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Quantum mechanics vs local realism near the classical limit:
A Bell inequality for spin s
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The quantitative quantum-mechanical analysis of the Einstein-Podolsky-Rosen experiment for correlated particles
of arbitrary spin s is shown to contradict a generalized form of Bell's inequality, for suitable orientations of the
detectors. As the classical (s —+ ~ ) limit is approached, the range of angles for which the contradiction arises
vanishes as 1/s.

S

„,g (-1)' ~m, -m&„-„. (2)

Being a state of zero total spin, ~p ) is rotation-
ally invariant in spin space and therefore has the
structure (2) whatever the direction of the axis pg.

Putting it explicitly, the relation
S S

g (-1)' "~m, -m&g -„=g (-1)' "~m, -m&-„, -„,

holds as a mathematical identity, whatever the di-
rections of n and n'.

The property (3) leads immediately to Einstein,
Podolsky, and Rosen's conundrum: If the spin of
particle 2 is measured along any axis & and found
to have the value m, then a subsequent measure-
ment of the spin of particle 1 along the same axis
Q. will yield the value -m with probability unity.
Since this is the case whatever the direction of
the axis &, an observer in the vicinity of one of
the particles can predict with certainty the out-
come of a measurement of its spin along any di-
rection whatever, provided a second far-away
observer in the vicinity of the other particle first
measures the other particle's spin in that same
direction.

Given these undisputed facts, and bearing in
mind the spatial remoteness of particle 2 from
particle 1 as well as the possibility of measuring
the spin of either particle with detectors that are
well localized on the scale of the interparticle sep-

Consider the spin-s generalization of Bohm's
version of the Einstein-Podolsky-Rosen Gedanken-
exPeriment'. two spin-s particles are flying apart
in a state ~P& of zero total spin. Define ~m, m'&-„-„,

to be the simultaneous eigenstate of the (commut-
ing} projections along axes n and n' of the vector
spin operators S") and S"'.

p ~
yz ~m, m'&-„-„,=m ~m, m'&-„-„,

y

S "'n' ~m, m'&-„-„,= m' [m, m'&-„-„"

The spin part of the state ~g& is given by'

aration, it is tempting to draw conclusions which
the orthodox interpretation of quantum mechanics
strictly forbids: namely, that associated with each
particle i is a definite value m,. (n) for the result of
an impending measurement of the component of its
spin along any axis n whatever.

Quantum mechanics tells us to resist this temp-
tation. Given a pair of axes Q and pg', the numbers
m, (n) and m, (n') are the results of measurements
of the observables S "n and S" 'n'. Since these
fail to commute if pg is not parallel to n', it is
meaningless —simply an abuse of language —to as-
cribe to particle 1 simultaneous values of m, (n)
and m, (n'), each waiting to reveal itself should
the Stern-Gerlach apparatus be aligned along ~ or
along pg'.

Prior to Bell's 1964 paper' one could regard
this doctrine as a part of quantum theology, a sub-
ject of some concern to the founders of quantum
mechanics, but bearing a rather tenuous relation
to quantum mechanics as practiced in its maturity.
The discomfort produced by the conundrum of Ein-
stein, Podolsky, and Bosen could then be relieved
by rejecting this article of quantum theology,
adopting instead a simple point of view that I shall
characterize by the term "local realism. '

As I shall use the term here, local realism
holds that one can assign a definite value to the
result of an impending measurement of any com-
ponent of the spin of either of the two correlated
particles, whether or not that measurement is
actually performed. That value may well be un-
known or even inherently unknowable until the
measurement is performed, but it is nevertheless
assumed that functions m,.(n) exist, defined over
the entire unit sphere and taking values on the dis-
crete set s, s —1, . . ., -s, such that the result of
measuring the spin component of particle i along a
particular direction n will be the number m,(n).
The functions m,.(n} can vary from one run of the
experiment to another, even though each run is
characterized by the identical quantum state. The
manner in which they vary can be regarded as the
subject of an as yet unformulated hidden-variable
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theory, or as an intrinsically unknowable feature
of the world. All we require is that the functions
m, (n) exist and have some statistical distribution.
The perfect correlation in the Gedankenexperiment
in the state of zero total spin is then simply ac-
counted for by the additional assumption that in
each run of the experiment

m, (n}= -m, (n) (4)

for every direction n.
In 1964, however, Bell showed that in the case

s = —,
' this escape from the conundrum is not only

incompatible with the orthodox interpretation of
quantum mechanics, but it is also inconsistent
with the quantitative numerical predictions of
quantum mechanics. There is no conceivable way
to assign values to the unmeasured m,.(n) that does
not lead to numerical disagreement with some of
the predictions of the elementary quantum mech-
anics of spin g.

Now spin —,
' is the simplest but also the least

classical of the spin values. Few believers in

quantum theology would doubt that a conclusion
like Bell's could be derived for values of s other
than —,', but I am unaware that any such extensions
have been given, and I know of at least one incon-
clusive attempt to do so.' The many generaliza-
tions and extensions of Bell's argument since 1964
have been almost entirely concerned with two-state
systems or with two-dimensional subspaces of
many-state systems. The focus has remained on
measurements with only two possible outcomes.
This imposes something of a gap between those
quantum phenomena where the local realist's de-
scription is demonstrably incompatible with the
predictions of quantum mechanics, and classical
phenomena, measurements of which can be viewed
as having a continuum of values and for which local
realism is unquestionably valid. Could it there-
fore be that the clash between quantum mechanics
and local realism is limited to the behavior of two-
state systems or two-valued experiments, and that
insight into the conundrum should be sought in the
curious behavior of these most quantum mechani-
cal of systems?

My purpose in this paper is to answer this ques-
tion in the negative, by showing explicitly that lo
cal realism is inconsistent with the quantitative
predictions of quantum mechanics not only for the
spin=,' Einstein-Podolsky-Rosen experiment, but
also for arbitrary values of the spin s right up to
the very threshold of that classical (s = ~) world
in which it is, in fa~t, demonstrably permissible
to assign definite values to all components of the
spin, whether or not they are actually measured.

More specifically, I shall show that when ap-
plied to the spin-s Einstein-Podolsky-Rosen ex-

which the variables m, (n) of local realism must
obey for any three directions a, b, and c. By using
the identity (4) and averaging over many runs of
the experiment we arrive at the inequality

s(~m, (a) -m, (b) ~)„~ (m, (a)m, (c))„

+ (m, (b)m, (c)),„,

which any theory accepting local realism must
obey.

Each term in (7), however, is a mean of data ob-
tained by measurements of two commuting observ-
ables (a component of the spin of particle l and
another component of the spin of particle 2). Each
term is therefore a meaningful quantity within the
framework of ordinary quantum mechanics and has
a well-defined theoretical value which is not diffi-
cult to compute when the two spin-s particles are
in a spin state ~P) of zero total spin given by Eq.
(2).

We can therefore test the predictions of quan-
tum mechnics against the inequality ('I). An ele-
mentary calculation' gives

(m, (n)m, (n') ),„=(p
~

S"' n S"' n '
~ P)

= —3s(s+ l)n' n'. (8)

The other type of average has a somewhat more
complicated structure

()m, (n) -m, (n') ~)„=Q ~m -m' (P(m, m', n), (9)

where P(m, m', n) is the probability of spin mea-
surements of particles 1 and 2 yielding the values
m and m' when the angle between the axes n and
n' is o.. The probability P is given by

periment, local realism contradicts at least one
of a pair of predictions of the quantum theory.
One prediction applies when the axes n and n' along
which m, and m, are measured are at an angle of
—,'m+ 8; the other applies when the angle is m —20.
Whatever the value of s there is a range of angles
in the neighborhood of 8= Q for which the contra-
diction occurs. In the limit of large s the range
of angles is

0«&A/s,
where A = Q. 5659. .. .'

The argument is based on the trivial inequality

s ~m, (a}+m, (b)
~

~ -m, (a)m, (c) -m, (b)m, (c),
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P(m, m ', n) =
/
(y

/
m, m '&-„-„.

/

g(-1) --"
2s+ 1

2

x„, „& -, -m")m, m &„

C

1
&, &. -m, m m, m2s+ 1 f

[-„,&-m' /m&„f'. (10) a

The quantity on the last line of (10) is nothing but
the modulus squared of a component of the rota-
tion matrix d„„,(n), and P can therefore be writ-
ten in the form

P(m, m', n)= ~&m ~e' ~-m'&~'
1

1
m e" " ~ m'

2S+ 1

[where the y axis is perpendicular to the plane of
the axes pg and Q', and the quantization axis z with
respect to which both m and m' are defined in (11)
is taken to lie along n].

We now consider the case in which a, b, and c
are three coplanar vectors, with g and b making
the same angle —,'m+ 8 with c, and the angle n —28
with each other (Fig. 1). We use (9) and (ll) to
give the quantum-mechanical evaluation of the left
side of the local realist's inequality (7), and (8) to
evaluate the right side. The result is

f,(8) =—
2 1 Q fm -m'

/
[&m /e

" [m'& f'
t

~ —', (s+ 1)sin8. (12)

The validity of (12) for all angles 8 is a necessary
condition for the quantum-mechanical predictions
for the spin-s Einstein-Podolsky-Rosen experi-
ment to be consistent with the assumptions of local
realism.

The function f,(8}appearing in (12}can be eval-
uated without excessive effort for small values of
the spin. Letting x= sin8, one can show that the
inequality (12}assumes the forms

FIG. 1. The axes a, b, and c. Local realism is in-
consistent with the combined predictions of quantum
mechanics for two Stern-Gerlach experiments. In one
the axes of the detectors are a and c; in the other, a and
b. The inconsistency occurs for the range of angles
given in Eq. (5).

8, (,——v/2= 90',

0.6624 = 38.1'l

83]2= 0.4203 = 24.08

8,= 0.3068= 17.58'.

(14)

A simple lower bound for 8, can be derived by
noting that the size of f,(8) can only increase if
the integer m -m' is replaced by its square in the
expression (12}. The inequality (12) will therefore
certainly fail if

—;(s+1)sine& Q(m-m')'~&m ~e
"" ~m'&~'.

(15)

The right side of (15) can be evaluated as follows:

f,(,(8}=x'&x (spin-,'),

f,(8)=
3

~ -', x (spin 1),
8x' -4x' 4

f„,(8) =5x' —6x'+2x'~ -', x (spin -'),

(8)
40x' —84x'+ 96x6-40x' ~ (

.
)2 5

The spectacular (and atypical) behavior of spin
—, is evident: the inequality is violated for any an-
gle 8 whatsoever. More generally, the violation
occurs for angles 0& 8& 8„where

2 m e 2$8s& mt 2 m P e 2&Ps, mi m' S e2jgsy

2
tr(S ' e "~ ~S e"~ ~S )z g g

1
tr [S,' —(S,cos28+ S„sin28)S,]2s+ 1

2(1 —cos28), 4 sin'8
(16)
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/S (a+b) i= /S, i
ia+bI=2IS. Isine (18}

(where the z axis is taken along the direction of
a+b). The average of S, over orientations of the
gyroscope is —,'s, and the corresponding average of
m, (a)m, (c) or m, (b)m, (c) is s'(sine)/3. Conse-
quently, in the classical limit the inequality re-
duces to the unexceptionable requirement that
s(sine) o(-,')s(sine).

From the perspective of the classical limit the
failure of (12} to hold at small angles is not be-
cause the right side is too large but because the
left side grows too slowly (quadratically in 8 for
small enough 8). This quadratic growth, which
becomes linear in the classical limit, is due to
the discreteness of the sum in(12) —i.e. , to the
quantization of the allowed values of any spin com-
ponent. The closest a spin can come to being clas-
sical for fixed s is in a state of maximum align-
ment in which case the spread in the components
of the spin perpendicular to the axis along which
m= s is of order s'~'. The attempt to represent
the spin by a classical vector is thus fuzzy over
an angular spread of order s ' '. When the axes
deviate from perfect perpendicularity by a still
smaller angle of order s ', we are simply failing
to distinguish the misaligned configuration from
the perpendicular one by enough to allow the linear
8 dependence characteristic of local realism (and
exact classical behavior) to set in. Why the in-
equality should fail to hold for 8 of order s ' rather
than s ' ' is not clear. It would be interesting to
know whether this is an indication that a still
stronger version of Bell's inequality remains to
be found, or whether this is a genuine manifesta-
tion of some intrinsic aspect of the transition from
quantum to classical behavior.

This work has been supported by the National
Science Foundation under Grant No. DMR VV-

18329. Many people have pointed out obscurities
in earlier formulations of the argument and earlier
versions of the paper. I am indebted to J. F.

Hence, the inequality (12) will fail for'

0&sine&1/2s.

As the classical (s--) limit is approached, the
contradiction between quantum mechanics and lo-
cal realism occurs in an angular range of order
1/s. We can easily verify that in the classical
limit itself the contradiction has vanished. In this
limit the quantities appearing in the original in-
equality (6) are simply the components along axes
a, b, and c of the angular momentum vector of a
classical gyroscope. This angular momentum has
magnitude s and is randomly directed. The left
side of (6) is just

Clauser, B. d'Espagnat, M. E. Fisher, K. Gott-
fied, P. Muzikar, and M. Nelkin.

APPENDIX A

We note here that a more straightforward at-
tempt to generalize Bell's inequality to spin s is
inconclusive. We use the form of the argument
given by Friedberg. ' A lower bound can be de-
rived for the quantity m, (a)m, (b)+m, (b)m, (c)
+m, (c)m, (a) by noting that to make it negative re-
quires at least one of the m, 's to be negative, but
not all three. Since two negative m, 's lead to the
same lower bound as one negative one (by revers-
ing the sign of all three), it suffices to consider
the case in which m, (c) is negative and the other
two are positive. One then has

m, (a)m, (b)™,(b)m, (c)™,(c)m, (a)

= —~m, (c)
~
[m, (a)™.(b)]™,(a)m, (b)

& -s[m, (a)™,(b)]™,(a)m, (b)

= [s-m, (a)][s-m, (b)] -s'
(Al)

Taking averages, using the local realist's iden-
tity (4), and evaluating the resulting mean values
with the result (8) of quantum mechanics„we find
the inequality

A As~ —-:(s+1)(a b+b c+c.a)

= 3(s+ 1)[a -r(a+ b+ c)']. (A2)

The right side of (A2) is largest when a+b+c=0.
In this case (A2) reduces to the simple condition
s ~ 1. Thus spin-,' fails the test of local realism,
spin 1 just passes, and the higher spins get by
comfortably.

The argument in the text uses a local realist's
inequality which is, if anything, simpler than(A1).
However, another quantum-mechanical mean val-
ue [Eq. (9)] enters into the evaluation of the in-
equality, which is rather more intricate than the
simple bilinear expression (8), which is all that
is needed to arrive at (A2).

APPENDIX B

We show below that if 8 is taken to be of the
form 8=a/s, for fixed a, then the limit of the
inequality (12) as s-" is

"dx
1 sin(4asinx)

s-'-- 2' 4asiDx

(B1)

This inequality fails to hold when a is less than
0.5659. .., which is remarkably close to the crude
estimate for the crossover, a&0.5, given by the
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large-s limit of (1'I).
To establish (B1) note first that a series of

steps analogous to those taken in (16) establishes
that if ~m —m'

~

is repla. ced by (m -m') in the
form (12) for f,(8), then the resulting expression
vanishes. Consequently, one can rewrite f,(8) in
the form

f,(8)= g (m -m')2

2S+1 mm'

Now

8-2 i8 (S~cost+S &sin(') 82ie S
& e ign 8 (B6)

where the direction of the axis pg is immaterial,
and the angle P is that of a single roation equiva-
lent to a rotation through 28 about y, followed by
a rotation through -28 about y cosf+x sing:

x q(m —m') ~(m ~e ""~~m'& ~',

(a2)

cos2p= cos 8+ cosf sin 8. (B6)

where the g function vanishes for negative values
of its argument and is unity for positive values.
We use the integral representation

Using the form (B5) we can immediately evaluate
the trace, to find

ii(x) = . e'+/tdg
27Ti

2 dg 8 sin(s+ —,')p~

2s+ 1 217$ Bf sin2p
(as)

where the contour is along the real axis except for
an infinitesimal dip below the pole at g= 0. Sub-
stituting this into (B2), we find When 8= a/s, we find from (B6}and (B"I}that

() 2 df
2s+ 1 2m'if

1 8 eiC(m m') ~ e-2i8S& ~t 2
8$

sin(4a sin —,
'

&)
s~~ 2a 2vf 8$

eicsze 2i8sye Rsze2i8sy]2 dg
2s+ 1 2m& 8f

tr e i&2(gc sfo+ sync& ie2&e]s
2 dg

2s+ 1 2m/ 8$

(B4)

(BS)

An integration by parts then yields the right side of
(Bl) (after a change of variables to x= g/2).
(There is no longer a pole at x= 0 so the integra-
tion can be taken entirely along the real axis. )

~A. Einstein et al. , Phys. Rev. 47, 777 (1935); D. Bohm,
Quantum Theory (Prentice-Hall, Englewood Cliffs,
New Jersey, 1951), pp. 614—619.

An elementary proof that (2) gives a state of zero total
spin follows from demonstrating that it is an eigen
state of any component of the total spin operator S
with zero eigenvalue. W'ith the z axis taken to be
along n this is immediately evident for S,= 8~ +S,2 .
It follows for the two other linearly independent com-
ponents S~=S~ + S~ directly from the elementary
properties of the spin raising and lowering operators.

3J. S. Bell, Physics (N. Y.) 1, 195 (1964).
Since the appearance of Bell's 1964 paper (Ref. 3), his
argument has been extended to cases in which the ob-
served correlations between measurements of the two
spins along parallel axes are not perfect. A review
of such developments has been given by J. F. Clauser
and A. Shimony, Rep. Prog. Phys. 41, 1991 (1978).
These extensions employ a rather weaker notion of lo-
cal rea1ism than I am using here. In such contexts my
version of local realism is sometimes called "deter-
minism, " even though the mi (n) are stochastic vari-

ables whose statistics can be unknown or even unknow-
able. In this paper I do not attempt such extensions for
my generalization of Bell's argument to the spin-s
case. My point of view is that of the 1964 paper: the
Einstein-Podolsky-Bosen experiment is regarded as a
Gedankenexperiment and local realism is a theoretical
construct to account for the remarkable perfect corre-
lations predicted by the quantum theory. The point is
to show that the quantum theory, which suggests local
realism in the strong sense of the term, is neverthe-
less numerically inconsistent with the theoretical
premises of such local realism. I believe that in this
paper I am using the term local realism in a sense
similar to that of B.O'Espagnat, Sci. Am. 241 (5), 158
0.979).

~A. Baracca crt al. , Int. J. Theor. Phys. 15, 473 {1976).
Another straightforward attempt at a generalization
that fails to work for s «1 is described below in Ap-
pendix A.

8I demonstrate the result in the text for a range of angles
(5) given by A =0.5. A considerably more elaborate
argument (Appendix B) shows that the asymptotically
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exact range for which the inequality (12) fails is given
by A=0.5659. . . ...

~Because the state I P) is isotropic in spin space, the
real tensor Q&I 2(8~st+st 8„) I P) must be proportional
to the unit tensor 6». Taking the trace of both quan-
tities shows that the proportionality constant must be

r~
&yl

s' s'+s's'I y)= 6 &yl (s'+s')'-(s')'
—(s')'I 0) .

Since I p) is a state of zero total spin, the expecta-

tion value of (8 + 8 ) vanishes, and since the par-
ticles have spin s, (8~) =s{s+1),i=1, 2. Therefore,

8 I s(s.'8,'+8,'8')I e) =- —,'s(s+&)d.„,
from which Eq. (8) follows.

This estimate is quite close to the asymptotically, exact
result derived in Appendix B.

R. M. Friedberg, as described in M. Jammer, The
Philosophy of Quantgm Mechanics (Wiley, New York,
1974), pp. 244-247.


