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Grand unification groups and charges of quarks and leptons
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The ansatz which demands that there exists a four-charge (2/3, —1/3, 0, —1) multiplet yields a strong restriction

on the search for a grand unification group, G = G, g G, g - (8) G„g U(1j. If the group is simple or semisimple, we

have only two possibilities, SU(n) or SU(n) e SU(m).

Recently there have been a considerable number
of attempts to unify electromagnetic, weak, and
strong interactions under a single gauge group G,
stimulated by the success of the Weinberg-Salam
SU(2)xS U(l) model. ' The search for the right
group encompasses simple groups and semisimple
groups: SU(n) (n=5, 6, 7, 8, 9, 10, 11,16),' SO(4n+2)
(n = 2, 3, 4, 5},' E„(n = 6, V, 8),4 SU(n) 8 SU(n) (n =4, 5,
6, 8, 12, 16},' SU(n) 8 SU(n) 8 SU(n) 8 SU(n). Of
course, G has tobe a compact group, otherwisenon-
trivialunitary representations are infinite dimen-
sional. ' But, the fact that G is compact only tel1s us
that G is in the form of G, 8G, 8 8G„SU(1) 8 U(1)
8 ~ ~ ~ 8 U(1) (Ref. 8), where G& are simple com-
pact groups. Where do we go from here'P So far,
people have worked on simple or semisimple
groups as mentioned. However, we have to re-
member the fact that the unifying group for the
electroweak theory is SU(2)xS U(1).' It is not, for
example, SU(3), whose predictions contradict
neutral-current data. So we should keep in mind
that there is always a possibility of having U(l).

Even working in simple groups, we still have
many from which to choose. Gell-Mann, Bamond,
and Slansky' require the color restriction which
demands that representations should contain only
color singlet and triplet under the decomposition
of G into G ""8SU(3) . They have shown which
representations should be used for a particular
simple group, but they could only exclude G, and
E,. The rest of the simple groups can have rep-
resentations which satisfy the color restriction.
Hacinliyan and Saclioglu' have put on more re-
strictions in addition to the color restriction: one
being lepton-quark universality and the other
being that the number of quark flavors is less than
16. They have not excluded semisimple groups,
but they could not find any which satisfy their con-
ditions. The results are similar to Gell-Mann
et al. ,

' though their method differs from that of the
latter author s. Natural cancellation of the triangle
anomaly will not telt. us m uc h ei the r: the only simple
gauge group with a possible anomaly is SU(n)
(n ~ 3)." The restof the simple groups are safe.

Georgi and Glashow" demand that representations
should be complex. Then, we have only few groups
available: E„SU(n) (n ~ 3), and SO(4n+2) (n ~ 2).
Okubo" argues that the nonexactness of the Okubo-
Zweig-Iizuka r ule" implies that G has to be one of
E„SU(n) (n =-3), or SO(4n+2) (n -2), whichare
the same as the Georgi and Glashow groups.

In this paper, we assume the simplest principle
in selecting the unifying group: Theme should
exist a four-charge multiplet, i.e., up-type (Q,
= s), down-type (Qs = —s), electron-type (Q, = —1),
and neutrino-type (Q„=O) in the same multiplet.
We do not put any restrictions on the nUmber of
each type charge. (Since we are trying to unify
electromagnetic, weak, and strong interactioiis,
it is natural to assume that four fundamental con-
stituents should be in the same multiplet. ) Note
that in SU(5) (Ref. 2), the 5 contains only three
charges (Qs, Q„Q„), while the 10 does have four
distinct charges but its content is (Q„, Q„, Q„, Q, ).
(They are really strange multiplets. ) In SO (10)
(Ref. 3), it becomes more natural, since the 16
contains (Q„qs, Q„Q„, Q„, Qs, Q„Q„). As can
be guessed, the bar over Q,. implies the charge of
an antiparticle. From these examples, we might
guess that our four-charge principle leads to a
different group, other than SU(5) or SO(10), but
we have no reason to exclude our possibility. One
may first think that the four-charge ansatz is too
weak to choose a special group, but it is, in fact,
strong.

We will discuss the cases where G =G, N) G,
SG„SU(1), since the U(1) factor only adds some
constant to the charge operator and thus it is
enough to consider only one U(1) factor. First we
prove the following lemmas:

Lemma 1. The existence of a four-charge mul-
tiplet requires that G is one of the three possibil-
ities: G=G, SU(1), G=G, SG, SU(l), or G=G,
SGsSG, SU(1). ITheU(1) factor may not be pres-
ent, depending upon G&.]

Proof. Note that the charge operator Q can be
expressed in terms of Cartan subalgebra elements
hj"' of each group G, :
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Q a c)h'tj)+c
J

i2J

Q,.+c,

where Q, = Zja&")h~&" and c is some numerical con-
stant, coming from the U(l) factor. Since Trh&")
=0 (Ref. 14) and thus Tr Q&

——0, each Q& must have
at least two eigenvalues. Let us assume that the

group G is G, SG2SG, SG~SU(1). Then, the least
number of eigenvalues of the charge operator Q
can be obtained for the case where each Q& (j =1,
2, 3, 4) has two eigenvalues. We denote these ei-
genvalues as b,'." (i=1,2, 3, 4), where b; (b,.). is
positive (negative). Then, we obtain at least five
different eigenvalues:

(b; + b2+ b; + b~) & (b; + b;+ b;+ b~) & (b; + b;+ b, + b4) & (b;+ b, + b, @,) & (b, + b, + b, + b4).

Q.E.D.

Lemma 2. It is necessary to have a U(1) for
G =G, SG,SG,S U(l). None of the G, 's are excep-
tional groups (G2, E„E„E2,or F4). The charge
structure of a multiplet is (1, 2„—,', 0).

Lemma 3. For G=G, SG,SU(l}, only one of
the G& (j =1, 2) can be an exceptional group. If
G, is an exceptional group, then the U(1) is neces-
sary, and the charge structure of a multiplet is
(1, —,', —,', 0). If GJ {j=1, 2) are not exceptional
groups, we have three possible charge structures:
(-,', 0, --,', -1), (1, —,', 0, --,'), or (1, —',, -', , 0).

For the proof of I emma 2, we note that for
G =G, SG,SG,S U(1), each Q& has only two eigen-
values, otherwise we have five or more eigenval-
ues for Q=Z Q&+c. Okubo's theorem, ' which
states that none of the exceptional groups can have
only two eigenvalues for Q,-, now yields the result
that none of G& can be exceptional groups. We
still ham to impose some restriction on these ei-
genvalues, since the possibility remains of them
being eight in number (see Fig. 1}. Since we de-
mand that there exist only four eigenvalues, we
must have

++ ++ +
I 2 5

b', + b'+ b, b, + b,'+ b',

b; —b, =b; —b, =b; —b, . (2)

b,' —b, 0 b2 —b,. (4)

This condition implies that the charge structure
of a multiplet is (1, 2, —', , 0) and it is impossible
to have, e.g. , (-'„0, ——', , —1). Since the b& are
negative, we must have U(1) in order to make Q„
=O.

For the proof of Lemma 3, we first note that
both groups G, and G, cannot have three or more
eigenvalues simultaneously, since we then have at
least five different eigenvalues. Hence, we have
two possibilities: one is that one of the groups has
three different eigenvalues, b", , while the other
has only two, b;. In this case, we have to impose
some relation between eigenvalues, since we may
have six different eigenvalues (see Fig. 2). We
obtain

(3)

This condition implies that the charge structure
of a multiplet is (1, 2, —,', 0) only. Since both b,
and b, are negative, a U(1) factor is necessary in
order to have Q„=O. Okubo's theorem' again tells
us that only one of the Gz can be an exceptional
group.

The second possibility is that each group has
two different eigenvalues, b; (j =1, 2) (see F.ig.3).
In order to get four different charges, we have

b,+

1',+ b,

+ b'+
2

b,+ b,
'

b', + b,

b, + b,
+

b', + b

b, + b,+b,
FIG. 1. Relations among possible eigenvalues. The

arrow shows which one is larger. FIG. 2. Relations among possible eigenvalues.
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b, +b,' b', + b,~
l 2

FIG. 3. Relations among possible eigenvalues.

njb&+n&b&=n& (b&)'+n&(bi) =0, (5)

where j=1,2, 3 and n~ denote multiplicities of
states with b& in a multiplet. From Eq. (2), we

have

(6}

The solutions are

b&=-b&=- and nj =n& (j =1,2, 3),1

The number of up-type quarks can be given by the
combinations (b;+ b;+ b, ), (b~ + b, + b;), or (b, +b;
+b;), while the number of charged leptons is given

by (b+~+b;+b+). Since n&=n& (j= 1, 2, 3), we have
No. up=3No. e, etc.

It is possible to have a multiplet with (-,', ——', , 0,
—1). Moreover, we have two other possibilities:
(1, ~~, 0, ——,') or (1, —,', —,', 0). [We do not count
charge-conjugate states as independent. Thus,
our four-charge condition implies at most four
cases; one missing case in the above is (—'„—,', 0,
—1)]. Okubo's theorem tells us again that in this
case none of the G& are exceptional groups.

W'e can get stronger statements if we use the
following theorem proved by Okubo":

Theorem. For any X in a simple Lie algebra,
we have

TrX'=0 for E, and SO(10),

TrX'= TrX'=0 for SO(4m+2) (m ~ 3),

Try=0 @=1,3, 5, ~ ~ ~ ) for SO(4m), B„[=SO(2n+I)],

C„[=Sp(2n}], G„F„E„andE„
where SO(10), SO(4m+2) (m ~ 3), and SO(4m}
make DAN=SO(2n)]. We can prove the following
lemmas, using this theorem.

Lemma 4. For G = G, SG, SG, S U(l), if each
G& {j=1,2, 3} is one of BJ = SO(2n +1)], C„[=Sp(2n}],
or Dg= SO(2n)], we have the relation that No. up
=No. down=3No. e =3 No. v in a multiplet.

Proof. In Okubo's theorem above, put X = Q~.
Then, we have Trg&= Tr@&'=0 for B„, C„, and

We do not have the possibility of GJ being ex-
ceptional, by Lemma, 2. Each Q& has only two ei-
genvalues, and thus

Lemma 5. For G=G, SG,S U(1), if each G&

(j= 1, 2) is one of B„, C„, and D„, it is necessary
to have a U(1). If each Q& has only two eigenval-
ues for the case where none of the G& (j=1,2) is
SU(n), we have the relation No. up = No.down = No.e
=No. v in a multiplet.

The proof is similar to Lemma 4. We obtain the
corollary from Lemmas 3 and 5.

CoxoJlary F. or G=G, SG, SU(l), it is necessary
to have a U(1), if none of the GJ (j =1,2) is g
[= SU(n + 1)].

In Lemma 5, for the case where G, has three
eigenvalues (G, has to have two) and G, is not A„
[=SU(&+ I)], the number relations are

No. e n' No. up n'+n No. up n'+n
No. v n ' No. down n +n" No. e n'

where n" denote multiplicities of the b-, ' in a
given multiplet. Thus, if No. up=No. down, then

we necessarily have No. e=No. v in a multiplet.
I emma 6. For G=G, SU(1), if G, is one of B„,

C„, G„F„E„E„orD„(nt 5), it is necessary
to have a U(l).

Proof. Assume that there is no U(l) factor.
Then, Trg~ Trg'= Trg'=0 for the groups tabu-
lated above. It is easy to see that it is impossible
to satisfy the three equations at the same time for
charges (—,', ——,', 0, -1) or its variations.

For the rest of the simple groups, A J =SU(s+1)],
E6, and SO(10), the following lemma holds, using
Trg'= Tr Q = 0.

Lemma V. If G = G~ and G, is E, or SO(10), we

have, in a multiplet,

No. up 4 No. down
= —and

No. down 5 No. e

and the charge structure is only (-'„0, ——,', —1}.
Summarizing the foregoing lemmas, we obtain

the following.
Proposition 1. In order to have a four-charge

multiplet, the grand unification group is one of the
three possibilities: G =G, SG,SG.,SU(l), G =G,
SG, SU(1), or G =G, SU(1}. For G =G, SG,SG,
SV(1), a U(1) is necessary andnoneof theG& (j =1,
2, 3) are exceptional groups. If any one of the G~

(j =1,2, 3) is not SU(n), we necessarily have the
relation that No. up=No. down=3 No. e=3 No. v

in a multiplet. For G=G, SG,SU(1), a U(1) is
necessary if none of the G& (j=1,2) is SU(n}.
Only one of the 6& can be an exceptional group. If
each Q& has only two eigenvalues for the case
where G& (j=1,2) are not SU(n), we necessarily
have No. up=No. down=No. e =No. v in a multi-
plet. For G=G, SU(1), a U(1) is necessary if G,
is not one of E„SO(10), or SU(n). For the case
where G = 6, is E, or SO(10), we necessarily have
No. up/No. down= 4/5 and No. down/No. e = 5 in a
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multiplet.
Hence, only two possibilities are left out if we

do not want to have a U(1) and unusual number re-
lations among quarks and leptons: SU(n} or SU(n)
SSU+). It is surprising to obtain this strong re-
sult from such weak requirements. Amazingly,
we can prove another proposition for G=SU(n)
g SU+).

Proposition 2. For SU(n)IESU(m), the four-
charge ansatz yields that we have either

No. p No. e 1 No. up
No. up No. down 3 No. down

for the charge structure (—,', 0, ——,', -1), or

No. p No. e 1 No. down

No. down No. up 3 No. up

for the charge structure (1, —'„0, --', ). Only
these tvn cases are allowed.

The proof can be done easily, using TrQ& =0 and

Lemma 3. If we demand either No. up = No. down

or No. e =No. v in a multiplet with the four-charge
ansatz, then we have automatically No. e = No. v

= —', No. up =—', No. down with the unique charge
structure (-'„0, ='„-1). The charge operators
Q, and Q, take the following forms for this case:

6

1
2

3M M

From the form af charge operators, we must have
at least n ~ 2 and m ~ 4.

For G =SU(n), we can have any charge structure
as long as n is sufficiently large. For example,
the fundamental representation of SU(8) can ac-
commodate (-'„-—', , 0, -1). Since SU(n) is the
only group which can have the triangle anomaly,

we should be careful about model construction.
Finally, we would like to mention another pos-

sible charge structure in a multiplet, that is,
(1, —,', —,', 0, ——,', —s3, —1). In this case, every
representation for the groups SO(4n), Sp(2n), G„
F4 E7 y 8, has the po ssibil ity of having thi s
charge structure automatically. The reason is
that for these groups we have Tr Q = 0 where P
is an arbitrary odd integer. Thus, for every par-
ticle type we have No. parti:.cles = No. antiparticles
in a multiplet for 6 =~,; note that this relation holds
for any charge structure. " Even for SO(4n+2)
(n ~ 8), we still have this relation for the particu-
la.r charge structure (1, —', , —', , 0, ——', , ——,', -1).
For SU(n), E„and SO(10), we are not guaranteed
of having this structure, although we know it is
possible. Therefore, unfortunately, the charge
structure of a multiplet, such as (1, —'„—,', 0, ——', ,
——'„—1), yields no constraint on the selection of
the right group for grand unification.

Note added. The conclusion that the group
should be either SV(n) or SU(tt) 8 SU(m) is de-
rived from the nontriviality of the representation
of a multiplet. Therefore, SU(n) may imply that
the group for aD the multiplets is, for example,
SU(n)~ 8 SU(n)n Sim.ilarly, SU(n) 8 SU(m) may
imply SU(n)~ SSU(n)n 8 SU(m) as the grand uni-
fication group. The choice, n= 2 and m=4, leads
to the Pati-Salam group SU(2)~ C83SU(2)n IRSU(4).
Note that we have shown that n~2 and m~ 4.
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