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We show the time evolution of minimum-uncertainty coherent-state (MUCS) wave packets in the solvable
potentials we have considered. (Numerical techniques are discussed .in the appendices.) The time evolution is
compared to the motion that a classical particle would have in the same potential. We make a number of
observations on the conditions which can cause the states to lose their coherence more (or less) rapidly with time,
and compare the MUCS results with those which can be obtained from other types of coherent states. The most
physically interesting comparison is with the “continuous representation” coherent states.

I. INTRODUCTION

In this paper we investigate the time evolution
of the minimum-uncertainty coherent-state (MUCS)
wave packets which have been derived! ~¢ in the
previous four' ™ articles of this series. As em-
phasized in paper III® by coherence we mean a
state whose wave packet (i) remains localized in
position and momentum about the classical quan-
tities, (ii) does not change shape with time, (iii)
has an oscillation in position with the classical
frequency, and (iv) has an amplitude of oscillation
that is the classical amplitude (up to a zero-point
contribution).

The coherent states of the harmonic oscillator!
satisfy all these criteria exactly. Other equally
spaced level systems, such as the harmonic os-
cillator with centripetal barrier (HOCB) potential
of paper II and the radial part of the three-dimen-
sional harmonic oscillator, satisfy them approxi-
mately, although not exactly. This can be under-
stood by decomposing the coherent states into
eigenstates:

Vg (x, ) =exp(—iHt/H) Y ah,(x) (1.1)
= Za" exp(~iE t/7)d,(x) . (1.2)

For
E,=&(n+ const)=xw,(n+ const) , (1.3)

one has (j an integer)
,‘I’cs (x,t=to+ 2mj/w,) l2= "I’cs(x:t=_to) 2. (1.4)

That is, the wave packet regains its original
shape after every classical oscillation. (This was
discussed in detail for the HOCB potential in pa-
per IL) Thus, any localized wave packet in a sys-
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tem satisfying Eq. (1.3) will, after a possible par-
tial dispersion, return to its original shape and
position after every classical period. For the
HOCB potential of paper II, this could be seen
analytically.”

However, for systems with nonequally spaced
levels, Eq. (1.4) no longer holds and the coher-
ence time is finite.® It is therefore the purpose
of this paper to study numerically the time evolu-
tion of the MUCS wave packets which we have de-
rived in this series for such systems, and to see
what general conclusions can be made from the re-
sults.

For the one-dimensional symmetric P6schl-Tel-
ler (PT), symmetric Rosen-Morse (RM), and
Morse potentials, our calculations®® have given
us analytic closed forms for the eigenstates, the
coherent states, and the decompositions of the co-
herent states into eigenstates. Thus, in principle

" the numerical study of the time evolution of the

coherent states is straightforward. In practice,
however, there are problems. This comes about
primarily because the overlap integrals q, involve
differences of extremely large quantities from
products of I" functions of complex arguments
with large absolute value. These differences lead
to relatively small a,. (Appendix A describes the

" numerical procedures which were used.)

In Sec. II we give a number of examples of the
time evolution of our MUCS in the above one-di-
mensional potentials. These examples are pre-
sented in the form of computer-generated frames
of a movie. Each frame shows (i) the potential,
(ii) the wave packet located on a horizontal bar at
the energy (H).g, (iii) the number of classical os-
cillations which have occurred, (iv) a vertical bar
located at the particle’s classical position, and
(v) a spot indicating the mean quantum position
(x(#))gg. The figures are all given in terms of the
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dimensionless units of energy and position:
8,=%2%?/2m, z=ax. (1.5)

The cases we will discuss are chosen so that the
start is midway in time between the classical
turning points. We will mention what the differ-
ences are if the states start elsewhere.

The examples we give have been selected to
demonstrate particular aspects of the results.
Some of the phenomena, especially transient phe-
nomena, are more easily demonstrated in actual
movies. The present authors and F. Baker® have
made such a computer-generated film, which con-
tains more examples than we shall go into here.
This film is available, and we shall sometimes
refer to it for specific observations.

The time evolution of the radial part of the
three-dimensional Coulomb problem, discussed
in Sec. III, is more difficult to calculate. This is
because the hydrogen atom has a countable infin-
ite number of bound states with an accumulation
point at zero total energy. Thus, the number of
eigenstates with which a coherent state has sig-
nificant overlap can sometimes be too large to
handle easily. Therefore, in this case we used
the more difficult procedure of studying the time
evolution of the coherent states by numerically
integrating the defining differential equation

. d
i 7 ¥p, 7)=30¥(p, 1), (1.6)
(& 2 d) 1 11+1)

Zc——(dp2+pdp —p+ et (1.7)
me*

T=4tgo/ﬂ, 80:?’ (1.8)
2

p=r/ro, rO:W . (1.9)

The numerical procedure is discussed in Appen-
dix B.

In Sec. IV we compare our results with some
that were obtained from other coherent states.
Our final paper'® will give a set of conclusions
that can be made concerning the results of this
program,

Before proceeding, we wish to make a few ob-
servations on the results obtained, for the reader
to bear in mind. As emphasized in paper I* and
Sec. II of paper II,? it is only for potentials with
equally spaced levels that a wave packet can re-
turn to its original shape in a period correspond-
ing to one classical oscillation. For not-equally-
spaced level systems, such a phenomenon will not
occur. In such systems wave packets will dissi-
pate, or lose their coherence, in time.'! This
does not violate Ehrenfest’s theorem, since there'*

d 1

pr (X>=E (p, (1.10)
d,._ [ dv\, _d

P (p)= <——-dx>#= ——d(x> V{x). (1.11)

Also, given a finite coherence time, for any
system we will find that the relatively deeper one
is in a potential well and, given that, the more
eigenstates which have a significant overlap with
the coherent state, the longer will be the coher-
ence time,

II. ONE-DIMENSIONAL EXAMPLES
A. Symmetric Péschl-Teller potential

The symmetric P8schl-Teller potential of Eq.
(I13.1),

V(x)=Uytan’z, z=ax, (2.1)
HZ 2
Uy= 8N =1), 80=—2-W“-L— , (2.2)

with eigenvalues
E,=8\(2n+n®+ 1), (2.3)

is contained within an infinite square well with
sides at x=+d=++7/a. As A—1 it becomes an
infinite square well. As X gets large, it looks
more and more like a harmonic oscillator near
the minimum. (Recall that in the limit A e,
Aa*—~mw/f, it does become a harmonic oscilla-
tor.) Our MUCS for this system are given in Eqgs.
(I13.15)—(113.17) and (113.20).

In Fig. 1 we show a coherent-state wave packet
in the potential defined by A=400. The value of
C=289.944i, where C is defined in Eq. (I13.17),
yields an (H) of that of the 10th excited state
(4g¢=10). The frames in Fig. 1 are taken § of a
classical oscillation apart. Thus, in a particular
column each frame is 13 cycles later than the
frame above it. The wave packet follows the clas-
sical motion of the vertical bar very well. The
packet becomes more peaked at the walls, and only
begins to show secondary ripples in the frame
labeled by 55 oscillations.

Note that as one goes down the first column the
packet becomes wider with time. Also observe
that in the frame labeled by 7 % oscillations the dot
representing (z(#)) is to the right of the vertical
classical bar as ripples have developed to the
right,. But the main peak remains located at the
classical vertical-bar position., Finally, with time
the MUCS wave packet tends more and more to
gather at peaks at the turning points, “sloshing”
back and forth between the classical turning points
rather than following the classical bar with rela-
tively little change in shape. All the above phe-
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FIG. 1. Time evolution of a cohefent—state wave packet in the Poschl-Teller potential with A=400, The state has an

(H) equal to that of the 10th excited state.

nomena are associated with the gradual loss of co-
herence and, from our other cases, will be seen
to be general features.

Figure 2 shows a coherent-state wave packet in
the potential defined by A=40. The value of C
=80.117; gives an {H) of that of the 50th excited
state (1,,,=50). In this confining potential, x=40,
compared to the A=400 of the last example, cor-
responds to being higher up in the potential and
having relatively fewer number states with signi-
ficant overlap. The sides are steep, and they
flatten out quickly to reach zero just below the
frames shown. These effects all lower the coher-
ence time (in numbers of classical oscillations)
compared to the previous example.

However, one thing which should be emphasized
is that we are talking about coherence in terms of
number of classical oscillations. The period of
these oscillations is potential and energy depen-
dent. From Egs. (2.2), (2.3), (113.2), (113.6), and
(I13.19), the classical period 7, and the classical
angular velocity w, of Eq. (II3.6) in terms of the
nth eigenstate energy are

T, = 277/‘%: (2.4)

w,(E,) =\ +n)Ha*/m). (2.5)

Thus, although a larger A and a smaller »,,, both
contribute to longer coherence times in terms of
classical oscillations, they have opposite effects
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FIG. 2. Time evolution of a coherent-state wave packet in the Poschl-Teller potential with A=40. The state has an

(H) equal to that of the 50th excited state.

on the actual time consumed in each period. Fur-
ther, one must realize that for any significant
Neqe, €ach classical oscillation corresponds to
many oscillations at the transition frequency from
the n-effective excited state to the ground state,
since that is defined by

w,(E,) = -E—"-ﬁ"—'-z—° =n(A+n/2)(#a*/m). (2.6)

Similar formulas and conclusions can be obtained
for the other potentials we discuss.

A new phenomenon which is seen here is the ex-
istence of envelope ripples which begin to show
up by three oscillations. A good example is seen
in the 3 116 oscillations frame. The wave packet

oscillates above zero, contained within a rippling
envelope. In motion pictures these ripples move
in a beating manner. The reader can get some
idea of this by comparing two adjacent frames.

B. Symmetric Rosen-Morse potential

The symmetric Rosen-Morse potential of Eq.
(m2.1),

V(x)=Uytanh®z, z=ax, (2.7)
h—z 2
U,= 8os(s+1), 80=# , (2.8)

with eigenvalues
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E,=8(2ns =n’+s) (2.9)

is a potential with a finite number ([s]+1) of
bound states, plus a continuum. Our MUCS for
this system are given in Eqs. (III 2.17)—(III 2. 20)
and (III2.23). .

In Fig. 3 we show a coherent-state wave packet
in the potential defined by s=399.5, i.e., there
are 400 bound states. The state was chosen so
that the average energy (H) is £ the way up to the
continuum located at U,, which gives n,,,= 20,027,
For a state starting at the potential minimum, C
=124.98i. The frames in Fig. 3 are § of a classical
oscillation apart, so that in a particular column
each frame is 13 cycles later than the frame above

it. The slow loss of coherence is similar to that
for the PT case given in Fig. 1, and the same
qualitative comments can be made. The main dif-
ference is that since this packet has an average
energy of the 20th excited state, and Fig. 1 has an
average energy of the 10th excited state, the sec-
ondary ripples are smaller but more numerous.

Figure 4 shows the same potential with 400 bound
states as Fig. 3, but here the average energy (H)
is § the way up to the continuum at U,, giving Nege
=116,.66. For a starting position at z=0, this is
obtained with a value of C=282.312;. From our
comments for the PT potential, we expect shorter
coherence time in classical oscillations than for
the previous example, since we are relatively

0 §

1%

—

NV

fw

-

1t

S

1%

O

2%

L

2t

3t

3t

C

gl

4%

4%

5%

s
C

5¢

NP

N

-
C

6 6t 6t 7
7% 7% 8% 8%

FIG. 3. Time evolution of a coherent-state wave packet in the Rosen-Morse potential with s=399.5 '(400 bound states).
The state has an (H) that is fthe way up to the continuum at Uj.
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FIG. 4. Time evolution of a coherent-state wave packet in the Rosen-Morse potential with s=399.5 (400 bound states).
The state has an (H) that is -;— the way up to the continuum at Uj.

higher in the same well. This is seen in Fig. 4.
For comparison with the PT results, the formu-
las for w(E,) and w,(E,) are

w,(E,) = (s —n)(#a®/m), (2.10)

w,(E)=n(s —n/2)(ma®/m). (2.11)

Finally, in Fig. 5, we show the time evolution of
a coherent-state wave packet in the same potential
$=399.5, but with an average energy (H)= & U,
giving n,,=273. A start at z=0 is obtained with
C=379.18i. This case leads us into a detailed
discussion of what occurs as one approaches the

continuum.

For this case, we already have that 7% of the
wave packet is in the continuum. It is shown in
the first frame by the dotted spike on top of the
bound-portion wave packet. The continuum eigen-
functions are P**(tanhz), which vary as plane
waves far away from the potential minimum,
Therefore, as discussed in Sec. II of paper III,
the continuum contribution to the wave packet
evolves off to the sides with time. This state loses
its coherence in about one classical oscillation,
At times longer than this the movie of this run
shows that the quantum expectation-value dot rep-

.

FIG. 5. Time evolution of a coherent-state wave packet in the Rosen-Morse potential with s=399.5 (400 bound states).
The state has an (H) that is IBU the way up to the continuum at U,. The wave packet has an expanded vertical scale in

the second line.
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resenting (2z(¢)) develops an amusing jitter about
Zero.

In addition to having a significant overlap with
the continuum, this example also has the bound
state with maximum ]a"]2 quite a ways below #,,
=273. It is n(max)= 260, where n(max) labels that
eigenstate which has the maximum |q,|% To see
if this phenomenon was a general one, we did two
things.

First we considered wells with on the order of
four bound states. Then we could compare our
numerical results for |a,|* with analytic results
based on Eq. (II12.30). We found that the lowering
of n(max) with respect to n,,, was a real phenom-
enon. Even as one goes up so that (H) is in the
continuum (greater than U,), n(max) could be lower
than the highest bound state.

Next we considered numerically the case s
=99.5 with 100 bound states, and took (H)/U, to
be closer and closer to the continuum. As shown
in Table I, the closer one comes to the continuum,
the more overlap there is with the continuum, and
the further n(max) decreases below 7,,,.

Then there was another side to the above phe-
nomenon, Note that all the above cases deal with
imaginary C. Positive imaginary C corresponds
to coherent states which start at the center of the
potential (z=0), moving with maximum velocity to
the right at the potential minimum. How do these
states compare with other coherent states whose
starting points in classical phase space are dif-
ferent? To compare, we looked at coherent states
in the same potential with the same values of (H),
but with C real and positive. This corresponds to
classical particles at the right-hand turning points.
As seen in Table I, here the contribution to the
continuum was less, the number of bound states
contributing significantly to the coherent states

was less, and n(max) stayed closer to n,,,.

Thus, as one gets near the continuum, the
imaginary-C coherent states have more overlap
with the continuum (meaning less coherence), but
more contributing bound states (meaning more co-
herence). However, at least for this potential, the
net effect is that one obtains a short coherence
time as one approaches the continuum no matter if
C is real or imaginary.

Also, we observed that even for coherent states
deep in the well, where Ngge = n(max), for a given
{H) the larger the real part of C was, the fewer
were the number of bound states which contributed
significantly to the coherent state.

C. One-dimensional Morse potential

The one-dimensional Morse potential of Eq.
(1I3.1),

Vix)=Ufl=-e??, z=ax, (2.12)
n%a®
Uoz)\Zgo, goz_z;n_ s (2.13)
with eigenvalues
E,=8,[2\(n+3) - (n+2)*], (2.14)

also is a potential with a finite number ([x —3]+1)
of bound states, plus a continuum. However, this
potential is asymmetric with the continuum re-
stricted to the right and an exponential barrier on
the left. Our MUCS for this system are given in
Eqs. (I113.24)—(1113.26). For reference, the for-
mulas for w,(E,) and w,(E,) are

W(E,)=(\ =3 =n)(ra*/m) ,
w,(E)=n(A =3 —sn)ka?/m).

(2.15)
(2.16)

In Fig. 6, we show a coherent-state wave packet

TABLE I. Characteristics of coherent states with energies (H) near the continuum U, ina
Rosen-Morse potential with 100 bound states (s=99.5). Starting positions are at z=0 (imag-
inary C) and at the right-hand turning point (real positive C). nesr labels the energy in terms
of an effective quantum eigenstate number and n(max) labels that eigenstate with the largest
overlap with the coherent state. The number ‘of bound states with an overlap probability den-
sity at least 10% is given as well as the overlap with the continuum.

Number of bound Overlap with

(H)/U, C Reff n(max) states contributing continuum
0.9 94,5783 67.9 59 75 0.22
0.9 291.18 67.9 68 30 - 0.0
0.95 97.1984 77.1 63 75 0.345
0.95 413.52 77.1 78 28 0.001
0.975 98.482; 83.7 66 74 0.415
0.975 567.41 83.7 84 26 0.015
0.9875 99.118; 88.3 66 73 0.450
0.9875 747,92 88.3 88 21 0.063
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FIG. 6. Time evolution of a coherent-state wave packet in the Morse potential with A=400 (400 bound states). The

state has an (H) that is % the way up to the continuum at U,.

in the potential defined by A=400, i.e., there are
400 bound states. The state was chosen so that
the average energy (H) is + the way up to the con-
tinuum located at U,, or n,,=20.027. For a state
starting halfway in time between classical turning
points, the C of Eq. (II13,20) is C=(443.274
+129.933;). The frames in Fig. 5 are § of a clas-
sical oscillation apart, so that in a particular
column each frame is 13 cycles later than the
frame above it. This figure is to be compared to
Fig. 3 for a coherent state one-half the way up to
the continuum in a Rosen-Morse potential with
400 bound states. The reader will observe that
frame by frame the two figures are very similar,
The slight distortions are due to this potential be-

ing asymmetric about 2=0, contrary to the sym-
metric Rosen-Morse potential. Thus, all the
comments made for the Rosen-Morse potential
coherent state of Fig. 3 also hold here.

Figure 7 now allows us to show the effect of hav-
ing fewer bound states which overlap with the co-
herent state. Figure 7 shows a coherent state
which also has (H) % the way up to the continuum
at U,, but in this case A=40 so there are only 40
bound states, meaning n,,,=1.553. The net re-
sults are that the fringes and size of the wave
packet are relatively larger with respect to the
distance the classical particle travels, and the co-
herence time is shorter than in the previous case.
(Also, since (H) is not much above the ground-
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FIG. 7. Time evolutmn of a coherent-state wave packet in the Morse potential with A=40 (40 bound states). The

state has an (H) that is L & the way up to the continuum at Uj.

state energy E,, the classical bar visibly does not
reach the intercept of the potential with the energy
line at (H).)

Figure 8 again considers the A =400 potential
with 400 bound states, this time with (H)=3 U, or

ey =116.66, C=(797.01+ 398.50i) gives a state
halfway in time between the classical turning
points. This figure, with each frame § of a clas-
sical oscillation apart, is to be compared to Fig.
4, showing the similar situation in the symmetric
Rosen-Morse potential, Comparing the two figures
frame by frame, the reader again can see the sim-
ilarity, but this time the changes due to the Morse

potential’s asymmetry are much larger.

Note that the starting point (midway in time be-
tween classical turning points) in Fig. 8 is to the
right of the potential minimum, Since the time
needed to reach both the right- and left-hand
turning points is the same from this position, this
means that both the classical particle and the co-
herent-state wave packet will travel slower going
to the right of the starting point than to the left.
When one looks at the movie® of this case, this is
even more apparent than in this Fig. 8. This
phenomenon is a classical manifestation of the ef-
fect of the potential’s asymmetry. Quantum me-

l 1 1%

=l

50

FIG. 8. Time evolutlon of a coherent-state wave packet in the Morse potential with A=400 (400 bound states). The

state has (H) that is T the way up to the continuum at U,,.
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chanically it still shows up in the coherent state’s
mean position with time, and this asymmetry also
changes the wave packet’s shape when compared
to the Rosen-Morse case of Fig. 4. °

III. RADIAL PART OF THE HYDROGEN ATOM

For the radial part of the hydrogen-atom prob-
lem, with the centripetal barrier labeled by I, the
effective potential and eigenvalues in units of &,
=% 8, are

V(?’):gg[l(—lp;_l)' —%], é =£2_0=%8R’ (3.1)

0" 4y,
h—z
p=7/7,, T0= 53 (3.2)
E,=-8,/n*, n=1+1,1+2,.... (3.3)

In terms of the dimensionless distance p, our
MUCS are given in Egs. (IV 4.25) and (1IV 4.26).

As discussed in Appendix B, numerical integra-
tion of the defining differential equation was used
to find the time evolution of the MUCS, and the
coherent-state wave packets were then plotted.
We found that the time evolution of these Coulomb
coherent states was consistent with the time evo-
lution we found for other potentials.

When compared to the one-dimensional Morse
potential, the hydrogen atom with centripetal bar-
rier (HACB) potential of Eq. (3.1) has a steeper
rise to the left. Therefore, we expect the loss of
coherence to be relatively more pronounced,
since it was found in the POschl-Teller examples
that the steeper the barrier the more pronounced
was the loss of coherence upon reflection. To the
right, the HACB potential rises to the continuum

more slowly (as 1/p) than does the one-dimen-
sional Morse oscillator (as an exponential). Thus,
especially for slightly negative (H), the states
evolve very slowly for large p. (Classically, this
corresponds to the slow motion of a planet near
apogee in an eccentric orbit.) This too leads to
loss of coherence, even though many states can
have significant overlap.

Given the above modifications, the results we
obtained were similar to and consistent with those
obtained from the one-dimensional potentials. In
Fig. 9 we show one example to demonstrate this.

Figure 9 is for the case where (H) is ¢ the way
up to the continuum at zero energy from the HACB
potential minimum of -8,/[I(I+1)]. For a particle
starting halfway in time between the classical
turning points, this gives a value for the C of Eq.
(IV 4.26) of (0.002263 —0.001018;). (Note that be-
cause of the convention we used in Sec. IV of pa-
per 1V,* negative imaginary C means a particle
moving to the right.)

The three lines of Fig. 9 should be compared
frame by frame to the first three lines of Fig. 8
for a coherent state 3 the way up to the continuum
in a one-dimensional Morse oscillator with 400
bound states. The HACB potential is more asym-
metric, causing loss of coherence. The signifi-
cant number of bound states is less in the HACB
case. This can be seen by the relatively larger
size of the secondary ripples, when they appear,
as well as the relatively larger size of the be-
ginning wave packet. Given these distinguishing
characteristics, the similarities and differences
in the time evolution of the two cases are under-
standable. Thus, the evolution of the coherent
states for the radial part of the hydrogen atom be-

—_—
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FIG. 9. Time evolution of a coherent-state wave packet in the Coulomb potential with angular momentum barrier de-
fined by =150, The state has an (H) that is -é- the way up to the continuum from the minimum.
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haves as one would have expected from the results
of the one-dimensional examples.

IV. OTHER COHERENT STATES

When one thinks of a coherent-state wave packet
as a superposition of bound eigenstates, one real-
izes that one cannot simply draw a bell-shaped
curve for the wave packet. Although it gives visual
information, a single bell-shaped wave packet at
a particular time does not describe the system by
itself since it is ¥*¥, and hence does not show the
complex phase information. This ¢complex phase
information tells one what velocity or momentum
the packet has.

To see this, simply recall the form of the har-
monic-oscillator coherent states given in Egs.
(I2.8) and (12.12):

‘pcs(x) = [21r(Ax)2] e exp{ - [%%fé%]z% (p)x} ’
(4.1)

" (Ax)2=1/(2mw). (4.2)

The condition (4.2) gives the right width to the
Gaussian so that the wave packet does not change
shape with time and (x) determines the starting
position. Depending on the values of {x) and {p),
this coherent state can represent a particle of
any energy from the ground-state energy 3  up
to infinity, and with any initial momentum ().
The wave packet, however, does not show the
value of (p).

These considerations all apply in principle to
general potentials. The point is, if one can ap-
proximate the shape and phase information of the
minimum-uncertainty coherent-state (MUCS)
wave functions by some other means, then these
different coherent states will evolve in a similar
manner. Technically, one either has to have a
principle which yields a single-humped wave
packet with the proper phase information or else
one has to combine bound-state eigenfunctions
with coefficients a, such that all the nodes of the
separate eigenfunctions cancel out except for one
hump in the wave packet. To start with the eigen-
functions and then cancel out all the nodes is man-
ifestly a much more complicated procedure than
to have a principle which yields a single-humped
wave packet with proper phase information in the
wave function,

The advantage of the MUCS method is that it is
a procedure where the wave functions, the de-
composition into number eigenfunctions, and the
expectation values of interest, such as (H) and
(X), can all be obtained analytically for the exact-
ly solvable examples we have discussed in this

series.

We have also discussed generalizations of other
coherent-states techniques which had been used
for equally spaced eigenvalue systems. We have
called these generalized states annihilation-op-
erator coherent states (AOCS) and displacement-
operator coherent states (DOCS). Even though
these states are not as analytically tractable as
the MUCS, it was of interest to compare them nu-
merically., We did this for the AOCS-DOCS of
Egs. (II12.59) for the symmetric Rosen-Morse po-
tential. In looking at these states, a problem was
that there was no analytic expression for (H) or
(X) as there was for the MUCS. A search proce-
dure had to be used to find an AOCS-DOCS which
had a particular starting position in classical
phase space and value of (H) so that an appropriate
AOCS-DOCS could be compared with a particular
MUCS.

Given the search procedure, a particular case
[s="179.5 (80 bound states), (H) being  the way up
to the continuum at U,, and the packet starting at
the right-hand turning point] demonstrates the
general features of the AOCS-DOCS vis a vis the
MUCS. At ¢t=0, the MUCS was slightly more lo-
calized than the AOCS-DOCS. (The height of the
AQOCS-DOCS wave packet was 18% less and there-
fore it was correspondingly broader.) Comparing
the two states as they lost coherence and developed
secondary ripples with time, the shapes of the two
wave packets were very similar (the same number
of bumps at roughly the same positions). But the
MUCS tended to remain more compact and the
AOCS-DOCS lost more probability density to posi-
tions far away from the classical position (the
main hump of the packet).

Combined with the results of Sec. II, this ex-
ample alone tells us that after a search procedure
has been completed to numerically find AOCS-
DOCS with a particular (H) and starting position in
classical phase space, if the AOCS-DOCS wave-
packet shape does not differ too much from the
MUCS wave-packet shape, then the AOCS-DOCS
time evolution will be similar, if slightly more
spread out.

This also implies that the above comments can
probably be made about the approximate Coulomb
coherent states discussed by Mostowski'? (which
we mentioned in paper IV) if they are compared to
our exact, analytic MUCS, whose time evolution
we discussed in Sec. III. Also, as we pointed out
in paper IV,* our MUCS reduce to the circular-or-
bit classical states which Brown'® obtained on
physical bounds. (From our point of view, the
circular-orbit case is the ground state of the ef-
fective one-dimensional potential.)

" Finally, there is another set of states, which we
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have not discussed before, which we wish to com-
pare to our MUCS. These are the “continuous rep-
resentation” coherent states (CRCS) of Klauder.*
These states are physically interesting to compare
with, because in one physical limit they are nu-
merically extremely close to our MUCS, while in
another physical limit they are radically different
from them.

If x and p are the position and momentum op-
erators, and g and 7 are constants, the continuous
representation coherent states are defined as

Yo = explilxg — 7p) J$o(x) (4.3)
= exp(~irg/2) explixg) exp(—irp)Polx)  (4.4)
= expli(x —7/2)g]dolx - 7). (4.5)

Equation (4.4) is obtained by the use of the Baker-
Campbell-Hausdorff identity.

The CRCS wave functions are a displacement
without change of shape of the ground state, with
a particular phase factor added. Since the CRCS
are obtained by applying the harmonic-oscillator
displacement operator of Eq. (I2.23) onto the
ground state of any system, the CRCS for the har-
monics oscillator will be the usual harmonic-os-
cillator coherent states, as are the MUCS. But
how do these CRCS compare to our MUCS for po-
tentials which rise either more slowly or more
rapidly than the harmonic oscillator ?

For potentials which rise more slowly than the
harmonic oscillator, the CRCS can yield almost
exact numerical agreement with the MUCS. We
demonstrated this by computing many examples
in the symmetric Rosen-Morse potential, with
starting positions both at x=0 and at the right-hand
turning points, and for many values of (H) includ-
ing all the very lightly bound cases listed in Table
I. Comparing the shapes of the wave packets with
time, they almost always overlapped within the
width of the oscilloscope’s trace of the packets.
All the eigenstate overlaps q, agreed in magnitude
and phase to within about 1% of the value of
a,(max). Finally, in cases where the time evolu-
tion was followed to many classical oscillations,
the CRCS and MUCS wave packets remained on top
of each other.

The reason for this agreement can be studied by
explicitly writing out the form of the CRCS for
this system,

Yer=N(0, s) explilx —7/2)g] cosh™[alx - )], (4.6)

and comparing it with Eq. ([I12.17), the MUCS for
this example,

¥ru=N(C, s)(coshz)™ exp[C sin™ (tanhz)] (4.7a)
=N(C, s)(coshz)™s
xexpl(u+iv)z -1 2%+ Jr 2%+ )], (4.7b)

The CRCS wave packet is centered at x=7, always
with the shape of the ground state, so its position
uncertainty is'® (Ax)o5*= ¥/(s)/(2s?), ¥’ here being
the trigamma function. The expectation value of
momentum is (p)cp=g%. On the other hand, the
MUCS wave packet has its maximum at

x =[sinh™(u/s)]/a, and has an expectation value

of momentum of (p)py=vafis |T(s+ L +iu)|?/|T(s
+1+iu)|% Thus, a one-to-one correspondence
between (r,g) and (,v) can be made. (In practice
this was done by demanding that (H) and (sinhz)
were the same for the two sets of states.) Fur-
ther, any energy MUCS wave packet that has u=0
(starting position at the origin) also has the same
shape as the ground-state wave packet. What
happens when % is not equal to zero is that the
asymmetric form of exp[2« sin™(tanh z)], when
multiplying N3(C, s)(coshz)™s, yields a function
which numerically is exceedingly close to
lpén(x)zl)c n(x)

For potentials rising faster than the harmonic
oscillator, however, the CRCS become increas-
ingly nonclassical the faster is the rise. One can
realize this by considering the limit of an infinite
square-well potential, whose ground state is

so0)= (2] "cosz, |e|=lar| <n/2. (0.8

P, goes to zero at the sides of the well with one
hump. Therefore, the displacement operator
exp(—irp) cannot be applied. Applying exp(—irp)
would give a wave function proportional to

cos[a(x — )] which does not go to zero at the sides
of the well. Further, although giving it a phase
factor exp(ixg) would give the CRCS a higher en-
ergy, it still would not be localized and would re-
main a broad object-spread across the entire well.
On the other hand, our MUCS can be localized and
follow the classical motion in the symmetric
Poschl-Teller potential which limits to the square
well when A~ 1,

Therefore, for potentials which have an infinite
barrier, such as the infinite square well, the gen-
eral Poschl-Teller potential, the one-dimensional
Morse potential oscillator on the left, and any
radial problem with a centripetal barrier, the
CRCS continuous-representation coherent states
will begin to fail.

However, it is very instructive and amusing to
see on the one hand how well the CRCS approxi-
mate the MUCS in potentials which rise as slow as
or slower than the harmonic-oscillator potential,
whereas on the other hand they begin to fail as one
encounters potentials which rise steeply.
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APPENDIX A: NUMERICAL METHODS FOR ONE-
DIMENSIONAL POTENTIALS

The spatial wave function ¥.4(2, ¢)for a given co-
herent state is calculable from the eigenstate
wave functions ¢,(2)=N,¢,(2), the eigenenergies
E,, and the set of initial amplitudes {a,}. Analytic
expressions exist for all three of these quantities
for the potentials we have considered. However,
actual calculations of numerical values of wave
functions demand more effort than is apparent.

The eigenfunctions y,(z) are most economically
generated from y, by using the recursion relations
for the special functions involved. Each y,(z) must
be calculated numerically over the range [z,,25]
where the coherent state has significant magnitude.
[z, and z were chosen by simple criteria which
guaranteed covering the range wherein ¥ had “sig-
nificant” magnitude (roughly = 10”2 of peak). ]

When more than approximately 100 eigenstates
are required to represent ¥(z,¢), the recursion
becomes difficult numerically. Specifically, ,(z)
at z>~z,; or z =z, commonly attains a magnitude
below that which is representable on a digital com-
puter, even a computer such as the CDC 6600
which can represent 107322, At such coordinate
values i, would be represented as zero and recur-
sion from i, would erroneously yield zero values
for all ¢, at the same z value. Thus, we resorted
to renormalizing the recursions by [,(2)]™/2, and
then at the end multiplying all “provisional” ,(2)
by the factor [y,(2)]*/2

For calculating numerical values of the q,,
straightforward use of the analytical formulas is
satisfactory up through moderate values of n,
typically 30-50. At larger values of »n, the can-
cellation of terms of alternating signs reaches
such extremes as to prohibit retention of one sig-
nificant digit in @,. (The correctness of the analy-
ical formulas was, of course, verified for cases
where fewer than 30-50 eigenstates contributed

significantly. The spatial wave functions were
compact, bell-shaped, and they moved with the
correct classical period of oscillation.) For these
large cases, we resorted to numerical integration:.

a,= fbdz Ya(2) ¥z, 0). (A1)

For use in Eq. (A1), one needs a numerically
stable computation of ¥ 2,0). In the analytic
formulas (113.15), (III12.17), and (II13.24) the
separate factors such as I" functions or high pow-
ers of the special functions of z tend to be unrep-
resentably large or small on a computer at large
z or when large values of the potential parameters
A or s are involved. Separate computations of the
logarithms of each factor sufficed, making the
final step the exponentiation of the algebraic sum
of logarithms,

Because for large » the , span a large range
of z and because they oscillate » -1 times, accu-
rate evaluation of g, requires that the integration
limits a and b be as close as practical to the as-
ymptotes of the physical problem and that the
spacing of points z be fine enough to get several
points per node in y, (we used eight). However,
the central range of [z;,z,] deserves the densest
sampling of points. It is here that the principally
contributing 3, have their maximum amplitudes.
Therefore, we employed coordinate transforma-
tions in the above integral in order to satisfy all
three criteria and still use a tractable number of
points (3000 or less).

For example, in the Rosen-Morse problem, the
asymptotes are (—«, «) whereas —z, and z, are
typically of order unity. We employed the coordi-
nate transformation

2= cosi (c0s ), a2

y= sin™ (tanh z) , (A3)

@n= fﬂ dz lp,,(z)\lﬂcs(z’ 0) ‘ (A4)
r/2 dy

) L/z Tosy V) ¥es(3,0). (A5)

Both 3, and ¥4 have simple mathematical forms
in both z and y spaces. The points in y were
spaced evenly for a Simpson-rule integration.
Given the a,, the coherent-state wave function
¥ 42,t) can be computed for arbitrary time. How-
ever, for cases of interest involving large num-
bers of contributing states, straightforward nu-
merical summation of a,¥,(z) exp(~iE /%) over all
n would involve storage of values of §,(z) for a
grid of rank 400 in » by 400-600 in z. This ex-
ceeds virtually any practical computer core stor-
age. To circumvent this, we stored values of
¥,{z) on disk as separate vectors over all  at
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fixed z. Reading in, storing, and computing with
only one such vector then sufficed to calculate
¥4(2,2) at a singlepoint z. In actual computer-gen-
erated plots of ¥«(2,¢), wegenerated smooth curves
from the basic grid by using available spline-
based interpolation algorithms.

The spacing of points in z at which ¥,gwas com-
puted was chosen to be approximately } the inter-
modal distance in y,(z), where

E,=gn), (a6)
N=n,, =g ((H). (A7)

The next task was choosing the complex param-
eter C=u+1iv to yield the desired value of ((H)
- E,) (trivial) and the desired phase 6, corre-
sponding to E_ and 6., respectively, for the clas-
sical particle. (The convention we use is that 6
=0 corresponds to the midpoint in time between
turning points, with the packet moving to the
right.) Because of the ground-state contribution
to the quantum (H), in general, there is no unique
and exact analytic method for inverting the clas-
sical equations

X,=A(E) sin[w (E)] , (A8)
P,=mw,(E)A(E)cos[w(E)], (A9)

to obtain the quantum analog with a unique C=u
+iv and (H). This significantly affects only co-
herent states with (H) close to E,. As a result,
the following approximate method could be used,
which is best discussed in terms of a concrete
example, the P&schl-Teller potential.

The turning-point values «, and u, are chosen
such that {H) has the desired value with v=0. We
then took it that # corresponding to any phase 6
obeys

_(UrtuUr Ur —UL .
u—( 5 )+( 5 )-smg

=Upyq+ Ousing.

(A10)

(For the symmetrical P8schl-Teller case, uy
= —up, but the form above hints at the general
case.) The value of v is set by (H).

The final numerical task was calculating the
position z_ of the corresponding classical parti-
cle. For the PT case, to be consistent with our
choice of C, we effectively computed a u(t), given
by

u(t)=up, + dusin(w,t+6,) , (A11)
and used this to calculate sinz,, and hence z..
Similar schemes were used on the other poten-
tials.
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APPENDIX B: NUMERICAL METHODS
FOR THE COULOMB POTENTIAL

In principle, numerical calculation of the time-
evolved Coulomb coherent-states wave functions
could be performed by the methods used for one-
dimensional potentials; that is, ¥(p,?) could be
resolved into eigenstate components. However,
since the Coulomb potential has a countably infin-
ite number of bound states with an accumulation
point at the continuum, as one goes up in energy
the number of eigenstates with which a coherent
state has significant overlap can become too large
for an efficient numerical calculation. Therefore,
direct numerical integration of the reduced Schro-
dinger equation was done by finite differences.

Writing the Schrddinger equation in terms of
time-derivative and spatial operators as

ay
E=ét\1’= ép‘If, (B1)

one finds that the finite-difference operator ap-
proximating é , has imaginary local eigenv?lues.

A choice of finite-difference operator for 9, is
required which is stable for imaginary eigenvalues
and which achieves high numerical accuracy with
minimal computing effort. Such a choice is the
“leap-frog corrector method” with a single cor-
rection step.'® Defining ¥° and ¥' as initial and
corrected approximate wave functions, and de-
noting the nth discrete time value as ¢,, we have

‘I‘O(P’ tml) = ‘I’I(P; tn—l) + zotép‘lll(m tn) ’ (B2)

V(p, t,0) =5 ¥ (p, t,) +35 ¥ (P, tpy)
+ % 6¢[20,9%(p, t,) + 40,¥(p,2,)] . (B3)

The (uniform) spatial step size 6p was chosen
rather intuitively to be roughly % the period of the
finest spatial variation in long-time evolution;

i.e., 3 the internodal distance of the highest eigen-
state which contributes significantly to the coher-

ent state. For example, with [ of the order of 100
and (H)=3 V(p,,;,) = (z up to the continuum from the
potential minimum), this meant using up to 500 or
600 points in p. In order to ensure stability of the

temporal integration, the time step 6¢ must satisfy
the Courant condition,

6t < const X local eigenvalue of 5,, (B4)

1 3 3 3 2
< min [5 60, 3 Puta®Ps 5 Poinr 3 fflm-Tnl-)-] (B5)

We further enforced a safety factor of 3 in the
latter approximate form. To evolve five classical
oscillations the number of time steps needed was
typically 1000—-20 000. Duringthetemporal integra-
tion, we occasionally tested the normalization of



¥ as calculated by Simpson-rule spatial integra-
tion, The integration was terminated and rerun at
smaller (6p, 6¢) if any significant deviation from
unity occurred.

The finite spatial region [p,, p,] over which we
calculated ¥ was chosen such that p?|¥ |* at any
point in time evolution never attained a significant
magnitude at the end points. A usable criterion
proved to be choosing p, such that for the left-
most-starting coherent state of the given energy
E, i.e., ¥ (p,,t=0; (H)=E, C=u;), the magnitude
of p?|¥ |? at p, was 107 its value at the peak. pg
was chosen similarly, with a rightmost-starting
packet. Simple Newton-Raphson root-finding tech-
niques sufficed. (Loosening of the 10~ ° criterion
led to induced oscillatory errors in ¥ when the
packet evolved toward the boundaries.)

A five-point difference approximation to @),, was
chosen as an optimal compromise between accu-
racy and computing effort. At points immediately
bordering the boundaries where ¥ was set equal
to zero, a three-point difference formula was
used.

Numerically stable computation of the initial
¥(p, 0) from the analytic formula (IV 4.25) requires
some care. Separate factors such as high powers
of p or I functions tend to be unrepresentably
large or small on a computer for extreme values
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of p or large values of I. Separate computations
of the logarithm of each factor sufficed, making
the final step the exponentiation of the algebraic
sum of logarithms.

The complex parameter C was chosen for the -
best correspondence of coherent motion with clas-
sical motion at the same energy (H)=E, and at
a chosen phase 6=6,. (Contrary to our practice
in the one-dimensional potentials, we did not sub-
tract the zero-point energy, which was quite neg-
ligible in cases of interest.) The classical analyt-
ical equation for the initial value of p as a function
of E, and 6, [paper IV, Eq. (B16)] was solved by
Newton-Raphson root-finding techniques, with
some complicated constraints to stabilize the
search., Given this value of p, we then chose the
value of # to give the identical value for the quan-
tum expectation {p). The magnitude of v was set
to satisfy (H)=E,, and its sign was determined by
the convention that at a phase of zero the packet is
rightward-moving and at the midpoint in time be-
tween turning points.

For all times greater than zero, the classical
p(¢, E, 6,) and the quantum { p) were computed and
compared. The classical p was computed by again
iteratively solving the classical analytical equa-
tion. The quantum (p) was computed by Simpson-
rule integration.
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