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The search for new additional symmetry in Yang-Mills theory is described, A reparametrization-invariant path-
dependent Lagrangian is given whose fundamental variables are the functional fields tt g'] = P exp (PA dg). The
Lagrangian is used to construct path-dependent Noether currents corresponding to translations, SO(4) rotations, and

scale transformations on the path g„. An internal-symmetry current is interpreted to signal the existence of an
infinitesimal functional field transformation tt ~tt + Bligh, where dP is a certain specific path-dependent gauge
transformation. A second new hidden-symmetry current is derived explicitly. Also. discussed is the gauge-invariant
formulation of scalar electrodynamics. It is a functional field theory in which''space-time transformations on the
path-dependent fields give rise to internal-symmetry Noether currents of the local variables in contrast to Yang-
Mills theory.

I. INTRODUCTION

This paper discusses the search for an extra
additional symmetry of Yang-Mills theory. In
lieu of solving the theory exactly, such symmetry
may lead to important information about the non-
perturbative sector. One example of this is that
the new symmetry implies complete integrability
of the classical system. Another is that it gives
rise to new conserved quantities.

It is unlikely that there exist further continuous
symmetry currents which are polynomials in the
local field variables and their derivatives. ' Of
course, new discrete symmetries and nonlocal
conserved currents may occur. In this work, the
new invariance is described in Yang-Mills theory
reformulated in terms of functional fields, a
formalism where the role of the fundamental local
variables A;(x) is taken on by the path-dependent
field i] =I' exp(fA d $).

The results of this paper are the following. In
Sec. II a reparametriMation-invariant path-depen-
dent Lagrangian is presented and its relation to
Yang-Mills theory is discussed. This Lagrangian

is then used in Sec. III as a tool to derive path-
dependent Noether currents associated with famil-
iar space-time transformations on the paths:
translations, So(4) rotations, and scale transfor-
mations. Functionally conserved currents com-
puted in this manner often involve no singular
expressions in the derivation of their conserva-
tion laws.

In Sec. IV, the functional Noether current asso-
ciated with internal-symmetry local gauge trans-
formations is given. A hidden-symmetry current
is interpreted to signal the existence of an infinite-
simal functional field transform'ation g —g + n g,
where ng is a certain specific path-dependent
gauge transformation. A second new hidden-sym-
metry current is derived in direct analogy with the
Noether-current analysis of the nonlocal charges
in the two-dimensional chiral models. 3

In the Appendix, the gauge-invariant path-depen-
dent formulation of scalar electrodynamics is
shown to be a functional field theory in which a
path symmetry gives rise to an internal-symmetry
current. This is in sharp contrast with the Yang-
Mills case.

II. LAGRANGIAN FORMULATION

The fundamental variables of a functional formulation of Yang-Mills theory are path-dependent fields
$(x,C). These are expressed in terms of the local gauge potentials A, (x) = A; o'j2i as

t(«, ~)= tlil = »«P (f& a&)

=Pexp ds („sA„t s
Si

(2.1)

The line integration in (2.1) is done around a closed path in four-dimensional Euclidean space paramet-
rized by four functions $„(s),where si ~ s ~ st and (,(si) = $„(s&)=x„. The path ordering P in (2.1) is de-
fined by
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Pexpl A d$ l
= lim Pexp ($', —$'„')A, ($' ')

dd

(g -&) ~ A(g) (g -x) ~ A((i) (~-g ) ~ A(g &
i 2

zm e e ~ ~ ~

N

lim[1+(g~ —x) A(x)][1 ()5 —$ )
' A(( )].~ ~ [1+(x—( ) ' A(h )] ~

N "~
(2 2)

In (2.2), the path described by $„(s) has been made
discrete in order to exhibit that path ordering is
necessary to expres s the product of exponentials
of noncommuting classical matrix fields A„(x) as
the exponential of the sum of these fields.

From (2.2) we see that the functional field (t)(x, C)
= P exp()A ~ d$) depends on the starting point x, .
In (2.1), ([)(x,C) is also written as gg] to stress
that just as the local field A, (x) is a function of
the point x, the field g[$] is a functional of the
functions g, (s) used to describe the path. If we
reparametrize any given path $„(s) by a new path

$„(t):s =s(t), $,(s) = $„(s(t))—= $„(t), then

p =pexp fds ((s)A„((,(s))
L

+ Ch 5 „S X.q~~~ &p8 S L(s)'x ~ S

= -», [A„(x), (j]

+ QSQ jIS
5(j)

5 ~s (2.4)

Th(.. -fore,

5[j)

()$)) (s)( )
&X:K()F»(&())&C()l &[)().

In (2.5), g„.&(,) Pexp( jt('———)A ~ d$') and in (2.3)

(2.5)

The gauge-covariant functional derivative 5/5$„(s)
is given as follows':

X]-C[&]=-»,[A, ( ), Cl &]]

=Pexp dt 4 rgt A„ t

rema ins invariant. 5 Thus to be precise, the func-
tional field [t[$] depends only on the path C and the
starting point x: [t[$]= [j)(x,C).

We now define a reparametrization-invariant
Lagrangian. It is

ds '
5g 5[j)

[i'()]" 5~() 5g()'

1

'[(]=1(m pexp — (([— )(s ((s'(s')')
N~ =I

-(x-K )'&(K )... -(a -&)'&(&) (2 6)
N

q
' is defined by going the opposite direction

around the path C. [j) '[/)[AD =I.
We observe from (2.4) and (2.5) that the covari-

ant functional derivative commutes' for s and t not

equal to s, or s, :

5)[((s) &$() (t)
. . [I) =[I„,&„.(s)g, ,., F„,(t)q, .„~„(s)&,(t)e(t-s)

+ q„., s„',(t)[j),.,s[,„(s)[j,.„$„(s)&,(t)e(s —t)

+ q„,, q, Z„,(t) q, .„~,(t) 5(s-t) + y„.,S,„(t)y,.„„—,5(s-t), (2.Va)

s

e( ), () p=p„, , ps(i)p. .. [ d
e(s ))s —I!(s i))--

-0 (2.7b)

For simplification, the notation has been changed
slightly from [j)„.&(,) to [j),., and from E„„($(s))to
E„„(s).

Expressed in terms of the local field variables,
the path-dependent Lagrangian (2 ~ 3) is

p[(l= —f [..(')[„,(„( )(( )i pm( )ps, ( ).
(2.S)

Unlike the functional formulation of scalar elec-
trodynamics discussed in the Appendix, the La-
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FIG. 1. The path C .

(2.9)

(2.10)

On the lattice, ' the classical Euclidean gauge
theory action is given by

grangian functional Z[g] itself also depends on
the path. Thus to define the action one has to in-
tegrate over all paths with some measure:

The measure D4$ must be reparametrization in-
variant, include some weighting factor for conver-
gence, and be defined such that (2.9) is equivalent
to the Yang-Mills action:

I = x - ~2 tr F~~ x F~U x

FIG. 3. The path C .„.

—Unv Un~g~ U„+~v 'Un~ ')

or equivalently

0=4(c))n) Q(U pUn+p-"v, v Un-e, p Un-»

(2.is)

—Un v U„+-v ~ Un+ pv
'

Un~ ') P '(
v, „)

Also, the equations of motion on the lattice can
be written as

0 = 2 Q(U„„U„,-„„-„'U„1,„'U„

g~t
= —Z trU„U~~~ U„+- Un

n)g&
(2.11)

+ & g tr ([|)(C, +II„„„)—q(C, ) ]
n)p e.U

x [q-'(c, +11„„„)—q-'(c, )]] .
(2.i2)

In (2.11) U„„=e~a'"" is a 2 &&2 special unitary ma-
trix p~ =U„„'=e '~~'"', g is the lattice spacing,
and a4+ „becomes the continuum integral f d4x

with x =na for a-0. Now define a lattice matrix
field on a set of links:

((C)) = U)p U~~v U)+p+vpUnp
~ 1

n+ p-& y-»&

where C, is given in Fig. 1. Following Polyakov, '
then define g(c, +~„„,) as the matrix field on a path
where the link n to n +p, is replaced by II„„„i.e.,
the links n to n+v to n+ +i)Ii to n+p. (see Fig. 2).
Thus Eq. (2.11) can be rewritten a,s

I = —g trI

C, -'C, -rr„„.— C, + „, -'C, ,

(2.14)
where the paths C,.n and C,-g„„,are defined in
Figs. 3 and 4.

The classical continuum limit (a —0) of (2.11) is
unambiguous':

= g, .,„exp [E„&(an) 6("„($""—(")s] (,„.,
y'. an an'. y & (2.16)

where 6$"„=a6„,and ((""—P)s=a68„, we have for
fixed an = g

lim [((C,+II„„„)—$(C,)]
a~0

=a'y, ., I„„(~)q, ., +O(a') . (2.17)

lim I„,= d x —,tr F» x I'» x + constant.
a~0

(2.16)

Using the fact that

»m [t (C, +11„„„)—q(C, )]
a~0

START

A

n+V
A A

n+pL +v

A
I) n+p
1(

A

)i v

A

STA RT

A
)i n+p
1(

A

)l &

The continuum limit of the equations of motion
(2.14) is therefore'

Cy+ Gn~v

FIG. 2. The path C~+ ~nuv.

Cy —IInpv

FIG. 4. The path C~- H„„„.
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lim g [g(C,) g
' (C „-II„„„)- $(c„+11„„„)g '(C, )]—,= lim g([g(c„ II„„,) - g(c „)][g '(C „+II„„,) - ( '(C„)]

a~0 V a 0 V

+ q(c, ) [y-'(c, +Ii„„„)+y-'(c,-ll„„„)-2y-'(c, )]&—,

=0. (2.18)

From (2.17) we see that

Iim —,[q(C„+II„„„)—g(C„)]e

Thus, although (2.18) implies

(
C~„(s) ~~~ V~„(s) ~

or equivalently

I', 5

6(p(s) ~( 5)~(s)

(2.19)

(2.20)

the continuum limit of the lattice functional Lagrangian in (2.12) is the local Yang-Mills Lagrangian den-
sity and not the path-dependent Lagrangian (2.3):

Iim, g tr [q(C„+11„„„)-y(C„)][q-'(C„+11)-q-'(C„)]=-~tr Z, „(z)Z„„(~).
a-+0 VP

(2.21)

The Lagrangian functional (2.3) is presented in
this paper as a tool to construct conserved quan-
tities, i.e., conserved by the Yang-Mills equations
of motion. 2[)]is not equal to the Yang-Mills
Lagrangian density. But when g is expressed in
terms of the local gauge potentials A'„(z), D„E„„(z)
=0 implies solutions of (2.20).

where b, g in (3.2) is given by

sg
ds 5t'p(s)

(3.2)

(3.3)

III. @PACE-TIME SYMMETRIES

The functional Lagrangian (2.3) is covariant un-
der translations, SO(4) rotations, and scale trans-
formations. In analogy with local field theory,
choose the infinitesimal transformations on the
paths as follows:

Now use the functional Lagrangian (2.3) to con-
struct path-dependent Noether currents. For a
transformation on the field g-g+hg, g '-( '
—g 'b, gg ', the Lagrangian Z[$] transforms as
-+4, where

ds 5b. g 5g '
[p(s)]'~' &&„(s) &5„(s)

&q(s) -Yp(s) = 4(s) —& $q(s),

where

6tq(s) = a„,
5]q(s) = ~q„$„(s),

&h„(s) =- p$„(s)

(S.la)

(S.lb)

(3.1c)

5g 5

gt„(s) gg„(s)
(S.4a)

for translations, SO(4) transformations, and scale
transformations, respectively.

Let the matrix functional field g transform as a
scalar under the transformations (3 ~ 1). For (S.la) When y is a solution to the equations of motion
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(2.19), we have from (3.4b)

ds 5 5g
'

g2( )])/2 2tl
( )

6g
( )

(3 5a)

55 (s) [P(s)]" 5 (s)
(3.6b)

Equation (3.6b) follows from the reparametrization
invariance of g:

(„(s)
( )

=0.

Thus if for a given b. g one can show that

6$ = ds Ap s~C5]„s
without using the equations of motion, a function-
ally conserved quantity can be constructed:

1 5
el)((s C ) 2 fr 6g [~2 ( )])/2 ( )

lJ) A ))(8 C )

(3.6)

5$„(s) [('(f)]" 5(.(&) 5$, (t)
'

(3.8c)

Therefore, the associated functionally conserved
Noether currents are from (3.6) and (3.8)

Z~ (s, C)

5g 1 5(t)
'

5)gt) [(2(s)]1/2 5( (s) )) n M )

(3.9a)
—(

~„sJp'~'(s, C)= (2)r f d( (s(()

x ((.(,)) r* —».( ~ (~)):((lj~.„
(3.9b)

sra(e 5( 5( ' 1
J')) (& C):2 tl dt $ (f)

( ) ( ) [ 2( ] /

5P' 1

5(„(s) [P(s)]"

ds J„(s,C) = 0.
5 „s

These are path-dependent Noether currents. For
the space-time transformations given in (3.1) we
now show that the field transformations (3.2)
shift Z[)] by a total functional divergence and we
construct path-dependent currents (3.6).

The field transformations g- g+ b, g are found
from (3.1) and (3.2) and in analogy with local
scalar field theory to be

~('= f@' a(„(~)" (3.'la)

dt (0~8 $8(t)
( ) ) (3.7b)

6 I) = d( + / dt („(t) 5g
5$ t (3.'Ic)

Here d is the scale dimension of the field (t). That
g has zero scale dimension is consistent with its
definition in terms of the local gauge potential;
g=P exp ($A ~ d$) is a dimensionless quantity. The
constant w~& = —co 8„. The field transformations
(3.7) shift Lagrangian density without use of equa-
tions of motion by the following total divergences,
respectively:

E„(t) 5( 5g
'

N'(f)1'" 5$.(t) 54(t) ' (3.9c)

Note that the canonical form (3.9a) is not sym-
metric in p and n and that (3.9b) and (3.9c) cannot
be written in terms of (3.9a). Possibly this could
be achieved by the addition of the divergence of an
antisymmetric tensor to the canonical currents.
Also, remark that the term in the scale current
(3.9c) proportional to d is identically zero. In
contrast to the internal-symmetry currents dis-
cussed in Sec. IV, the currents given by (3.9) are
not matrix currents. In contrast to the Abelian
model treated in the Appendix, the Noether cur-
rents derived from the space-time symmetries
above do not imply the existence of an internal
symmetry in terms of the local gauge potential
fields A'„(x). Lastly, the naive choice

~t) = f d((2t: ((&) ( (') —'..('(&))
5~„(t)

corresponding to g transforming as a scalar under
special conformal transformations on the paths

5() (s) =2(), (s) C. ((s) —c) ('(s)
does not leave the equations of motion (2.20) in-
variant.

ds Q g5(„s

EeC = Q)~6 dS 8 S cC

(3.8a)

(3.8b)

IV. INTERNAL SYMMETRIES

Internal-symmetry transformations on the field
g are now considered. Local gauge transforma-
tions lead to a Noether current whose conserva-
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tion is just the equation of motion. The first nontri-
vial hidden-symmetry current is seen to be consis-
tent with invariance under a certain specific path-
dependent gauge tranformation. Arguing in direct
analogy with the two-dimensional chiral models
we are then able to write down a second, new,
hidden-symmetry cur rent.

Under local gauge transformations

A2(x)- U(x)A„(x)U '(x)+ U(x) B&U '(x), (4.1)

where A„(x) =—A2(o.'/2i) is a traceless anti-Hermit-
ian 2 x 2 matrix and U(x) = e i")' /" is an element of
SU(2). The corresponding transformation on g is

kg=2 ds tr 6S
5 „s

where

1 6(
(&( ) 0 [f2( )]2/2 5$ ( )

(4 6)

der arbitrary local gauge transformation U(x)
= e " and is covariant under certain specific path-
dependent gauge transformations U[g] = e t1), where
the traceless antisymmetric matrix 8 now depends
not just on the path starting point x„but on the en-
tire path &„(s) in some specific way.

For a(j& = -(j(S, the change in Z[g] is

g (x, C)- g'(x, C) = U(x)g (x, C)U '(x) .

Infinitesimally (4.2) is

0'=0+&0

z q= [S(x),q],

(4.2)

(4.3)
5x~g=2 ds tr F&s, 5 s

hm &&

(4.7)

Let S=[~,T] where T=p'o'/2i, p' constant. Then

Eq. (4.6) becomes

where S(x) =S'(x)o'/2i depends only on the origin of
the closed path The field transformation (4.3)
leaves g g] invariant since the covariant deriva-
tives 5/5)i1(s) only vary the path away from the
starting point x2. Alternatively, from (2.8), the
transformation E„,(z)- U(z)E„„(z)U '(z) leaves
It[)] invariant.

In addition, we remark that the field transforma-
tions Lg =S(x)g and bg = -$S(x) separately leave
g[E] invariant. The Noether current constructed
from Ag = -)S(x) is

gauge
' 1 5g, v'

~&&(2,c) 0 g2( )] &/2 5( ( )
(x)

2 ( )

Since g '5(j&/6$„(s) is also a traceless anti-Hermit-
ian 2x 2 matrix, (4.4) implies a conserved matrix
current

In order to carry out the Noether'analysis one must
define X such that (4.7) can be written as a total di-
vergence without using the equations of motion.
This has not been done.

Nonetheless, to construct a conserved quantity,
we can proceed with an alternative definition of an
infinitesimal symmetry transformation b, (1&, namely
if g is a solution so is /+he. Thus for b,g
= -/[X, T']p' to be a symmetry of the equations of
motion, we must define )( such that if (1& is a, solu-
tion so is g —g[)t, T']p' to first order in p'. This
condition on x is

[P(s)]'" 5& '(s) ' " '.55 (s)'

Let

1 5(
cJ&(( t ) 0 [$2( )]1/2 5] ( )

(4.5)

and

&X ~X p
&(

The conservation of (4.5) is just the equation of
motion (2.20).

We now discuss the hidden-symmetry currents in

analogy with the infinite set of nonlocal conserva-
tion laws of the general chiral models. In this the-
ory the first two nontrivial nonlocal currents have
been derived as Noether currents explicitly. ' Fur-
thermore, conservation of the first (trivial) non-
local current is just the equation of motion. In this
two-dimensional theory it was shown that whereas
the chiral Lagrangian is invariant under arbitrary
global isospin transformations G x G, the symme-
try giving rise to the nonlocal currents is a covar-
iance of the Lagrangian density under certain spec-
ific local isosptin transformations. Thus, the ob-
vious extension to functional Yang-Mills theory is
that the functional Lagrangian (2.3) is invariant un-

(4 9)

&x
~„( C)--[F„( ) X] +

g ( )),/ 5] ( )

as follows. From (4.9)

Ox 1 5x
&(t 5$ t 2 &&t 5$ t

so that (4.8) implies

1
t( (*& (('(t&("' t( (t&

' " '")

(4.10)

(4.11)

~~ &x &x~~

From (4.8) and (4.9) we construct the functionally
conserved quantity
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)("(),))=-', f d»»(» — )A»,(, »),( (4.13)

x.'*'(), () = --' f d»»() —«)&,(», &)

+ g LY6 P-x Ao x) t,X x, t

and g(x) is a matrix field element of some group
G. When g is a solution to the chiral equations of
motion B„(g '8„,) =0, then

(8
BpX = -&pu&v ~

e](x A)) 2 e)) v[Av» X ](2) (j)

Use of (4.14) then reduces Eqs. (4.12) to

pic e (9 [A (i]]

&'" = [& x'" x'"] + -'[[A„ x'"1 x'"] .

If we replace X(" by X and A„by E„[$(s)]then
Eq. (4.15a) is (4.10) and it is now trivial to con-
struct the next current in functional space from
(4.15b). It is the new result

(4.14)

(4.15a)

(4.15b)

() 1 6y
( ) ) [$2( )]1/2 5] ( )

)X

+ H[&](&) x],x]. (4.16)

' V. CONCLUSION

A Lagrangian of functional Yang-Mills theory is
presented. It is used as a tool to construct path-
dependent Noether currents corresponding to trans-
lations, SO(4) rotations, and scale transformations
of the path and internal local gauge transforma-
tions. A hidden-symmetry current is derived by
requiring ]I)+a( to be a solution to the equations of
motion for all solutions g where b, ]1) is a certain
specific path-dependent gauge transformation. We
thus identify an additional symmetry in Yang-Mills
theory to be an invariance under this gauge trans-
formation just as in the local two-dimensional
chiral models, the first nontrivial nonlocal current

(See Ref. 2.) Note that (4.10) has exactly the same
form as the two-dimensional Noether currents when
the chiral fields are solutions. In the two-dimen-
sional model, the Noether currents for the f irst two
nontrivial charges are'

vt))
= [A])» X ] —e])vAv a e]) v[evx & X ] )

(i) (o (0 (9

~'"=[A x"] -'[[A, x"],x'"]

[ x'" '"l — . [[ .x'" x'"] '"]
—e])v[Av»X ]» (4.12)

where

is associated with a specific space-time-dependent
isospin tr ansfor mation. '

Another new result is the explicit derivation of a
second hidden-symmetry current.

The functional description of Yang-Mills theory
is studied here in the spirit that coherent phenome-.
na such as confinement may be more easily probed
bythe switch from the local variables Av(x) to the
new fundamental excitations g. Path-dependent
variables appear also in discussions of duality for
Yang-Mills theory. " Certain two-dimensiona'l sys-
tems such as the sine-Gordon equation exhibit both
complete integrability and a dualitylike relation-
ship (with the massive Thirring model). " A
thorough understanding of the nature of these vari-
ables may thus prove valuable in bringing together
a coherent description of nonperturbative effects
for the strong interactions.
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APPENDIX

As another example of a local field theory re-
formulated in terms of functional fields, this ap-
pendix discusses Minkowski-space four-dimension-
al scalar electrodynamics. Unlike the Yang-Mills
case, in this theory a space-time symmetry trans-
formation on the paths leaves the Lagrangian dens-
ity invariant; and the associated Noether current
can be used to find a conserved internal-symmetry
current of the original local vari. ables.

The Lagrangian density in terms of local field
variab. les is

2 = ( e„+ieA „)rp "(8"—ieA") p
—m p +p —g E~„E" (A1)

With the use of Mandelstam's gauge-invariant
formalism, ' (Al) can be expressed in terms of
new, path-dependent fields and their functional de-
rivatives. The nonlocal fields are defined as

x

('((]=(»(»)»xp -(» f d( A(()
Isa

~ ()Q

x

(")(]=v "(«)»»v ~» f a &(()
)»

These functional fields are reparametrization-in-
variant functionals of $„(s) which parametrizes the
path: 0&s &s„(„(0)=-~,$„(s,) =x&. Under an
arbitrary variation of the path: g~(s)- $„(s)+5)„(s),
the corresponding variation of the field given below
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defines the ordinary functional derivative d/d5„(s),

Q [g+5g] —P[g] =5x"B„t([)g]+iet)$"(0)A„(— )(t) [5]

+ dsO Ps -ge Epa s 's

In terms of the path-dependent variables the
equations of motion are

B„B"Q = -m

Bp B "(t *= -m'P*.

ds5 ps (A3)
Under an arbitrary field variation, P —P+AP and

where
x

B„p[&]=(B„-i'„(x)y(x))exp ie— d& A. (g)
L ~ 00

It will be useful to consider portions of (A3) separ-
ately and to distinguish field variations and func-
tional derivatives corresponding to different path
variations 6$„(s). That is to say, variation of the
end point x„with the rest of the pathfield fixed,

~k„(s) =

0,. otherwise

results in

Q [( + 5 $] —P [$] = 5x"B„Q =- dP .

If we define the corresponding functional derivative
by dp —= 1 ds 5g "(s)B (s)Q, then it is

B„g)p- 5(s —s,) B„()))

Variation of the path with both end points held
fixed,

0, s=O, s,
5$„(s)=

5$&(s), otherwise

leads to

4'[&+~8-&4]

(A5)

and

=-ie dsE„s s 5 "s =-5 A6

D„(s)$= ieE„„($(s))$"(s)$— (Av)

The functional fields and their various derivations
discussed above are all invariant under local gauge
transformations A&(x)-A„(x) —(I/e) B&i).(x) which

vanish at x„=-~: X(~)=0. Equation (Al) can now

be written as

m'(t) *y ——,
' E„„E (A8)

Although 2 is expressed in terms of path-dependent
fields, they combine such that 2 itself depends only
on the end point x, in contrast with Yang-Mills the-
ory. g is therefore invariant under arbitrary vari-
ations of the path which leave the end points fixed.
This symmetry is now used to construct a function-
al Noether current.

where

M = B„~P*B)'y+BP +B)'aQ -m'P*~Q -m'QaQ*

(A9)

and we have assumed that b, sp =B„hp. Use of the
equations of motion yields

(A10)5a =B„(B"g*Z Q+B "gag +] .

For b, (t) =6/ given in (A6) and the corresponding

&(''=(e f E«„e( (s())( (s)il('(s)( "[(],

then from (A9) we have 5C = 0. Therefore, the
conserved current is

(('",('-4, (")f«+ s( (~())V(~.)ii( (~), "

can be dropped from J„resulting in another con-
served quantity:

J„=ie(P*B„P—QB„P*) (A12)

J„depends only on the end point x and is in fact the
standard current obtained from global gauge invar-
iance. In terms of local variables,

ill =ie(cP +(B~ —t8A)))cP —P (B~+ imp)Q +) .

The distinction between the functional derivative
B„(s) and the local derivative B/BX" is relevant only
when the object being differentiated is nonlocal.

In this Abelian theory, the Lagrangian expressed
in terms of path-dependent fields is invariant under
arbitrary path variations which leave the end points
fixed. The functionally conserved Noether current
associated with this symmetry implies the conser-
vation of an internal-symmetry current of the local
field variables.

(All)

where t) $ (s) is arbitrary but vanishes at the end
points.

J& is a nonlocal object whose functional derivative
B„(s)Z =0. Since the derivative B„(s) only involves
variation of the end point the factor

ds E„8(g(s)) (I)"(s)J d$
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