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We explore some of the possibilities for constructing new gravitational instantons. We find a new type, a
rotating analog of the Taub-"bolt" situation, and we also rule out the possibility of various multi-instanton
configurations.

I. INTRODUCTION

Recently, considerable advances in quantum field
theory have been achieved by studying classical
solutions of field equations and their geometric and
topological properties. Solutions in real time
which have finite energy and persist in time are
loosely termed solitons. Solutions in imaginary
time which are nonsingular and have finite action
are loosely referred to as instantons. Instantons
arise most natur'ally in the functional-integral
approach to quantum field theory, in which the
functional integral is Wick rotated and expressed
as an integral over Euclidean field configurations.
Instantons are used in the steepest-descent method
of evaluating the functional integral.

These ideas are admirably suited to the study
of gravity —a theory rich in geometric and topolog-
ical structure —and form the basis of the path-
integral approach. " The relevant classical field
equations are the vacuum Einstein equations

R 5=0.

As far as solitons are concerned, one obviously
thinks of black holes and the time-independent Kerr
solution. However, in addition to black holes,
which may be thought of as electric-type gravita-
tional monopoles (which may rotate), there exist
solitons of a different sort which may be thought
of as magnetic-type gravitational monopoles —the
Taub-NUT (Newman-Unti-Tamburino) solutions. "
Magnetic gravitational monopoles do not play a
role in the classical theory because of their
acaudal behavior, and the necessity of Dirac-type
singular strings emanating from them. These can
only be eliminated at the expense of identifying
the time coordinate; this means that in the Lorent-
zian regime they cannot be thought of as isolated
systems, although a pole-antipole pair might be
isolated, the string from one pole terminating on
the other.

In the quantum theory it is possible that such

pole-antipole pairs could spontaneously form in
the vacuum, interact with matter, and then an-
nihilate. This would be in addition to interactions
with virtual black holes which should swallow
particles and then emit them via the Hawking ef-
fect. Since these monopoles have a built-in twist
in handedness, they may give rise to a number of
interesting parity-violating effects. '

In the Euclidean regime one may define a gravi-
tational instanton as a complete nonsingul. ar solu-
tion of (1.1) with signature (++++). Two sorts of
instantons have been discovered: asymptotically
locally flat" (ALF) and asymptotically locally
Euclidean' (ALE). The ALE class of solutions are
flat at infinity in the four-dimensional sense, ex-
cept that identifications must be made so that near
infinity they tend to E'/I', where E' is flat Euclide-
an space, and I" is a discrete subgroup of SO(4)
with free action on S'. If I' is the identity, the
space is asymptotically Euclidean. By the posi-
tive-action theorem, ' " the only such solution is
flat space. If I =Z„we have the multi-instanton
solutions, ' k = 2 being the Eguchi-Hanson solution.
ALE solutions corresponding to more complicated
groups have been constructed by Hitchin. "

ALF spaces are asymptotically flat in the three-
dimensional sense, the fourth, imaginary-time,
direction being pe riodic. Surf aces of large radii
can thus be thought of as an S' bundle over S'. The
product bundle corresponds to the asymptotically
flat (AF) solutions which include the Euclidean
Schwarzchild and Euclidean Kerr. solutions. '" The
twisted bundles correspond to the multi-Taub-
NUT solution, ' and the Taub-"bolt" solution dis-
covered by Page. "

Physically, one expects the ALE solution to cor-
respond to some sort of twisted vacuum state,
and the ALF solution to the finite-temperature
state with the same boundary conditions, the temp-
erature being inversely proportional to the per-
iod. '" If we concentrate on the Z, sequence, we
have the scheme
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AE/ALE AF/ALF H. TOPOLOGY

Flat space

Eguchi-Hanson

Flat space-Schwar zschild-
Kerr

'T aub-N U'T-'T aub-bolt-
Ke r r- Taub-bolt

Multi-instanton Multi- Taub-NUT .

Thus, we think of the Taub-bolt solution as an
excitation of the daub-NUT solution, rather as
Schwarzschild space is an excitation of flat space
(with time identified, i.e., on R'xS'). In a heat
bath at temperature T = P

' with a Taub-NUT bound-
ary condition, the Taub-bolt solution might con-
dense out of equilibrium just like the black-hole
phase transition discussed in Ref. 12. 'The solu-
tion to the right of the Taub-bolt; solution in this
scheme is a new solution we have found, and it is
described in Sec. III of this paper. It bears the
same relation to the 'Taub-bolt solution as the Kerr
solution does to the Schwarzschild solution. The
spaces marked with question marks in the scheme
are possible further generalizations. 'The results
of this paper tend to suggest that such generaliza-
tions do not exist.

One can describe these admittedly speculative
.ideas in terms of the classification of gravitational
instanton symmetries developed in Ref. 14. Since
these solutions possess a (generally unique) Kil-
ling vector k's/ax'= s/st, that is, they are indepen-
dent of imaginary time, we can describe the fixed-
point sets of k. This will consist of points or
"nuts" and two-surfaces or "bolts". The multi-
Taub-NUT solution has k nuts. The Taub-bolt
solution has the same boundary as the single
Taub-NUT solution, but the single nut has be-
come a. bolt of nonvanishing self-intersection
number. In the Kerr-Taub-bolt solution, this con-
figuration is made to rotate. The question this
paper addresses is whether the k nuts in the multi-
Taub-NUT solution can be converted to bolts, or
perhaps one large bolt, while maintaining the same
twisted boundary conditions at infinity. Our re-
sults indicate that the answer is negative.

The plan of the paper is as follows. In Sec. II,
we discuss the topology of solutions of Einstein's
equations possessing a Killing vector. In Sec.
III, we present our new Kerr-'Taub-bolt solution.
In Sec. IV, we rule out some multi-Schwarzschild
solutions —i.e., solutions which a,re AF with more
than one bolt. In Sec. V, we discuss the multi-
Taub-NUT and multi- Taub-bolt solutions, and the
forces between the nuts or bolts. This rules out
the existence of all. but the multi-Taub-Nut form.
In Sec. VI, we discuss the possibility of accelerat-
ing solutions, and again we find none.

2(Mr+ I') &-'
+dr' I-

+l j

+ (r'+ l ) (d8'+ sin'Odg') . (2.l)
As pointed out by Misner, "in order to remove
the apparent singularities at 8=0 and 8= w, t must
be identified modulo Sml. Provided that
r'+ P & 2(Mr+ I2), &/st has no fixed points and the
manifold M is, topologically, an S' bundle. The
surfaces r = constant are then homeomorphic to
S' and the fibration is the standard Hopf fibration.
The Dirac stringlike singularities at 8= 0 and
8= m simply reflect the impossibility of finding a
regular section. Because of the obvious similarit-
ies with the Dirac magnetic monopole, "we can
regard the Taub-NUT solution as the simplest case
of a gravitational magnetic monopole, a point made
also by Demianski and Newman4 and by Dowker. '

The analogy may be taken further by introducing
a 3+1 split of the metric. We set

ds'=-V(dt+w, d )'xV+'y, zdx'dx

in the Lorentzian case, and

ds' = V(d7 + ~,.dx')' V-+'y, ,dx'dx

(2 2)

(2.3)

in the Riemannian case. All quantities are inde-
pendent of t or ~. The Wick rotation that trans-
forms from one case to the other is

We shall consider in this paper solutions (M, g„)
of the Einstein equations which are either Lorent-
zian or Riemannian. Each of these solutions will
be assumed to be invariant under a one-parameter
isometry group G of "time translations". 'The ac-
tion of G is given by p. ,: M -M, where t is the
group parameter which may be thought of as real
or imaginary time, depending on whether one is
Lorentzian or Riemannian. The infinitesimal gen-
erator of G is the Killing-vector field k =k'&/Sx'
= s /s t. If we remove from the manifold M, the fixed-
point set C of p, „one obtains a fibration w'.

M —C -B, where B is the space of nontrivial or-
bits of G. If M —C is a trivial fiber bundle we can
find a nonzero section which may be thought of as
"space" and represent this as a regular space-
like surface t= constant. An example of this situa-
tion is the region exterior to the event horizon
associated with a black hole —the domain of outer
communication. " In general, however, the bundle
will not be trivial and no such regular surface
t = consta. nt will exist. An example of this more
generic situation occurs in the Lorentzian section
of the 1aub-NV1" solution. The metric is

= —
~

l —
2 2 ~I(dt+ 2l cossdp)( 2(Mr+ I')i

x+l )
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t- z'7, (2.4)

(2.6)

have k nuts of type (1, 1) and 7 =k 1, it follows
that

solutions of the Lorentzian Einstein equations
being mapped into solutions of the Riemannian
Einstein equations. V may be thought of as an
electric-type potential, and u&,. (or u,.) as a mag-
netic-type vector potential. The associated mag-
netic field

H g=~ N)-~g(d ~ (2.6)

may be used to define a magnetic monopole mo-
ment called the "nut charge" N." If N c 0, the
fibration cannot be trivial. 'The fixed-point sets
of p, , form boundaries of B which act as sources
for the magnetic field H, ,. In the Lorentzian case,
these fixed-point sets are the two-dimensional
Boyer bifurcation sets of event horizons. ""In
the Riemannian case, these fixed-point sets are
of two types: points or nuts, and two-surfaces or
bolts. " A nut possesses a pair of surface gravi-
ties ~, and v, . p and q are a pair of coprime integ-
ers such that ~,w, '= pq '. lf &,g, ' is irrational,
P =q= 1. A nut of type (P, q) has a nut charge of

7 = Y,. csc'8
bolts

nuts
co,.8 co,.8+ 4 csc 8 —1 (2.11)

(2.12)

and

&caejRab 1/2d4&
1T

ef &

(k —1)(k —2}
3k 3k (2.13)

for the above boundary conditions. Note that for
AF boundary conditions, q(0, 8) = 0. There are
also formulas giving the Euler number and Hirze-
bruch signature as integrals of the curvature. For
ALE and ALF boundary conditions, ' these are

X= (R R'"~ —4R R"+R')g' 'd'x1
32+2 abed ab

M

N=
8wPq

'

Further,

(2.7)

(2.8)

where & = 0 for ALE boundary conditions and & = 1
for ALF boundary conditions. We are concerned
with solutions of the field equations R„=0, so we
have the Hitchin-type inequality' "

(2.14)

for a bolt of self-intersection number K P is the
period of the imaginary time coordinate. In the
Riemannian case, the number of nuts and bolts is
related to the Euler number g and the Hirzebruch
signature 7' of the manifold M by"

x=g x, +g 1,
bolts nu t s

(2.9)

where g,. is the Euler number for the ith bolt, and

v=g Y,.csc'8 —P cotP,.8cotq,.8+q(0, 8). (2.10)
bolts nuts

Equation (2.10) is valid for arbitrary 8. 1',. is the
self-intersection number of the ith bolt, the ith
nut is of type (P,, q, ). We assume that &/&f is
either tangential or transverse to the boundary of
the manifold M for Eq. (2.9) to be valid. In (2.10),
we assume &/&t is parallel to the boundary and

q(0, 8) is a correction term which depends solely
on the boundary. For both ALE and ALF boundary
conditions, for which BM is the cyclic lens space
S'/Z„, Z~ acting on S' as right translations,
q(0, 8) may be evaluated by reference to the special
self-dual case for which (2.10) must hold. Since
the multi- Taub-NUT and multi-instanton solutions

Equality in (2.14) is obtained in the case of half-
flat solutions. Hitchin's inequality implies that
one cannot find a small perturbation of a solution
to give a nearby solution with a different topology.
For instance, in the self-dual case there are no

nearby solutions in which a nut is changed into a
bolt. Furthermore, Eqs. (2.9), (2.11), and (2.14)
show that some types of solutions cannot exist.
For instance, one might have thought that Page's
Taub-bolt solution which has g = 2 and v = -1, a
single spherical bolt of self-intersection number
—. 1, and an ALF boundary, could be generalized
to a solution with a single spherical bolt of self-
intersection number -A, with the same boundary.
Such a solution would have, by (2.9) and (2.11), a

X
='2 and v =-1. For ALEboundary conditions, com-

patibility with (2.14) requires k = 2 and the metric be-
ing self-dual (or anti-self-dual). This is the Eguchi-
Hanson metric described using the Killing vector cor-
responding to rotations about the line of centers in the
Gibbons-Hawking form of the metric. ' For ALF
boundary conditions we require k & 4, with equality
in the half-flat case. &= 1 corresponds to the Page
Taub-bolt solution. Presumably, if it exists, k=4
could be obtained from the general self-dual ALF
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form. However, we have not been able to do so.
Nor have we been able to construct examples with
k=2 or 3 which, of course, could notbe self-dual.
The important point is that there can be no extra
series of solutions of this type indexed by P&4.
These general arguments, however, cannot rule
out the possibility of 4 bolts, each with self-inter-
section number -1. 'This would be a multi- Taub-
bolt family. In fact, we shall see in Sec. V by a
detailed examination of the field equations that such
a family does not exist. Similarly, the general
topological arguments do not rule out the possibili-
ty of a multi-Schwarzschild solution. This would
have l spherical bolts with F=O, hence g=2l,
&=0. The boundary terms in (2.11)-(2.13) are ab-
sent, and the Hitchin inequality is just 2)i~ 3~ r

~

which is obviously satisfied. In Sec. IV we show
that no multi-Schwarzschild solution can exist

ds =-~ & +d8 I+ (adt+&„dQ)
&dr', & sin'8
~b,

+—(dt+PPQ), (3 1)

where

III. THE KERR-TAUB-BOLT INSTANTION

In this section we present a new gravitational
instanton which generalizes the Taub-bolt instanton
found by Page" in the same way that the Kerr solu-
tion generalizes the Schwarzschild solution. Con-
sider the metric

+K=
2JQ

Q

Jp

M + (M2 N2+ o2)~/2

4
—a —

2 2 ~

N —a

(3.6)

(3.7)

(3.8)

(3.S)

This leads to the conditions

1
4)NI

(3.10)

and

"& 0& x~r„0~ 9~ m, (3.11)

which are necessary and sufficient for r = x, to be
a regular bolt in a nonsingular instanton on the
manifold CP —(0). This manifold is also diffeo-
morphic to the line bundle over S', with Chem
number c, = -1, i.e., the spin bundle of S'. Condi-
tion (3.11) is equivalent to

(3.12)

If n = 0, these are satisfied for M = ~5 ~N ~, and the
resulting solution is called Taub-bolt. If ~N~ &0,
the Hirzebruch signature equals -1, and the Euler
number equals 2. r=r, is a two-sphere of area
A = 4',' with self-intersection number -1.

If n40, the solution of (3.10) is quite compli-
cated. Removing surds in (3.10), one obtains a
cubic equation in M.

(-20N'+ 52N'o. ' 4SN n4+—16N'&')
6 = y' —2M'+& —a,

~ 2
aN'

P~=-a sin 8+ 2Ncose-
N —a'

(3 2)

(3.3)

+ (16N' —48N'n'+ 48N'n' —16N n')M

+ (20N6 32N~n'+8N n +4o' )M

+ (-16N'+ 32N'o. ' —16No')M' = 0. (3.13)
4

P =x —a—N-a' (3.4)

" =P„—aPg

= r' —(n cose+N)', (3.6)

where a, N, M are constants.
This Ricci-flat metric is obtained from Cart-

er's" ten-parameter family of solutions to the
Einstein-Maxwell equations by a simple change
of variables and relabeling of parameters.

If a=0, we obtain the general Riemannian Taub-
NUT metric. If N =0, we obtain the Reimannian
Kerr metric. In order to remove the Dirac string-
like singularities at 6)=0 and 8=m, t mustbe iden-
tified modulo 8', and P identified modulo 2m. In
order to remove the apparent singularity at values
of r for which &=0, we must identify (t, P, 8, r)
and (t+ 2w/z, Q —2vQ/a, 9, r) where

For each n (normalizing N = 1), (3.13) has at
most three roots. These may not, in fact, be
roots of (3.10) and a separate cheek must be made.
In Fig. (1) we plot the results of a numerical deter-
mination of M against a. The dotted lines show
the solutions of (3.13). The heavy lines I and II
are the two possible disjoint families of regular
instanton solutions satisfying (3.10) and (3.12).
The action for both branches is I = 4m ~N ~M.

Branch I starts at a=O, M=& with Page's Taub-
bolt solution, and continues to the point a,
a =0.693, M =1.147. Note that the action increases
at first, but starts to decrease at a = 0.552,
M=1.333 and becomes less than that of the Page
solution at a = 0.674.

Branch II starts at the point b, o. = (1+v' 1'7)/4
and M =1, and tends asymptotically to M = 2 as
a . As a gets larger and larger, the metric
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2-

Self —Dual

Taub -NUT

V) p

~ * ~ ~ ~
~ ~

~ ~ ~ ~ ~
~ ~ ~ ~ ~

~ 0

2

R OT AT ION (a )

(4.3)

solution. If we assume only one black hole, we
can appeal to the Israel theorem. " The proofs in
Refs. 21 and 22 will only work for the case with a
single horizon. The arguments in Ref. 23 may be
extended to the case of many black holes yielding
the inequalities

2

Qg, ~ 4 Q It, 'M, ,

and

FIG. 1. A graph of the permitted values of M against
o! for lNl =1 in the Kerr-Taub-bolt solution. The solid
line is the permitted region. The dotted line corresponds
to configurations that satisfy (3.13), but either (3.10) or
(3.12) is not satisfied. x marks the self-dual Taub-NUT
solution.

tends to the same metric as the Kerr form for
n'»M'. In the limit n-, both metrics become
locally flat

The only other instanton which appears in Fig. 1
corresponds to the self-dual Taub-NUT solution.
This instanton has a nut rather than a bolt at the
origin, so it of course does not satisfy the condi-
tions (3.10) and (3.12). Note that the bolt solutions
all have larger action than the self-dual Taub-NUT
instanton.

IV. MULTI-SCHWARZSCHILD CONFIGURATIONS

(4.4)

y,~dx'dx' = e"(dp'+ dz')+ p'dP',

w)~dx' = wdQ .
The field equations now become

V2

(4.6)

Equality is obtained only for the Schwarzschild
case. If l = 1, they yield the result 4&M ~ 1 and
4aM & 1 which proves the result. However, if
I & 1, it i.s easily seen that (4.3) and (4.4) are too
weak to establish the result.

An alternative approach is to consider spaces
which are in addition axisymmetric, that is, in-
variant under a. further group SO(2) generated by
a Killing vector &/S&f&, together with the discrete
operation of reversing the sense of rotation. For
such spaces, the variables in (2.2) take the form'4

In this section we shall consider a metric invar-
iant under a time translation isometry group where
nontrivial orbits are orthogonal to a family of
spacelike hypersurf aces. Thus, all the magnetic-
type fields and nut charges vanish.

The space of orbits B'will have as boundary a
number l of Boyer bifurcation fixed-point sets each
having mass M„, surface gravity v„, and area A„
related by a Smarr-type formula"

(4, 1)

, (v,'- v, '+ n, 2 n, '),

p V'
kg 2V2 VP, Vz 2 &P~s

p

2 (V,V, + QpQ, ),

VV'V = V V V'V - VG Vg,

V& Q=2VV'&0

(4.7)

(4.8)

(4.9)

(4.10)

If the metric is asymptotically flat (AF) the total
mass M will then be

(4.2)

If the metric is Riemannian, one must identify
the imaginary time coordinate modulo 27t/z„ to
complete the metric. This requires all &„ to be
equal. This is the geometrical analog of the zeroth
law of thermodynamics. Because of the attractive
nature of gravity the following seems plausible.

Conjecture. The only asymptotically flat static
Ricci-flat instanton or soliton is the Schwarzschild

pQ, = -V'cop (4.11)

pQp = V'zv, ~ (4.12)

For, Riemannian metrics we must set

where all functions depend solely on p and z, and
the subscripts represent partial differentiation with
respect to that variable. . The gradient, Lapla-
cian, and scalar product operations in (4.9) and
(4.10) are flat-space Euclidean in cylindrical polar
coordinates p, s, P. 0 is the twist potential de-
fined by
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28= Z(d y (4.1s)

(4.14)

Equations (4.9) and (4.10) guarantee the integra-
bility of (4.7) and (4.8). In the static case w= 0,
and lnV is an axisymmetric harmonic function. In

order to generate the Schwarzschild solution, one
chooses U= —,

' lnV to be the Newtonian potential for
a rod of length 2M and mass M." For l black
holes lying on a common axis, one must choose U

to be the sum of the potentials due to l rods, each

f=1 ti n n

(4.15)

and

of length 2M„, mass M„centered on the points
z = z„. This choice is unique given the requirement
that there are no other material sources, that the
metric is asymptotically flat, and that we have
regular horizons. Explicitly, U and k are then
given by

[r 'r" + (z —z „-M ) (z — + M ) + p'][r„"r' + (z —z „+M/ (z —z M ) + p']
[r„'r'+(z -z„-M )(z —z -M )+ p'][r„"r"+ (z z, +M )(z- +M„)+p'] (4.16)

r„"= p'+ (z —z„-M„)',
r„"'=p'+ (z —z„+M„)'.

(4.17)

(4.18)

At the rods the metric becomes singular. How-

ever, the metric can be extended through the ap-
parent singularity, which is then seen to be a reg-
ular event horizon (or bolt in the Riemannian re-
gime) with surface gravity v„= (4M„) '. Superfi-
cially it appears that we have a metric that repre-
sents l black holes in equilibrium. However, this
configuration is singular, as can be seen by an
argument which goes back to Einstein and Rosen. "
In order that we have a regular z axis (which is
the bolt of the Killing vector &/Sp), P must be
identified modulo 2m~~ ', where v~ is the "surface
gravity" of this axial Killing vector. It is easily
seen that v~ can be related to k on the z axis:

~~ = exp(-k) ~, „ (4.19)

where k is constant on those parts of the z axis
not occupied by a rod and is zero for large

~
z ~.

It, however, changes linearly along the rods by a
total amount of 2I"„, where I"„ is the total Newton-
ian force on the nth rod due to the remaining
(n —1) rods. Evidently, it is thus impossible to
identify P modulo 2w everywhere and hence ob-
tain a nonsingular metric. The resulting metric
would possess conical singularities on the unoc-
cupied sections of the axis. This rules out an
axisymmetric multi-Schwarzschild solution, as
was pointed out by Gibbons' and by Muller zum
Hagen and Seifert. " The same argument is im-
mediately applicable to the Riemannian regime.

In the Riemannian case these configurations, al-
though singular, have finite action. The Ricci
scalar has a Dirac &-function behavior. An easy
computation shows that the Euclidean action due to
a two-dimensional surface of

arear'

with a conical
singularity of deficit angle &, that is, where one

Here, the ~„"s and r„"'s are the Euclidean distances
from the ends of the rods to the point p, z,

I

identifies the polar angle with period 2g-~ rather
than 2w, is given by the formula

I = -A5/8w. (4.20)

This is the same formula that one obtains in Regge
calculus. ' In our particular case,

and

&=2w(1 —e ') (4.21)

(~z+ 2M)'
ln-

&z(LU+ 4M) (4.2s)

between the black holes. k= 0 elsewhere on the
axis where there is no rod.

Thus, the total action is

I= 2Mp + ~Mp-
PM2

«+ 4m (4.24)

The first two terms are the actions of the individ-
ual black holes. The third term in (4.24) arises
from the canonical singularity on the axis between
the two black holes. At large distances it is just
what one expects for the contribution to the free
energy from the gravitational attraction. As
~z -0 it remains bounded, in contrast to the poten-
tial energy of two point masses in the Newtonian
theory.

V. MULTI-TAUB-BOLT AND MULTI-TAUB-NUT

Given a stationary solution of the vacuum Ein-
stein equations, there is a one-parameter group

(4.22)

where P is the period of identification in imaginary
(Riemannian) time, &z is the length of the appro-
priate sector of the z axis, and k is evaluated in
that sector. The total contribution to the action is
the sum of (4.20) over the (I —1) interstices in the
chain of rods.

For two black holes, each of mass M, P = 8wM.

On the axis, k is given by
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of transformations, the Ehlers group, ""which
generates a family of solutions to the Einstein
equations. If the metric has the form (2.3), we
set

v- v = v/[(1 —b|I )2- b'v'1,

0- 0= [0+b(v'- 0')1/[(1 —bt) }2—b'v'1,

(5.1)

(5.2)

(5.3)~if 4y 'Yi

The half-flat metrics, for which V'= tP, are fixed
points under the action of this group and so cannot
be used to generate new solutions. If we begin
with a static solution with only electric-type mass,
we will obtain a stationary solution with both elec-
tric- and magnetic-type masses. If we commence
with the Schwarzschild solution, we obtain in this
way the general Taub-NUT metrics. 'The standard
Schwarzschild radial coordinate r and angular co-
ordinate 8 are related to the coordinates of Sec.
IV by

x'+x' =A. =x-M,
y'- y'" =M cos&.

(5 4)

(5.5)

The Ehlers transformation now takes the Schwarz-
schild metric to the Taub-NUT form if we set

(5.6)

t= t(1- b')-"'

M =M(1 —b')(1 —b2)-'12,

N = 2bM(1 b2)-&&2

(5.7)

(5.8)

(5.9)

vdQ =+4bM„cos 8„, (5.10)

where

r„'- r„"=M„cosa„. (5.11)

In order for V-1 at infinity, we must rescale the
time coordinate and spatial coordinates

t - 7= t(1 —b')-"', (5.1.2}

This solution will, in general, be singular except
when tb

~

= —,', which is Page's Taub-Bolt solution,
and ~b

~

= 1 which is Hawking's self-dual Taub-NUT
solution.

It is straightforward to make an Ehlers trans-
formation on the multi-Schwarzschild solution to
obtain the multi-Taub-bolt solutions. The ~dP is
then the magnetic vector potential due to l rods,
each with uniform magnetic monopole charge
2bM (1-b')-'~' Thus,

p -P=p(1 —b}"',
z —z = a(1 —b')'~'.

(5.13}

(5.14)

The new surface gravity of each bolt is given by

rt„= v„= 1/4M„. (5.15)

The metric wi11 now have Dirac string-type sing-
ularities along the axis between the rods and sing-
ularities on the rods, each of which now has length
M(1 —b')'~'. Since kt 0 between the rods, it is not
possible to make the necessary identifications to
remove all of these singularities simultaneously,
unless we take the limit b'-1. In this limit the
rods tend to zero size, and so the difference in
Newtonian potential between the ends vanishes.
One can see this more physycally by noting that
(5.8) and (5,9} imply

MJP -N jV =M„M (1 —b'). (5.16)

The Newtonian forces, upon which ~ depends, are
given by terms of the form

M„M /(distance)', (5.17)

using (5.13), (5.14), and (5.16). Equation (5.17)
becomes

M„M -N„N /(distance)'. (5.18)

VI. ACCELERATION AND ROTATION

Carter's general Schrodinger separable family of
solutions of the vacuum Einstein equations are in-
cluded in the general Petrov-type-D metrics dis-
covered by Kinnersley, "the C-NUT metrics.
These have an additional parameter, usually re-
ferred to as an acceleration parameter. The sim-
plest example is the C metric, discussed at length
by Kinnersley and Walker. ~ The metric may be
written as

This clearly vanishes only in the self-dual limit.
That is, in the Euclidean regime the gravitational
attraction is balanced by the nut-nut repulsion.
In the I orentzian regime, the nut-nut force is at-
tractive and such a balance is not possible. If all
the M„&s are equal, the resulting metric is a spec-
ial case of that given by Hawking. ' Similar results
can be deduced by evaluating the contribution to the
action coming from the conical singularities be-
tween the rods.

Since a pure electric and pure magnetic charge
can remain in neutral equilibrium at any distance,
it is tempting to speculate that a similar black-
hole-pure-nut solution should also exist. %'e have
not yet found one.

2M 4 d 2
ds'=(l. +Arp) ' -dt' 1-A'r — +, , +x' (1-p'-2MAp, ')dP'+ (6.1)
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If A =0, we obtain the Schwarzschild solution. If
M =0, we obtain flat space in accelerating coordin-
ates (Rindler space). If M =0, there is an acceler-
ation horizon at r = 1/A. If M 0 0, there will in gen-
eral be both an acceleration horizon and a black-
hole horizon provided 27M'A'&1. Kjnnersley and
Walker pointed out that the metric may be thought
of as representing a uniformly accelerated black
hole. It can be obtained as a special case of the
double Schwarzschild solution described in Sec.
IV, in which one of the rods is taken to be of in-
finite length and a suitable rescaling is carried
out, as described by Israel and Khan. " The limit-
ing form of the potential function giving the accel-
eration horizon is

V - (p'+ s')' '+ s . (6.2)

The resulting metric will be the same as that de-
scribed in Ref. 25. We do not have the explicit
coordinate transformations linking these two

forms, but since the Weyl metrics are uniquely
determined by the boundary conditions at infinity
and at the horizons, it is clear that they are in-
deed the same. Furthermore, it is apparent from
the arguments presented in Refs. 25 and 26, and in
Sec. IV, that these metrics must have stringlike
singularities on the axial rotation axis. This is
just what Kinnersley and Walker found. If p, , which
is analogous to the coordinate cos8 on the two-

sphere and in fact coincides with it if mA = 0,
ranges between the two roots of the coefficient of
dQ', the identifications of P necessary to complete
the metric are different at the two roots (unless
mA =0). This leads to what Kinnersley and Walker
term a "nodal singularity. " One might try to ob-
tain a regular solution by allowing p, to range over
an unbounded interval. However, since R„,~R'""
is proportional to r '(1+ prA,)', this is bound to
fail. In the Riemannian case, not only must Q be
correctly identified, but so must t. In fact, the
condition that the two t periodicities are equal is
the same condition that the &f& periodicities are
equal. 'Thus, one cannot obtain an "accelerating"
instanton from the metric (6.1). The question of
whether it is possible to find one from the most
general class of accelerating solutions to Ein-
stein's equations will be examined elsewhere.

There is a remaining question as to whether it
is possible to have multi-instanton or multi-black-
hole. solutions with rotation, that is, multi-Kerr
configurations. 'This is still an open question
which wi11, also be discussed in a future paper.
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