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The minimum-uncertainty coherent-states formalism is extended to higher-dimensional systems.
Specifically, for spherically symmetric three-dimensional potentials the formalism looks for coherent states
which are products of an angular wave function times a radial wave function. After reviewing the many
studies on angular coherent states, I concentrate on the physically distinguishing radial coherent states. The
radial formalism is explained in detail and contrasted with the effective one-dimensional formalism. The
natural classical variables in the radial formalism are those which vary sinusoidally as g(E,L)8(t), where
8(t) is the real azimuthal angular variable and g(E,L) is the number of oscillations between apsidal
distances per classical orbit. When changed to natural quantum operators, these operators can be given as
the Hermitian sums and differences of the "l" raising and lowering operators. The formalism is applied to
the three-dimensional harmonic-oscillator and Coulomb problems.

I. INTRODUCTION x, =(ax)' —()+ ). (1.2)

Having discussed' ' the minimum-uncertainty
coherent-states (MUCS) formalism for one-
dimensional systems in great detail with Sim.-
mons, Jr., I now proceed to higher-dimensional
systems. For explicitness, in this section I limit
myself to spherically symmetric potentials in
three dimensions. The generalization to N di-
mensions will be obvious. .

Given a specific physical problem, one hopes to
figd a separable set of coordinates in which one
can work. One can then attempt to find the co-
herent states as product wave functions in these
coordinates. Qf course, for spherically sym-
metric potentials a separable set of coordinates
is (r, 8, P), so one can look for coherent states
in the forms P(r)g(8, P) or )t)(r)g(8)g((3))) Many.

discussions have appeared concerning coherent
states for angular coordinates. These discussions
are reviewed in Appendix A. Since the angular
part of the entire coherent states will be the same
for all spherically symmetric potentials, I refer
the reader to Appendix A and the references
listed there. In this paper I will concentrate on
the physically distinguishing part of the problem,
the radial part.

The radial part can be attacked in more than
one fashion. The first method is to consider the
potential plus angular momentum barrier
L'/(2mr') as an effective one-dimensional poten-
tial. This was done for the harmonic oscillator
with centripetal barrier (HOCH) potential in
paper II.' There, we took the effective potential
as

I'

V(x) =UOI ax ——,Uo= |()op'.
ax

The natural classical variable X, is

H= — +V(x).
2m dx' (1.5)

X is related to the "n" raising and lowering
operators as

X„=X(H 8„)=—(A„+A„').1

Note that these A'„operators raise and lower the(„which correspond to the X„,=R„,/r of the radial
problem.

The above description represents the chain
which we discussed in paper I: (a) the classical
problem, (b) the natural classical variables,
(c) the natural quantum operators, and (d) the
"n" raising and lowering operators for the quan-
tum eigenvalue problem. On this last point,
recall our emphasis in paper III that the raising
and lowering operators we use are for the n
quantum number, not other raising and lowering
operators which one could obtain from certain
Infeld-Hull factorizations. ' (These might, for
example, change both the shape of the potentia1.
and the quantum number n. See the Introduction

and it varies as the sine of the classical angular
velocity multiplied by time:

z( z
X,= —

~
1 + sin(d, t .

/Up I( 4Up

The quantum version of X, is the natural quantum
operator

x = (ax)' —(( + ),
where 0 is the effective one-dimensional Schro-
dinger Hamiltonian
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p„=r/r, n. (1.7)

Thus, even given the raising and lowering opera-
tors which change R„,(or X„,) to R„,», they
do not also change p„to p~, . The new quantities
R„,»(p„)are not the (n+1, l) eigenfunctions. To
make then the new eigenfunctions p„must be
raised or lowered to p, by hand. At root, this
is the reason it was not possible to use the
Perelomov technique' to obtain exact hydrogen-
atom coherent states in terms of the exponential
of the group generators of the hydrogen atom.

The futility of this approach for the hydrogen
atom can also be seen by solving the classical
problem for the natural classical variable X,. As
is shown in Appendix B, the answer is

L2 e2r & 1/2
X =+cos —r'

Ic =
e2 2mE E

e'+ 2Er
(e'+ 2BL*/m)' " (1.8)

where the plus sign is for 2nv &&o,t & (2n+ 1)v.
The natural quantum operator X would be Eq.
(1.8) symmetrieed in E -H and r To obta.in the
analytic MUCS from this operator and the asso-
ciated quantum operator I' would be heroic. How-
ever, the complicated, nonanalytic raising and
lowering operators at one end, of the chain make
the complicated X, at the other end of the chain
mutually believable.

Is there, though, another MUCS procedure that
can be used'P The answer is "yes." For spher-
ically symmetric three-dimensional problems,
it is not just the cyclic variable (ar, t) which can
be used to obtain natural classical" variables.
There is also the real angular variable 8(t),
where classically

of paper III.') As will be discussed in paper VI, '
a physical justification can be given in terms of
WKB arguments' for choosing the n raising and
lowering operators. [This justification amounts
to completing the bridge between (c) and (d) of
the above chain. ] But independent of this, the
procedure has worked every time in our one-
dimensional examples. ' ' Our prog ram clearly
relates to many of the connections between clas-
sical and quantum motion. "

However, if one tries to apply the above chain
to the hydrogen atom, the problem turns out to be
analytically intractable. This can be immediately
realized by observing that the n raising and lower-
ing operators for the hydrogen atom cannot be
put in analytic closed form. This is because the
wave functions R„,or X„,=R„,/r are functions
of the quantity

8 =L/mr'.

(The azimuthal angle is often labeled 8 in classi-
cal mechanics instead of by the Q of quantum
physics. ) For spherically symmetric potentials, "
the classical orbit varies between the interior
perigee and exterior apogee apsidal distances x,
and x,. The orbit is closed for all E and L only
for the harmonic-oscillator and Kepler-Coulomb
potentials. " However, since for all spherical
potentials the orbit is symmetric about any apsidal
vector, " the orbit will start at an apsidal position,
vary to the other, and come back again, in some
fraction 1/g(E, I ) of 2v. [The case g(E, L)=0
corresponds to just unbound motion, and so is
excluded. ] Thus, a natural classical variable
can be chosen as that variable which varies as the
sine and cosine of 8(t)g(E, L). g(E, L) is "2" and
"1"for the harmonic oscillator and the hydrogen
atom, respectively.

Now, in terms of this angular variable, the
MUCS procedure works thusly:

(a) Solve the classical porblem.
(b) Find the "natural classical variables" which

vary as sin[8(t)g(E, L)] and cos[8(t)g(E, L}].
(c} Turn these natural classical variables into

"natural quantum operators" and find the mini-
mum-uncertainty states of the associated uncer-
tainty relation, subject to restriction that the
ground state is one of them. (The ground state
is taken to be minimum n for a given l. This is
circular motion, so the particle is at the bottom
of the radial potential plus angular momentum
barrier. )

(d) These natural quantum operators will be
able to be written in terms of Hermitian sums
and differences of the "l" raising and lowering
operators.

Given the classical problem, properties (a) and

(b} can be satisfied as a matter of principle.
Properties (c) and (d} are satisfied explicitly for
the two examples given in Sec. III. The general-
ity of these last two properties will be discussed
in the concluding paper of our series. '

In Sec. II, I describe this MUCS procedure in
detail, emphasizing the differences between this
procedure and that for r'eal one-dimensional

. problems. In Secs. III and IV, I implement this
procedure for the radial parts of the harmonic
oscillator and the hydrogen atom. The results
are compared to those which can be obtained from
other procedures in Sec. V. As I emphasize, the
different methods for obtaining MUCS for a par-
ticular system do not yield identical MUCS. How-
ever, they all follow the classical motion. The
wave packets have slightly different shapes be-
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cause they are MUCS for different uncertainty
relations.

' dtLe-t, = f0

p' L2
H =E = "+ V(r) +

2m 2mr2 (2.1a)

II. CLASSICAL RADIAL PROBLEM

Starting from the classical Hamiltonian equation
for a conservative system with constant energy

dr
[(2m/I 2)(E —V) —1/r 2]1/2r 2

g dQ

[(2m/L2)(E V) u2]i 12

one has

r—+ V(r}+m ~ L2

2 2mr2 ' (2.1b}
u-=I/r. (2.11)

Putting Eqs. (2.8) and (2.9b) into Eq. (2.1a),
one can rewrite the Hamiltonian equation in the
form

X/2- L2 1/2
E —V(r)—

m 2mr 2 (2.2) ~2L2 P 2 ] L)2
+ —m —

i X,'.2m 2m 2 mj
(2.12)

Our natural classical variable

X,=X,(r, E, L)

varies with time as

X,=A, (E, L) sm[g(E, L)8(t)j.

(2.3)

(2.4)

This means that once again, when one uses the
natural classical variables X, and P„the Hamil-
tonian equation is in the form of that for a har-
monic oscillator. The classical equations of
motion are

(2.6)

, cos(g8),
gLA,
mr' (2 6)

With a prime denoting the derivative with respect
to r, taking the time derivative of X, yields

X,=X,'r =g&A cos(g8} gLP = 2X, .mr'

(2.13)

(2.14)

where we have used

8=' .mr2 ~

Combining Eq. (2.6}with Eq. (2.2}, X, is the so-
lution of the equation

III. HARMONIC OSCILLATOR

A. Natural classical variables and quantum operators

For

V(r}=-'m(o' r' (3.1)

A'-X,2

E —V(r) —L'/2mr '

(2.8)

the natural classical variables are

X,= —,—,=A(E, L) sin28,1 mE

P =~=-ALcos28.c

(3.2)

(3.3)
The main difference between this and the one-

dimensional formula' (I3.4) is the factor (g/r'}.
Here (I,/m) takes the place of v, in the one-
dimensional case. The other natural variable
P, is given by

P, = mX, r '/g- (2.9a)

= —P.~!r'/g
= -LA cos(g8) .

(2.9b)

(2.9c)

The factor (-g '} in (2.9a) is a convenient nor-
malization, but the factor r' is absolutely nec-
essary. Otherwise, the time variation of (2.9c)
would not be cos[g8(t)] since r also varies with t.

The reader should here recall that the variation
of 8 with r will also be found by integrating Eq.
(2.7), using (2.2) to change variables, leading to

This is the correct angular variation,

g(E, L) =2, (3.4)

X Ir*(&+-')')' (3.5)

(3.6)

since the orbit of the harmonic oscillator under-
goes two oscillations between apsidal distances
for every angular rotation of 2m. The reader can
verify -that the above results satisfy the equations
of Sec. II, specifically, Eqs. (2.8}, (2.10}with the
appropriate phase, and (2.11)—(2.14) .

The natural quantum operators should thus
have forms like
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(3.V)

and H is the radial quantum Hamiltonian

e2 /d2 2 d'r a21(1+1)H=-
I 2+-d )+ 2 2 +2m(d y

(3.8a)

where the use of (l+ 2p vs l(l+ 1}in (3.5) will be
understood shortly. p„is the quantum radial
momentum operator

e(1
p =-. I-+—

I

Z Ir dr&

(3.18)

S. Minimum-uncertainty coherent states

P =
2 2l 1

.([A, + (A()t] - [A(+ (A, )t]]

lf 1 1 d) 1 1+-—I=- —,P,i(2p pdp/ 2 p

Equations (3.1V) and (3.18) are the dimensionless
forms of (3.5) and (3.6), with the zero-point con-
tribution explicitly giving the change of l(l+ 1) to
(l+ 2 p in (3.5) and (3.1V).

The quantum analogs to the classical equations
of motion (2.13) and (2.14) are

The commutator of X and P is

[X,P]=iG, (3.19)
~ 1, 1 1x=—. [x ff]=-——P

N ' m

1 1, 1P= [P H—.]=——(l+-'PX- —.
m +2& 2 +2

(3.8b)

(3.8c)

(l+2PI(4p' p' dp*

defining the uncertainty relation

(8.20)

E„=@@(s+—,'),
Rn~ =&n(kn( ~

(8.9)

(3.10)

The above natural quantum operators are in
agreement with those obtained from the l raising
and lowering operators. For the harmonic oscil-
lator,

(~)'(~p - l «&'. (3.21)

(X+ iBP)g= Cg,

8= ,'(G&/(r-d p,
C =(X& +iB(P& .

(3.22)

(8.23)

(3.24)

The equality in the uncertainty relation is ob-
tained when

2a'F(2'2(--2'l+ 1) '/'
n( P(1++11+n)

(3.11)
The 'ground state" R» satisfies (3.22) since

exp( ( p2)p(L ((+1 /2 & (p2) (3.12)
1

{'~(( (l y l )2 & (3.25)

(m(g't '/2
P=(2&=1( (3.18) 2(l+ 2) (l+ 2)'(~(t (1+L)(i () (1+LE +(l+(}2s (3.26)

(l —g a x()(l+ z2 a g)
p

(1+I'+1) d——(n+ T),
p dp

(3.i4)

1
(l+-.'P(l - 2)

'

&P&„=0,

(8.2V}

(3.28)

A'(R„,= [(n + l + 2 a 1) (22 —l + 1 V 1)]'/2R„,2 .
(3.i5}

Observe that, as is necessary, l is changed by
two units to go to the next allowed eigenstate.
In terms of.these operators the natural quantum
operators are

X„=2l ([At+(A()t]+ [A)+ (A, )2]].

1(P&„=(4P'P =(l, ),2

This corresponds to a 8 of

1
(l+—') '

(3.29)

(3.30)

(3.3i}

or

1 (n+ 2).p' (1+iV '

1 B
p' %d(l+2p,

(3.16)

(3.1V)

We take (3.31) to hold, leaving the two-param-
eter complex constant C to label the coherent
states.

Putting all our results into Eq. (3.22) and
changing variables to

(8.82}

the defining equation for the MUCS is
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0= 2y 2-2(/-I) ——2y+ —-(&+2) C g.
d' d, P

j dy dy 2y

(3.33)

one can define the n-independent l raising and
lowering operators

(&-x~z)(~+z+z)

The large-y behavior is determined by the first
and second terms of (3.33), and yields exp(+ —,

' y).
Since the ground state goes as y'/'exp(-2 y), one
would think that this would be a good trial function.
However, the techniques used below which yield
the final MUCS show that this trial function leads
to unnormalizable solutions of (3.33), except for
values of C of [-(2k + 1)/(l + 1/2)'], k =0, 1, 2, . . . .
The normalizable solutions of (3.33) are found by
the trial wave function

}——a [a+ (I+ ')+1]-'/'
p dp

with the properties

8;R„,= (n —l + 1 w 1)'/'R„„,.
In terms of these one has

SCR„,=(n+-, )R„,,
X =—,

' (8)Ig + 8 i 8) ) + (I + —,') .

(3.42)

(3.43)

(3.44)

(3.45)

y=Ny'/2 exp(+-,' y)g.

Inserting this in (3.33) yields

o =yg" + (I+y)g'+! [I —(~+-2}'C]g.

(3.34)

(3.35)

The large-y behavior of (3.35) is exp(-y}, mean-
ing (3.34}will be normalizable. Using a power-
series solution of the form

These 6, could serve as the basis for a discussion
of annihilation-operator or displacement-operator
coherent states.

It is also possible to define simpler "approxi-
mate" minimum-uncertainty coherent states by
substituting (H}=Z for H in the quantum operator
X. Then one could drop the second term in X to
have

g=ga, y'
+0

in (3.35) gives

j+-,'[1 —(I +-,' }'C]
a/ (j+1)2

so that

(3.36)

(3.37)

1X=—

1 1 d 1 1 1 1 dlP=—.—,—+- =-. ,+-—i,2i p'dp p i 2p' p dp&

[X,I']=3C =-i
P

(3.46)

(3.47)

(3.48)

g=,F,(-.'[I —(&+-.')'C];1;-y) (3.38a) These relations lead to the approximate minimum-
uncertainty coherent states

g(l[1 - (~+!)'C]), (-y}'
(I)/

(3.38b)
2(u)1+3/2a3~ 1/2

p' exp(- —,'C p'),
1 (l+ -,'-j

(3.49)

For large y, g does vary as exp(-y), so g is
normalizable. From (3.24), (3.25), and (3.27},
C is -1/(I+2} for the ground state. Then g is
exactly exp(-y), meaning g does indeed check out
to be the ground state. Also, observe that the
special values

20+1C=(I, ,2, A'=0, 1,2, . . .+-z
(3.39)

C. Other calculations

are excluded. For these C the power series in g
terminates after (k + 1) terms so g cannot be nor-
malized. However, all other complex values of
C are allowed.

C -=u+ iv= (l+-2')(X) —i{P). (3.50)

1
(&)ii=(, i).

Finally, one calculates E as

1 v'&
8 = (H) = 2' h(g(l + —

2)i u +—+—
i .

-Q Qj

(3.51)

(3.52)

IV. HYDROGEN ATOM

A. Natural classical variables and quantum operators

For these states, 0&u& ~. From Eq. (3.49),
u=1 corresponds to the ground state B„.This
agrees with (3.50), since

By taking

a' =2'(n+ I + 2 ~1) '"
and making the transformation

n-(If/&~-2)-=h-2,

(3.40)

(3.41)

For
g2

V(r) =

the natural classical variables are

(4.1)
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me' /me4 2me&g/2 .x, =I ——,=I,—+, I sine,

P, =p =-I-A cos8.

This is the correct angular variation,

g(E, L)=1,

(4.2)

(4.3)

(4.4)

1+2 +~ d
p„dp„2l+1 + I &

'

[nm (I+ g gg)2]g/2

2~+1~1

(4.16)

(4.1V)

Thus, X and P can be given dimensionlessly as

since the Kepler-Coulomb particle undergoes
one oscillation between apsidal distances for
every angular rotation of 2m. Again the reader
can verify that the above results satisfy the
equations of Sec. II.

The natural quantum operators should thus be
of the form

1 1

p 2l(l + 1), (4.18a)

1 ([Ag+ (Ag)g]+ [Ag+ (AiP]) (4.18b)

1 I'IP =-.
I
-+—

I

-=p,j(p dp&

rl
Igr 2r, l(l+ 1)/ ' (4.5)

=—CAg+ (Ag}t]- [Ag + (A, }t3,)
nz

(4.19b)

S'r 2m' '

jg (IP =P,= .
I

+-—
i ~r dr)

(4.6)

(4.V)

where from nom on we mill be discussing things
in terms of the dimensionless variable p=r/r,
of (4.15).

B. Minimum-uncertainty coherent states

Using the radial quantum Hamiltonian

jg' &d' 2 d~I e 8'l(1+ I)
2m &dr' r dri r 2mr' (4.8}

The commutator of X and P is

[x,p]=-—
„

z
(4.20)

one can show that these operators obey the quan-
tum analogs of the classical equations of motion
(2.13) and (2.14),

~ 1x=—. [x,If]
ZS

(4.9)

defining the uncertainty relation

I'l1 '(~)'(~)'= &I —
I (&p.)'

Epj~

(4.21)

e

P =—. [P,a]
zS

jg l(l+ 1)
mr' (4.10)

Taking, for convenience, a different convention
for the minimum-uncertainty states defining
equation, the equality in the uncertainty relation
is obtained when

1(i d} . &I& l . 1 l-I-+—I+ j&l -
I

e=((p&+ j& — Ie. (4 22).& (p dp/ &&. ~ j
The X and P of (4.5) and (4.6) are in agreement
with those obtained from the l raising and lower-
ing operators. For the hydrogen atom, " (1/p'}

2[~(I/O)]' (4.23)

The "ground state" R„,g satisfies (4.22} with
n +2 4r +2

B=(1 +).I (4.24)

1, 2p ~ ~ ~ (4.11)

(4.12)

Putting (4.24) into (4.22), solving the differential
equation, and normalizing, one obtains

g=r, ' '/( 2)gg'+' /[ (r2l+3)] '/'p'exp(-Cp),

r(n -l)
&S = 3 3n'r, '2n r (n+ l + 1).

(4.13)
C =(I+1)(1/p) - j(P}

(4.25)

(4.26a)

0.g
= exjg( !p.)p.'Lg

g
'l-'(p. ), -

p
p =

0

(4.14)

(4.15)

-=Q+ $27. (4.26b)

The ground state has C = [2(l + 1}]' or (1/p}
=[2(l+ 1)'] '. In general,
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p l+1
1 Q

p' (1+1)(l+-,') '

(4.27)

(4.28)

(4.29)

(&&=-v, (4.30)

Q(+) ~+2(t 1)i (4.31)

satisfying the uncertainty relation (4.21). The
energy of a coherent state is

(If) =+ 48, iu'+ v'—(, , u
l+1 (4.32)

which is a minimum as v =0 and u = [2(l + 1)] ',
i.e., the ground state R„,, We will discuss the
time evolution of these states in the following
paper V.

C. Other calculations

By taking

,(21
l ~ tl I pug

and making the transformation

g» ( g /If)~~2 =( h) &&2

(4.33)

(4.34)

one can define n-independent l raising and lower=

ing operators

(2l+ 1+1 d'I

with the properties
j. /2 .

«Pn l (1+1+ j}2 Q n, 1«& '
ke 2 2

In terms of these, one then has

1XR„)———~R„g,

(4.38)

(4.37}

1
2( 1~1 l l) $& (t+ 1)2

(4.38}

These 6', could therefore serve as the basis for
a discussion of generalized annihilation-operator
or displacement-operator coherent states.

V. DISCUSSION

For the harmonic oscillator, the MUCS methods
we have proposed allow a discussion of more than

one set of coherent states. Taking the effective
one-dimensional potential of Eq. (1.1), the natural
variable X, which varies as sin(&o, t} yields the

coherent states which were obtained in Sec. II of

paper II. In Sec. II of this paper we obtained
coherent states from the real radial part of the
three-dimensional problem, the natural variable
X, varying as sin[28(t)]. A comparison of the
analytic results obtained shows that for this po-
tential the results for the effective one-dimen-
sional HOCB formulation are simpler to handle.

Both these sets of states can be used with the
angular coherent states discussed in Appendix A.
Further, if one uses angular coherent states of
the type where Z is not a definite integer (see
Appendix A), the value of "l"used in the radial
problem need not be an integer, but can be con-
sidered some average (P. The radial problem
only demands that (n —l)/2 be an integer for the
harmonic oscillator [or (n —f} be an integer for
the hydrogen atom].

For the harmonic-oscillator problem alone
one can also factorize the problem into (x, y, z}
coordinates. Therefore, one can construct co-
herent states as product wave functions of ordin-
ary coherent states g(x)g(y)P(z) and then write
them as sums of the g„,„.This has been done by
Mikhailov. " All three of these sets of states are
minimum-uncertainty coherent states, but since

,they are in terms of different natural classical
variables, they minimize different uncertainty
relations and are not identical.

The differences in the properties of the various
MUCS can be easily visualized if one considers
the two-dimensional case with the wave packet
plotted in the z direction. An MUCS wave packet
that minimizes the position-momentum uncer-
tainty relations in the x and y directions can be
thought of as the product of two Gaussian-shaped
cylinders. One cylinder axis is oriented normal
to the x axis and it always travels in the x direc-
tion. The other cylinder is oriented normal to
the y axis and it always travels in the y direction.
Each cylinder always has its original orientation
and moves parallel to its original velocity. The
point which is at the simultaneous maximum of
the two cylinders follows the classical motion.

On the other hand, it one uses angular and
radial variables, the coherent state is the product
of two bell-shaped cylinders which do change
orientation and shape in time. One always has
its axis normal to the vector from the origin to
the classical position (the radial wave packet),
and one has its axis parallel to that vector (the
angular wave packet). For this state the point
which is at the simultaneous maximum of the
two cylinders again follows the classical motion.
However, in following the classical motion the
two cylinders reorient themselves as described
above.

In any event, since the harmonic oscillator is
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an equally spaced level system, all the wave
packets mentioned above will return to their
original shapes after one classical oscillation.
Therefore, the three sets of states serve as
complements to each other in intuitively under-
standing the MUCS method.

Near Eq. (2.54) of paper II,' it was pointed out
that for the equally spaced level system defined
by the HOCB potential, any wave packet will .

return to its original shape after one classical
oscillation. The arugments given there apply to
any quantum system with equally spaced eigen-
values. For one-dimensional potential systems,
there are systems whose classical oscillation
frequencies are independent of energy. All such
classical potentials can be obtained in principle. '
For further insight into this phenomenon, the
reader can consult Ref. 15, where time-evolution
studies of the HOCB system are given.

For the hydrogen-atom problem, on the other
hand, there is a clear preference for using the
three-dimensional radial formalism rather than
the. one-dimensional effective formalism. As
noted in the Introduction, the effective one-
dimensional formalism cannot be handled analyt-
ically. From the first part of our chain this is
because the natural classical variables are
methematically so complicated, as evidenced
by Eq. (1.6). From the other end of the chain,
this is because the n raising and lowering opera-
tors cannot be handled analytically, whereas the
l raising and lowering operators can. This last
point also holds even if one tries to use group-
theory methods. The states of Mostowski, '
using the Perelomov' formulation, become exact
only in the limit where one can ignore "one" with
respect to n. In this limit one also gets the
circular orbit results obtained by Brown" on
physical grounds.

In the following paper, numerical integration
of the defining differential equation will be used
to study the time evolution of our radial coherent
states for the hydrogen atom.
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APPENDIX A: COHERENT STATES FOR ANGULAR
COORDINATES

To discuss the complete coherent-states prob-
lem for angular coordinates in three dimensions,
one must deal with a two-dimensional system to
cover the e-P coordinates. Thus, one's states
must be able to be written as combination of the
Y~ for all J and m.

Among the first to do this were Atkins and
Dobson. " They combined the discussion of the
harmonic-oscillator coherent states in Ref. 18
with Schwinger's two-boson formulation of the
quantum theory of angular momentum. " The
formulation uses two pairs of boson creation and
annihilation operators,

[a„,a'„]=6„„,
[a„,a„]=[at, a~J =0,
(u or n) = (+ or -) .

(A1)

(A2)

(A3)

These operators can be identified with the angular
momentum operators as

J,=-,'(ata, —a'a ) -=—,'(n. —n ),
J,=J„+iJ„=a',a, ,

J'=-,'(n, +n )[-,'(n, +n )+1].
The ~J, m) states are

~Z, m) = [(Z+m) ~(Z-m) t] '~2

x(a~) ' (a') "~0,0).

(A4)

(A5)

(A6)

(A7)

The simultaneous eigenstates of a, and a with
eigenvalues n, and n are referred to as the
angular momentum coherent states. They can
be written in the form"'

/a„o.&=exp[--,'(/n, f'+ fn f')]

(+ }1+m(+ }J m

[(g+ m) t(g —m) (]
(As)

Atkins and Dobson" showed that these states
are mathematically equivalent to the two-dimen-
sional harmonic-oscil. lator coherent states studied
in Ref. 21. Therefore, thinking of the bosons as
defining (x, y) and (P„,P„)operators, these angular
momentum coherent states can be thought of as
minimum-uncertainty states for (x,p„)and (y, p„)
operators. The above led them to the comment
".. . one would expect a coherent state of a three-
dimensional harmonic oscillator to be equivalent
to a product of an angular momentum coherent
state and a coherent state connected with a radial
excitation. '"' Our position, that for spherically
symmetric potentials one can consider coherent
states to be a product of an angular part times a
radial part, can be viewed as a generalization
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= —iI, -=—i(2ata, + 1) . (All)

The @bove two sets of states" "are pertinent
for us as they stand. They can be used to write
the entire coherent states for spherically sym-
metric potentials in the form P(r)g(8, P). Also,
other states could be investigated by using some
of the different ladder operators in the Schwinger
two-boson formulation. "'4 Consult Ref. 22 for a
description of these operators.

However, in addition to the above ideas, there
has been even more work on sets of states with
definite J. Although these are states in (8, (t)),
they are defined in terms of only one space of
operators (J„J,), which is what yields the
definite J.

Qne line of research was started by Radcliffe's"
"coherent spin states. " These turned out to be
Block states, ~' and were later independently
discussed from another point af view as "atomic
coherent states" by Arecchi, Courtens, Gilmore,
and Thomas. "" These states can be defined
as25 s2

I
Jp) =I)Iexp(yJ }IJ,J)

of the earlier Atkins-Dobson comment. Finally,
to within uncertainties, the angular momentum
coherent states lead to a (S) which is classical.

A similarly inspired" set of angular momen-
tum coherent states has been recently discussed
by Bhaumik, Nag, and Dutta-Roy. ~ They looked
for the simultaneous eigenvectors of the opera-
tors a,a, and a,a. with eigenvalues P and y, where
a,a,

I
J m) ~

I
J 1 m - 1) and a+a

This leads to the set of states

I»» = [cosh(IP I+ I
yl'I'I&

I
}]'"

co J
Pmy J-m

&& Q Q [( ) ( ),p„lJ,m). (AQ)

This set of states also leads to a (X) which,
within uncertainties, is classical. However,
here the states are minimum-uncertainty states
for the uncertainty relation defined by

[K„K2]-=[2(a,a + ata!},—,'i(a.a. —atat)]

=- iX, -=- i -,'(ala, + ata + 1) (A10)

and nearly minimum-uncertainty states for the un-
certainty relation defined by

[I„I,]= [-,' (a,a, + ata', },—,'i(a,a, —ata'. )]

erties and are obviously states of definite J.
Further, they satisfy the uncertainty relation~I

L(f u)4(f v) ~ -,' l(f w) I, (Als)

where (u, v, w) form an arbitrary orthonormal
basis.

A related set of states, called "intelligent spin
states, " mere described by Aragone, Querri,
Salam6, and Tani." They can be defined" "as
the minimum-uncertainty states of the equally
spaced level system

[J„,J„]=iJ„ (A14)

(~ )2(~ )2 & l (+8 (A15)

APPENDIX B: X~ FOR THE HACB POTENTIAL

For the hydrogen atom with centripetal barrier
(HACB) potential of Fig. 1,

8 Xr1'(r)=-—+ s)y' 2mr2 t (Bl)

Relationships agnong all the above states have
been studied. For instance, it has been
shown" """that some, but not all (or even
mast), of the coherent spin states of Radcliffe
are intelligent spin states. The reverse state-
ment is also true, Further, Takahashi and
Shibata" have observed that by projecting out a
particular J' part of the Atkins-Dobson" angular
momentum coherent states, one obtains "atomic"
or coherent spin states. The reader can verify
this by comparing E(l. (A8) for a given. J and no sum
over J with E(l. (A10). Finally, Bhaumik, Nag,
and Dutta-Roy, " going in the opposite direction,
have shown that their angular momentum coher-
ent states" can be given as an explicit infinite
sum over all J of specific coherent spin states.

Before ending this appendix I wish to mention
that all these states are related in some way to
the methods proposed for generalized coherent
states in Refs, 8, 38, and 39, which have often
been applied to equally spaced eigenvalue systems.
There are also many other pertinent articles,
and I list a few in Refs. 40-43. Finally, an exten-
sive review and discussion of these types of states
from the boson representation and group theory
points of view has recently appeared.

Pt(2J)t "*~'
(&+ lv(')" $,(L(-))( p~(( '

(A12)

the natural classical variable X, can be found
with the aid of Kepler's laws of planetary motion.
The parameters in Fig. 2, defining the bound
(& = —I& I ) elliptical motion, are

These states do have desirable classical prop-
+ Iaaf&

a' 5'' (B2)



400 MICHAEL MARTIN NIETO 22

O, b

FIG. 1. The effective one-dimensional potential of
Eq. (Bl) for the hydrogen atom with centripetal barrier.
The turning-point apsidal distances r& and r2 are shown,
along with r =2r&, the position where the potential is
a minimum. As an example, a minimum-uncertainty
coherent-state wave packet is also shown. It has an
average energy ~ of the distance up from V(r ) to the
continuum. The given starting position is halfway in
time between the turning points. Here L = 5 l (l +1),
l =75.

s=-,'(&, + &,) =- e'/2! E!,
b = (r,~,)'/'

(B3)

(a4)

c = ,'(r, —r,-) = ae, - (B5)

a'= c'+ b' (B8)

1+ 1—, -=a(1+ e) . (B7)t2 2)gf me4

a, b, and c are the semimajor axis, the semi-
minor axis, and the distance from the origin to
the foci. x, and r, are the perigee and apogee
turning points. g is the eccentricity.

Kepler's third law states that the square of the
period is proportional to the cube of the semi-
major axis a. When the constants are put in, one
has

2„(e21~~2-S /2

(m)

SINAI' x(

(B8a)

(B8b)

By Kepler's second law, the radius vector from
the "Sun, " located at (-c, 0), to the position (x,y)
of the "planet" sweeps out equal areas in equal
times. Taking the starting position at ai and going
counterclockwise in Fig. 1, the area swept out is

ay
g(t) =-,'(c+ x)y+ —(a' —x')'/'dx

a
cb

2 a 4 2 a
=——(a' —x')' '+ ——sin ' — . (B9)

Since (nab) is the area of an entire ellipse,
e(t) (o,t (alo)
nab 2m

Further, using elementary trigonometry and
algebra, x can be expressed in terms of r as

(Bll)
a c

Putting this into Eq. (B10), multiplying by 27/,

and taking the sine of both sides, one has X, as
X =sin~ t (B12)

f 2 em~ I}1/2
=sin -- —; — -r

2 e' (2mE E

e'+ 2Et'
}e'+28''/m}'" I

-=sin(q(r)}. (B13)
Using either (B12) or (B13)and (B9) for co„it

is straightforward to verify that X, satisfies the
defining one-dimensional equation for X„

m (a'-x2) '/'
' 2 (E —V)

Here a prime denotes the derivative with respect
to r and A(E) =l.

However, the above Eq. (B13)holds only for
2nm & ur, t &(2n+ l)m. Basically the reason is that
the square-root function of r in (B13) is propor-
tional to !y! instead of y. But by the symmetry
of the problem, one can make the formula valid
for (2n+ 1)n & &e,t & 2(n+ 1)v by writing

(B14)

since, t = sin[2}} —q(r)],
(2n + 1)m & (o,t & 2 (n + 1)v .

(B15)

(0, -b)

FIG. 2. The Kepler-Coulomb classical elliptical orbit,
used to find the natural classical variable X~ for the
effective one-dimensional HACB potential. (r&, r2) are
the apsidal distances. (a, b, c) are the semimajor axis,
the semiminor axis, and the distance from the origin to
the foci. r shows the vector from the "Sun" at (-c, 0) to
the orbiting "planet" at (x,y).



22 COHERENT STATES FOR GENERAL POTENTIALS. IV. 401

Then using trigonometry one obtains

X,=sinu t
2ns « ~,t «(2n+1)s

(2n+1) «~,t «2( n+1)s
(B17)

2E ( 1.2=+ cos ea (2ntE E
e'+ 2Er

(e'+2EL'/mp" }
(r)a. i ta

=+cos (t' —1)+ 2
aJ iaJ

, 1 —r/a&+sin '
s )

(B16)

There still remains a double solution for r(t),
which is fixed by the initial value and demanding
that the solution be a continuous function of time.
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