(f„+I)
4 tan'&

(H) (H)Ca ~as (H)
a @a

8

where

m'm mM'
S=

The boundary condition is that p'"' vanish at the
end points. We now define a grid (f;) on the in-
terval [0, ))/2] and arrive at the difference equation

i& i+x+ i& i 8 m

2 cos g; sin2$; ~ Co (g)+ ~ I~ ~ I 4~ M 2 u8 (~(+1)98 (4+1) l
+~rishi+ +~ )i4g 8 m

(62)

where &;= &i
—f;,.

To put this into a form suitable for computation, it is necessary to stack the components of q„'"'. Define
the vector q ' such t}13t

{H) (H)Is((-1)+u Pu (fi ) .

Also define the matrices Q'"' and K,

2cos'&; sin2&, C„'
@8(( 1)+ues(i 2)+ 8 (~ ~ )~ Ai) 2 u8 (~(-1) li+1+ i~ i 4 i

2 osc'g; sin2&;(&;„—&;) 3 I„(l„+I) C'")
'8s(i-1& uls(i-1&+ 8= ~ ~ 4~ ~ 4 tans) ~2 u8

i+a i i+1 an&; m

( H ) ( 2 cos gf sin2 &; C
8((-1)+u,s(+ 8

l g (~ ~ )+ an 2 ~u8 (4+1) l+s i+) + ir 4, m

M ~gE„; „,„„;„,8= se g,. —

(64)

(66)
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2.80—
JIL
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2.64—

2.48-

2.32—

2. I6—

I

0.02 O. l

I

0.3

FIG. 6. The four lowest-lying 80 states as function
of coupling constant in the fully relativistic equation.
The dotted section where energy levels cross are places
where the numerical technique yielded complex values
for g2, though with small imaginary part. Such crossing
phenomena are no surprise and are a symptom of the
inherent approximations made in reducing the continu-
ous differential .equation to a finite difference equation.

and all other components of Q'"' and K' are zero.
These definitions make Eq. (52) into the general-
ized eigenvalue problem

M(H)q(H) ~ q(H) (56)

20—

I8

l6
IN

l2

IO

The result of performing this calcu)ation is
shown in the Figs. 5-9. Figure 5 shows the
ground-state energy as a function of coupling con-
stant and compares the result of numerically inte-
grating the fully relativistic equation with the non-
relativistic approximation discussed above. The

60 80 I00
IN—

2 for —=0,75mf g&

FIG. 8. Hegge trajectories for (g /m )' =0.75.

20 40
I

120

5.0—

4.0-

agreement is quite good over a surprisingly large
range in g'/m'. Figure 6 shows the numerical
results for the lowest-lying 'Sp states and Fig. V

shows the lowest-lying states in both the "J&and
'J+ 1& families.

To discuss the phenomenology that arises from
these calculations, we return to the nonrelativistic
result for a moment. From Eqs. (46) and (48), it
is apparent that the lowest-lying 'Pp state lies be-
low the 'S, for couplings up to g'/m'= 1. (This is
a value for which the weak-coupling approximation
does not apply; nevertheless, the point is that up
to very strong coupling, it is impossible to keep
the pion lower in mass than the 5. ) This means
that in order to apply this model to the mesons,
very strong coupling is required. Figure 8 shows
that a coupling of (g'/m')'~'= 0.75 is just sufficient
to drop the 'S, state below the '&„but that the
'S,-'D, state lies above 'P„which would place
the & lower than the p.

In Fig. 9, we have gone still higher in coupling,
to (g'/m')' '= 1. At this coupling we find, at last,
that the model can be brought into qualitative
agreement with the known meson spectrum. The

2.0—

I i I & I & I

1.0 2.0 3.0
q

m'

4.0

FIG. 7. Lowest-lying Z=O and J'=1 energy levels as a
function of coupling constant.

1.0-

%0 40
2

60 80
IN' ~g'—T forq -T=I.O
m gm

IO

FIG. 9. Hegge trajectories for (g2/m3)'~2=1. 0.

I20
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yP -)8-)A -0 I.O 2.0

yV 0
I

2.0

FIG. 10. ~SO amplitude for (gt/m3) t=0.08 and M/m
= 2.48.

pion is lower in energy than the e while the p and
e lie below the B. Finally, in Figs. 10 and 11 the
'8, amplitudes are plotted. Figure 10 is a plot of
the amplitudes when Q"' ' 40. We see for this ex-
ample that all the other amplitudes are zero. In
Fig. 11 the opposite is true. This is one of the
anomalous states determined by P"' '.

VI. CONCLUSIONS

Despite the inherent complexity of the Bethe-
Salpeter formalism for fermion-antifermion sys-
tems, we have found it possible to extend a previ-
ously derived theory for spin-0 bosons to the case
of spin —, in a fairly straightforward way.

It is surprising, but the addition of spin seems
to introduce new structure in the spectrum for
even the nonrelativistic domain. The existence of
these states is a result only of the way in which
we have incorporated spin into the formalism.
However, their existence does not prove to be a
disaster since they scramble the order of states

FIG. 11. 80 amplitude for (g /m )
~ = 0.13 and M/m

= 2.48.

one expects to see from purely nonrelativistic
models and, in fact, at strong enough couplings,
bring the model into qualitative agreement with
the phenomenology of the known mesons. The dis-
advantage is, of course, that at the very strong
couplings needed to fit the known meson spectrum
they require that more than 3 of the mass of even
the pion must be in binding energy, and the inter-
nal constituents are relativistic for all the mesons.
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