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Exact computation of loop averages in two-dimensional Yang-Mills theory*
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We present an explicit algorithm that allows the exact computation of all nonlocal gauge-invariant correlation
functions in two-dimensional Yang-Mills theory. Explicit expressions are given for the expectation value of
entangled loop operators and their products in the U(Nj theory with arbitrary N. Using these results we show that
the Schwinger-Dyson equation for loops holds without singularities in the continuum, and we verify the
factorizability of the correlation functions in the N —+oo limit. A non-Abelian version of Stokes's theorem which is
used in the calculations is derived for an arbitrary number of dimensions.

I. INIODUCTION

In recent years there has been a continued ef-
fort to understand the nonperturbative structure
of non-Abelian gauge theories in the description
of which the expectation value of nonlocal. gauge-
invariant operators play an important role. Exact
results for these expectation values are of special
interest since they may offer new insights and can
serve to test new developments and approximation
schemes.

In this paper we consider the case of the two-
dimensional continuum theory where we construct
an explicit algorithm for the exact computation of
the vacuum expectation value of arbitrary loops
and products of loop operators. Although this mo-
del represents a drastic simplification as com-
pared to the physical four-dimensional theory, it
still has a structure rich enough to illustrate
properties that are believed to be common, to
some extent, to all non-Abelian theories.

Explicit computations will be done for the U(At)

theory and, although we concentrate here on the
exact finite-K results, it is shown how the algor-
ithm simplifies for large-N calculations by means
of an explicit power series in 1/N whose coeffic-
ients are easy to compute to any order.

In Sec. II we review the derivation of the Abel-
ian results whereas Secs. III and IV deal with the
general noq-Abelian calculation. In Sec. V we ap-
ply the general results to some explicit examples
of interest with a brief discussion of the results.
A non-Abelian version of Stokes's theorem, used
in the calculations of Secs. III and IV is derived in
the Appendix for arbitrary dimensionality of
space-time.

is still interesting to recast the calculation in a
way that, with appropriate modifications, we will
be able to generalize to the non-Abelian case.

Let y be a loop in two-dimensional Euclidean
space-time, parametrized by s, 0 ~ s ~ 1. We
denote by U[y] the gauge-invariant Abelian phase
factor

1 ~

U[y]=exp ie dsy (s)A, (y(s)) '.
Q

The current associated with y is given by

1

j'(y", x) = ds y" (s) 5 "'(y(s) —x),
0

(2.1)

(2.2)

and we can write

U[y] = exp t'e d'x j "(y;x)&„(x) (2.3)

1

g(y;x) = ds y'(s)b, (y(s);x), (2.5a.)

The field strength in two dimensions has the form

(2.4)
'

and if y is a loop that does not intersect itself
Stokes's theorem gives

„a.r (.)~ (~(.)) *I ~"„r(*),=
0 c&

where the surface integral extends over the area
enclosed by the loop and the + sign is determined
by its orientation. In the case of arbitrary loops
that intersect and overlap with themselves an ap-
propriately modified version of Stokes's theorem
also holds. Let 8(y;x) denote the winding number
of a closed loop y around the point x. It can be
written as

II. ABELIAN CASE

In this section we give a brief derivation of the
vacuum expectation value of arbitrary loops in the
two- dimensional Abelian theory. Although the
final results are very simple and well known, it

where b„(x;x,) can be thought of as the "gauge
potential" at x due to a magnetic vortex of unit
strength located at x, . b can be written in dif-
ferent gauges although g is independent of this
choice, and in the Lorentz gauge it is given by
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1 (x-x,)"
b„(x,x,) -- e„„( ),

1
e „„S"Lnm'(x - x,)',4n'

(2.5b)

where m is an arbitrary mass par'ameter. Using
this representation for b, it is easy to show that
the current in Eq. (2.2) is given by

FIG. 1. Weights assigned to the different portions of
the area of overlapping loops in the Abelian theory.

j"(y;x) =e""s„e(y;x) (2.6)
measure SA„. Choosing the axial gauge

and using this in the right-hand side of (2.3) we
get

l 1
ds 'y "(s)d.(y(s)) fd'x =S(y; «)F(«),

0
(2.V)

x exp — d'~ ~E' x —iee y;x Ex

where a gauge-fixing condition is implicit in the

which is the general version of Stokes's theorem
valid for arbitrary loops.

The functional integral for the vacuum expec-
tation vaLue of U[y] can now be written as

1
(v[y]& = — ua,

A, (x„x,) —0,
A.,(0,x, ) =0,

it is easy to show that, since in two dimensions
there is no Bianchi identity, the change of integra-
tion variables from the gauge potential to the field
strength is linear:

di„(x)6(a, (x„x,))6(x,(0,x,)) = C dZ(x),

(2.8)

where C is a constant that cancels with the cor-
responding factor arising from the same change
of variables in the normalization factor Z. Then
we are left with

(yy[y)) = —f de'(x) exeI-f d*x[-,'d'(x) —(se(y;x)X(x))I,

which is a Gaussian integral giving

['
(U[r]& =e~p/- —A[r]

f
(2.9)

where

d[y„y, )=fd" s(y, ;.)s(y,;.). (2.12)

where A[y] is the area enclosed by the loop y as
defined by

d[y[ fd" s (y;.)= (2.10)

e2 ts

=exp —— Q y,. +2 A. y, , y,.

(2.11)

Similarly, for the product of many loops one finds

(U[r, ] U[w„]&

Notice that the quadratic composition law for the
areas of overlapping loops (Fig. 1) is just what
should be expected from a Hamiltonian descrip-
tion. Regions where loops overlap describe the
propagation of more than one e'e pair having
their strings of electric flux falling on top of tach
other. In the Abelian theory these fluxes add up
algebraically giving rise to the winding number
8, but the energy of the configuration depends on
the square of the total flux thus giving rise to the
above results.

Using E[Ls. (2.5) it is easy to show that the re-
sult in (2.9) can be rewritten in its more usual
form

2 1 1 ~

(U[y)) =sxpI+ ds ds' y'(s)y„(S') )ese. '[y(s) —y(s')['I
Sm

with a similar expression holding for E[L. (2.11).
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III. EXPECTATION VALUE OF NON-ABELIAN LOOPS

In order to extend the calculation of Sec. II to the non-Abelian theory we need an appropriate generaliza-
tion of Stokes s theorem. This generalization, valid in any number of dimensions, is derived in the Ap-
pendix and here we present only the result.

The non-Abelian group element U[y] associated with a path y, open or closed, is given now by the path-
ordered exponential

1

U[y] =P exp ig ds y'(s)A. (y(s))
Q

OO S
= g (ig)" ds, ds„j "~(s,) ~ y'"(s„)A„(y(s,)) ~ A„(y(s„)),

n=0 0 0
(3.1)

where A. ,(x) =A, '„(x)T, is the Lie-algebra-valued
gauged potential. For brevity we will refer to
U[y] as a "loop variable" if y is a closed path or
a "string variable" if it is an open path.

If 0 & s„s~ ~ 1 let us denote by, y, the segment
of the path connecting the points y(s, ) and y(s, ),
given explicitly in terms of y by

y, (s) = y(s, + (s, —s, )s)

so, y, (0) =y(s, ) and, y, (1) =y(s, ). In particular,
2 1 2

x&o (3.2b)

(3.2a)

and we write, y, =y '. Let ( now be a sheet, that
is, a one-parameter family of path's parametrized
by 7, 0 & v ~1. Then, for each 7, $(r) is a path,
itself parametrized as before by s, 0 & s ~ 1. Let
us require the sheet $ to be such that for all 7 the
paths $(r), which are in general open, have fixed
starting and ending points so

8$"
(v, s) =0 if s =0, 1 . (3.3)

Otherwise, the sheet g is arbitrary and is allowed
to fold on itself. Then with 8$ denoting the bound-
ary of $, oriented according to the initial path
$(0) (Fig. 2), we have

U[s(] = U '[((I)]U[&(0)]= U[( '(1)]U[6(0)] (3 4)

and the non-Abelian version of Stokes's theorem
gives

U[s~] =S[~]
1 1 g(p g~v=7 exp ig d7 ds U

Bs 87

((v) the notation in Kq. (3.2). The explicit depen-
dence on the gauge potential that these string vari-
ables introduce will be removed later by exploiting
the freedom of parametrization of the sheet $.

We now turn to the problem of computing the
vacuum expectation value of arbitrary l,oops and
products of loops in the two-dimensional non-
Abelian theory. As in the Abelian case, the func-
tional integral will be computed in the generalized
axial gauge with A., =0 everywhere and A, vanish-
ing along a vertical line that can be located anywhere
but, for definiteness, we will always choose to be
at the left of all the loops. In this section we will
prove that this general problem can be reduced
to that of computing expectation values of the form

(3.6)

where the string variables U,. correspond to 2k
open paths located in some arbitrary order along
a horizontal strip of constant width and the brack-
ets stand for a functional integral in the general-
ized axial gauge described above. The explicit
evaluation of these expectation values will be the
subject of Sec. IV.

Consider one or more arbitrary loops and let us
divide two-dimensional space-time into horizontal
strips chosen so as to have in each strip an even
number of paths, half of them going up and half
going down, and any horizontal portions of the

((o)
(b)

Here 7 exp indicates ordering of the 7 integrals
in the exponent [as Eq. (3.1) was ordered in the
s integrals] whereas the s integrals are not
ordered, and in the string variables U[,$(7'),]
and U[, ((T),] = U '[,((T),] we have used for the path

FIG. 2. (a) A one-parameter family of paths used in
the non-Abelian Stokes's theorem. (b) Boundary of the
sheet ( in (a) oriented according to the initial path ((0),
The point P from where all the paths $(v) emerge is the
base point for the corresponding loop variable U [8$].
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loops failing on the bounda. ries of the strips (Fig.
3). Each of the loop variables in the expectation
value to be computed can now be written as a prod-
uct of string variables U,. corresponding to the
open paths y,. contained in each of the strips. Giv-
en the choice of gauge we have made, each of
these string variables can be thought of as the
only nontrivial portion of an untraced loop extend-
ing to the left of the corresponding path y,. up to
the line along which A, =0 (Fig. 4). For each of
these loops we use Stokes's theorem with the
corresponding sheets (,. chosen as shown in Fig.
5(a) if the path y. travels upwards, or Fig. 5(b)
if it travels downwards. In either case the sheets
$,. satisfies the condition of fixed end points, Eq.
(3.3), and its initial and final paths, $,.(0) and

$,.(1), are properly oriented as indicated by Eq.
(3.4). But, given the choice of gauge, for each
w the string variables U[,$,.(7),] entering Eq. (3.5)
are the identity matrix unless s is large enough so
the:point (;. (r, s) lies on the path y, However,
with our choice of („ on the path y,. the two tan-
gents s(,". /ss and s);jsT are p.arallel' and there-
fore do not contribute to the integral in (3.5) which
then reduces to

1 1 sgw s~v
U. = T exp ig d'r ds 6 „:E($((7s))

Bs BT

(3.7)

thus eliminating the explicit dependence on the
gauge potential.

We can now change the integration variable in
the functional integral from the gauge potential in
the generalized axial gauge to the field strength in
the same way as in the Abelian case [Eq. (2.8)]
and we are left to compute an integral of the form

1
&&'(x)

a~x

I++I P

x exp ——,
' d'xE'tx)X'lx) tr U)

ha

(3.8)

2

FIG. 4. Open paths as borders of closed loops in the
A~ = 0 gauge, with one vertical border running along the
line where A2= 0.

Since the action in (3.8) contains no derivatives
there are no "nearest-neighbor interactions" and
the functional integral over all F'(x) with x outside
of all the sheets $,. factors out and cancels with
the corresponding factor in the denominator. The
remaining integral factors as well into integrals
over E'(x) with x in each of the strips into which
we have divided the loops.

Let us consider first the functional integral over
the top strip [Fig. 6(a)]. Since all the paths runn-

ing upwards across this strip must turn around to
emerge at the bottom, the expectation value to be
computed is of the form (3.6) with the string vari-
ables U, , i =1, . . . , k corresponding to upgoing
paths and G~„ i = 1, . . . , k corresponding to paths
oriented downwards. Since the generalized axial-
gauge condition is preserved by arbitrary global
gauge transformations and the integration measure
is gauge invariant, it is easy to see that this ex-
pectation value is invariant under all global ro-
tations and therefore it must be of the form'

(3.9)

where the sum runs over all permutations of the
indices 1,2, . . . , k.

In general, some of the group indices in this
expression must be contracted when the corres-

where the factors U,. are given by Eq. (3.'l) and
therefore depend only on the field strength E(x).

((()
f

I

((r) „
I

((0)
2=0

(o)

((0)

((r)
I

I

((()

'Ay= 0
(b)

FIG. 3. Division of a loop into st'rips, chosen so the
configuration of paths does not change within each strip.

FIG. 5. Sheets used to write string variables (corre-
sponding to open paths) in terms of Stokes's theorem.
(a) for a path running upwards, (b) for a path oriented
downwards.
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FIG. 6. Computing a loop average one strip at a time. After removing the upper strip in {a)we are left with two

loops to evaluate, whose upper strips are shown in (b) and (c).

ponding paths join with each other at the bottom of
the strip, whereas the free, uncontracted indices
correspond to the paths proceeding in their way
down or coming in their way up from the lower
portions of the loop. Then, after contracting the
appropriate indices and inserting this expression
in the original functional integral in Eq. (3.8), we
obtain a sum of integrals each of the same general
form as the one we started with but extending over
a smaller region of s.pace-time since one of the
horizontal strips has been removed [Figs. 6(b) and

6(c)].
We can then proceed in this way to perform the

integration over each of the horizontal strips, one
at a time, until all of them have been contracted
thus leaving a gauge-invariant answer. The prob-
lem of computing all gauge-invariant correlation
functions of the theory reduces in this way to that
of evaluating the coefficients L„in Eq. (3.9).

IV. E30'ECTATION VALUE OF STRING VARIABLES

We must now compute the expectation values of
the form given in Eq. (3.9). Except in a particular
example worked out at the end of this section, the
gauge group of the theory is taken to be V(N) and
the string variables to be in the fundamental re-
presentation. Other gauge groups and representa-
tions can be discussed in a similar way.

In order to simplify the discussion we will as-
sume that all paths entering Eq. (3.9) are vertical,
although this is in no way essential to the calcula-
tion and the results will not depend on it. We have
then an even number of paths of equal length lo-
cated along a horizontal strip of constant width.
Let us denote by y„y„.. . , y, the paths oriented
upwards, labeled from left to right in order of
increasing subindex, and by y„„.. . , y» the paths
oriented downwards labeled also in the same ord-
er. The relative position of these two sets of paths
is arbitrary and we must compute

(( A(UP(1)) (( (U2k P(k)) 8~~ )

/+1 ~ ~ ~ $0'1 4, 1
Q

Q(i) Q(~)
'

so

U,. = U,.(n),

U„,. = U„,.(n) .
(4.2b)

For each of the string variabl. es U, , and U~„. ,
we use Stokes's theorem with the corresponding
sheets chosen in an analogous way as before (Fig.
5). Then the functional integral, written in terms
of the field strength, factorizes again into n hori-

~~, m t &k. j, m

) 'Y(, yk, ~ ~k+j, z

FIG. 7. Labeling of the segments of paths IEq. (4.2a)].

where P and g are permutations of the indices
1,2, . . . , 0 and the quantity in brackets is evalu-
ated in the generalized axial gauge with A., =0
everywhere and A., vanishing along a vertical line
which we choose at the left of all the paths. [The
permutation P was not included in Eq. (3.9) since
there the paths were not labeled in any particular
order. ]

Let us divide each of the paths y,. and y„,,
i =1, . . . , 0, into n segments of equal length, and
denote by U, , and U„, , the strings variables cor-
responding to the Lth segment of these paths, with
the segments being l.abeled from bottom to top
(Fig. 7). Set

U,.(l) = U, , U, ,U, ,
'I

(4.2a)
U„,.(l) = U„...U„, , U„, , (l =1,2, . . . , ),
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~ ~ ~ (U2k' & P&k), ))gJx (&))

gP1P Q PQ(l}
Q

6'~ (4 3)
'Q(I }

'

I

zontal strips and in each of them we have, as in

Eq. (4.1),

0+1 g P ( 1 },l~P P( 1 }
(/U U

where, by translational invariance, the coeffic-
ients BP q do not depend on /. Then, performing
first the integration over the fieid strengths de-
fined over the nth horizontal strip we have, using
Eqs. (4.2) and (4.3),

~& ))a',

~ ~ ~ 6» ((U„(n l))~&(U „,(n- l))~~&» ~ ~ ~ (U„(n —1))~))(U (n- I))'&&»)

= g B~ ((U~, ,(n —1)Uo&»(n —1))z& (U, ~(n —1)Uz)(n —1)) && )
Q

Q(1 }

Each of the brackets in the sum is of the same
form as the one we started with and after iterating
this ecjuation n times we get, regarding the coef-
ficients BP Q

as the elements of a matrix B,

(4.4)L~ o=(fl") o.
However, the coefficients I.P Q

are independent of
n and therefore Eq. (4.4) requires B to be of the
form

H/n (4.5)

and we get

U=1 +'$ +5 + ~ . ~

where I,. is the identity matrix,

= (e ") (4.6)

The functional integral corresponding to the
bracket in Eq. (4.3) has been written in terms of
the field strengths, and each of the string variables
stands for a 7-ordered expansion given by Stokes's
theorem as written in Eq. (3.7). This allows the
computation of the coefficients BP Q

in a power
series in 1/n, with the coefficients of the linear
order terms being the elements of the matrix B
in Eq. (4.5). (n need not be large; the argument
follows from n being arbitrary but at no point do

we need to take the limit n -~.) For each of the
string variables let us write the ~-ordered expan-
sion symbolically as

[In order to simplify the expressions here and in
the next few equations we let the indices i,j run
from 1 to 2k. Also, at the risk of confusing the
reader, in Eqs. (4.7) we have suppressed the in-
dex E. Yet, these expressions refer to the string
variables in (4.3) and not (4.1).j

Let also

S,. =area of strip between y,. and

S, , =. minlS, , S,.}
4, = 0 line (i = 1, . . . , 2k)

(4.8)

we get, for the (5,.') terms,
1 Tl P1

(p ) =(ig)'f&)l dr, dr, ds,
0 0 0

1 s(~ s)"
x ds& ' —~(r s)2 i"I' ~S g7- 1& 1

0

so the sheets $,. in Eqs. (4.7) have areas (1/n)S,.
(and not S,.). The lowest-order nontrivial contri-
butions to the brackets in Eq. (4.3) are terms of
the form (8,.'), (5,. Sp and (g. x g.), where in

(5,. ~ P,.) the U(X) generators are multiplied together
whereas in (5,. x Z,) they are not. Using

"l' X (x)xxp -l fdxX (x)X(x) E (x)X'(x)
QyX

= V'6")(x, —x, )

and

1 1 8",. 8",
6:,. =iI, dr ds e„„' ' F'((,(r, s))T, .

0 0

(4.7a)

sg 8(~

x 6((&(r~s&) —g&(r~s~)) )

X ((X) f 'uxf .,dx=fdx, ,
'*,

0

s(p
x e„*(r,s,) ' (r,s, )

BS 97

where we used 5"T,T,= Nl . The integral, s in this
expression are invariant under arbitrary repara-
metrizations of $,. and therefore become an ordin-
ary double surface integral with the v ordering
producing a factor of 2. Since the surface of in-
tegration has area (1/n)S,. we get

x ~$,.(r,s,))F'($ &(r,s,))T, T, .
(4.7b)

1 2

(5.') =- ——NS.1.
n 2

(4.9a)
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1 2(5,. 7,.) =+ —g'NS, ,1 . (4.9b)

The contribution from the terms (S,. ~ 5,.) is found
in a similar way. This time the 5"' function com-
ing from the Wick contraction reduces the double
surface integral to the region of overlap of the
sheets $,. and E, wh. ich has area (1/n)S, , . Since
all these terms come from the products in Eq.
(4.3), like (U~, &UP&„,), where the two string
variables correspond to paths traveling in op-
posite directions, the two sheets $,. and $,. have
opposite orientations (cf. Fig. 5) and since this
time the double surface integral is not ordered,
we get

5' (T ) i(T )a 01 b 82 82 02

we get

1
((3:,)", x ($,),i) =+ —g'S, ,5,;5",), (4.9c)

where the sign is minus (plus) if the two sheets
$,. and $i have the same (opposite) orientation.
That is, the sign is minus if i,j (k or i,j ) k and
plus otherwise.

Putting all this together we get 1

Finally, in the terms (0 . )& 5',.) the two generators
are not multiplied, and using

1
((U)„&UP(i), i)8' (, )

' ' ~ ( 2). , t P( )t)tt) ,(„))
= 1 ——

2 (SP(,. )+S„„.—2S (,. ) „.)+O(1/n') 5&) 5&)
i=1 ml

k'-1 1
~f, , t.j+ ~g, P(j)+ P(t), ~+( P(g), P()) +

f=]. j= j+].

x5 i ~ ~ 5 t ~ ~ 5~) 5 t +O(1/n').~ P(1) ~p(j) ~P(i ) ~P (k)

g N
HP P=+ AP(,.) „„.,

j=l
(4.10a)

2
HPit . .P g ( +i, ))+) ttt+i iP(i)

P&i)itt+i P&i), P&i))

The coefficients HP o, as defined in Eq. (4.5), can
be read from the terms of order 1/n in this ex-
pression and we get

the diagonalization of the matrix H, but in general
it is only after the geometrical configuration of
paths is specified that the off-diagonal elements

p acquire special symmetries that al low their
explicit diagonalization and the subsequent ex-
plicit solution for L.

By the way of example consider the case with
k =2 and the paths y„.. . , y, placed as shown in
the first entry in Table I. The matrix H becomes

HP =0 if &I) «t P,

(i,j=l, . . . , k; i~j),
(4.10b)

(4.10c)

g2N
(A„+A„)

H= '
g A» g 'N

(A„+A„)

where t stands for a transposition, t,, being the
transposition of i and j, and in Eq. (4.10a) we have
denoted by A, , the combination

A, , = S,. +S,. —2S, , (i,j = 1, . . . , 2k; i cj), (4.11)

~'N
(A., +2A, +A, )

g A2,

g'A»

(A, +2A2, +A,,)

which is the area of the rectangle located between
the paths y,. and y, The combination of S, ,'s in
Eq. (4.10b) can also be written always in terms of
the areas 4, , but the explicit expression depends
in general on the configuration of paths and the
permutation P. Although these results were de-
rived making reference to the line along which A2
=0 being located at the left of all the paths, it is
easy to see that they remain the same regardless
of the position of that line.

Equations (4.10) and (4.6) provide the complete,
although implicit solution to the problem. An ex-
plicit expression for the coefficients L p @

requires

1 d, 0

-1 0 d 1 -1

1 1L=—
1

0

~-(d ) 1

= exp —— (A»+2A»+A„)
g'N

where d + = ,'g'IN(A„+2A„+A—„)+2A„]. Then,
arranging the coefficients L p @

in the same ma-
trix form, we have
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TABI E I. The expectation values in Eq. (4.1) when A =2. A;~, i,j =1, . . . , 4, is the area of the horizontal strip ex-

tending between the paths g and).

Path
configuration ((U3Uz) 3 I(U4U2) 32) ((U3U2) 82(U4Uz) BI)

2 3 4

pgbfbPPg

3 4 2

pqWPpgWr

1 3 2 4

N
2

&&2'2A23+A34)

x gg&682 coshg A23- g2 g& sinhg A23]

2
~I

Dg 68 exp — (A(3+A24)ng n2 g N

2

~&,68, exp — (A„+A,4)
n& n2

' g N

pp

( s, s& coshg 23-~e&~8&»»g A23)

Nx exp ~ (A +2A23+A34)

82 8& xp(-g NA34) +—~gl~g&[1 —exp(-g NA34)]

x exp — (A13+A24)
2

82&8& exp(-g NA23) +
N

~g&~82[1- exp(-g NA23)]

x exp — (A„+A„)g N
2

cosh(g 'A») -sinh(g'A2, )
X

-sinh(g'A») cosh(g'A»)

Thus, for this configuration of paths we obtain

g'6'
((U, U, ),'(U, U,),2) = exp — (A„+2A,„+A, )

&& [53z()32cosh(g'A»)

—&~3&5/2 sinh(g 'A„)] (4.12a)

g2N
((U, U, ), (,U, ) ) = exp — (A„+2A„+A„)

x [6$z5g2 cosh(g'A»)
1

—&~3iggz sinh(g 2A )] . (4.12b)

The explicit results for the other possible config-
urations with 1'3 =2 are listed in Table I. [The case
of k =1 is included in the general result in Eq.
(4.14).']

There is a particularly simple class of configu-
rations of paths that deserve mentioning since the
corresponding expectation value in Eq. (4.1) can be
solved in closed form for arbitrary 0, arbitrary
gauge group, and with the string variables written
'in an arbitrary representation of the group. As
can be expected, such path configurations are the
ones involved, in the way discussed in Sec. III,
in the evaluation of the averages of loops and pro-
ducts of loops that do not overlap with themselves
or with each other (although they can intercept
themselves by bending towards the outside of the
loop). Consider the case in which for each 3,
i =1, . . . , k the paths y,. and y~, stand next to each
other, either one to the left of the other but with

no other paths in between (Fig. 8). We compute
the expectation value in Eq. (4.1) with P being the
identity permutation

((U~, U, )3' (U„U~) 3) = Ql. , o632 ~ ~ ~ g32

In the case of U(N) with the string variables in the
fundamental representation we have, for Eq.
(4.10b),

S» . 3 . —S„, . — . 3+ +S, . -0 (z Wg),

soH, , =0 and we get

L, , = exp (H, , ) = ex p — g A, ,),g'N
j=l

L,, ~=0 xf I'g1.
For an arbitrary group, with the string vari-

ables in an arbitrary representation, the previous
calculation can be repeated step by step. The re-
sults in E41. (4.9a) and (4.9b) still hold except that
the quadratic Casimir constant N of the fundamen-
tal representation of U(N) is now replaced by the

~l ~k+I ~Z ~k+2

FIG. 8. Corifiguration of paths entering Eq. {4.14).
The relative position of the two paths enclosed in each
set of parentheses is arbitrary.
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appropriate Casimir constant C:

Q'~T T = C & .
g (4.13)

The contribution from the cross terms in Eq.
(4.9c) need not be computed since, as in the case
of U(N), with the paths in this configuration they
all cancel against each other. Thus, for the paths
in Fig. 8 we get

A. Planar loops and confinement

We first consider the simplest, yet important
case of loops that do not overlap. Since in this
case we have the general result in Eq. (4.14) we
need not specify the gauge group or the represen-
tation carried by the loop variable. Taking the
trace of that equation with k = 1 we get, for a sim-
ple rectangular loop,

(5.1)trU y =exp — A. ,g2C= g&i ~ ~ ~ g
&

exp—
1 k 2 .

~
''

, (414) where A is the area enclosed by the loop y and N
is now the dimension of the representation of the
group. In the case of U(N) with the loop in the fun-
damental representation, this result, with C =N,
agrees with the original computation of 't Hooft4
obtained in the large-N limit (which in this case
is exact), and with weak-coupling lattice calcu-
lations. '

Thus, in the two-dimensional theory the expec-
tation value of the Wilson loop obeys the area law
regardless of the gauge group and the representa-
tion carried by the. loop, with the representation
entering only through the appropriate quadratic
Casimir multiplying the coupling constant. This
is of course not surprising since in two dimen-
sions, that is, (1+1)-dimensional space-time,
there is no room for the color flux to spread out,
so a quark-antiquark pair in a physical gauge-in-
variant state will necessarily be joined by a string
of color flux giving rise to a confining linear po-
tential. The different representations that the quarks
may carry amount only to different color charges
given by goC which give rise to the result in Eq.
(5.1). On the other hand, the usual argument for
the absence of confinement of triality-zero quarks,
that is that they can form bound states with gluons
thus having no long-range interactions, does not
hold here since, in two dimensions, there are no
physical gluons.

Following the steps outlined in Sec. III, we can
use the result in Eq. (4.14) to evaluate the expec-
tation values of arbitrary nonoverlapping loops,
even if self-intersecting, obtaining always an area-
law result (cf. first entry in Table II).

which holds for arbitrary representation.
In the large-N limit of the theory, where g'N

is kept fixed while N- ~, the matrix H in Eqs.
(4.10) becomes diagonal and one could expect that,
to leading order, only the diagonal coefficient
L~ ~ would survive in Eq. (4.1). , This would imply
the complete factorizability of the expectation val-
ues of arbitrary loops and products of loops in this
limit, including that of self-overlapping loops
(i.e., a free theory of strings). However, as we
will show by explicit examples in Sec. V, the lat-
ter does not hold and off-diagonal. coefficients
I.~ @

can contribute to leading order in the N- ~
limit. This arises because the final gauge-invari-
ant expressions for loop averages involve approp-
riate contractions of the group indices in Eq. (4.1)
which can result in powers of N multiplying the off-
diagonal coefficients I.~ @. Nevertheless, pro-
vided one keeps terms of appropriate order in
1/N for each specific loop to be evaluated, in the
large-N computations one can avoid the diagonal-
ization of the matrix B by writing the coefficients
I, ~ o in an explicit power series in 1/N Separat-.
ing H in Eqs. (4.10) into its diagonal and off-diag-
onal pieces we write

1
H=(g'N) H, + H

I)
(4.15)

and Eq. (4.6) can be written as

(4.16)
B. Nonplanar loops and X~~ limit

] g-E
L = exp I- (g 'N)H, ] T exp —— dt (e ' "OH'e 'Ho).

N

where T stands for t ordering. Since Hp is diag-
onal, the coefficients in this expansion are easily
evaluated to any desired order.

V. EXPLICIT RESULTS AND DISCUSSIONS

We now apply the general results derived in the
previous sections to evaluate the expectation val-
ues of some specific loops which are of interest
in the understanding of non-Abelian gauge theories.

Let us consider now the expectation value of the
self-overlapping loop in Fig. 10(b), now in the
fundamental representation of U(N). The contribu-
tion from the region with no overlap is obtained by
using Eq. (4.14) which leaves us with the expecta-
tion value of the loop shown in Fig. 9. This can
be evaluated using Eq. (4.12a) with the trace in-
volving in this case the contraction
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1—5~25~~(5~~5 ~2 coshg'A' —5~~5~2 sinhg 'A')
N 02 Sg

=coshg Q' —N sinhg ~g',

where A' is the area of overlap. Then, denoting
by y the exterior contour of the loop and by y' the
small loop in the inside, we obtain

—tr(U[y]U[y')) = (coshg'A' —N sinhg'A')
N

g'N
xexp — (A+A.'), (5.2)

2
1e

where A. is the total area enclosed by the loop y
(including the region of overlap).

In a similar way, using Eqs. (4.12) as well as
the other results in Table I, one can evaluate the
expectation values of the other overlapping loops
shown in Fig. 10. The results are listed in Table
II. (Notice that each of them reduces to the cor-
responding Abelian expression if one sets N= 1.)

From the results in this table we see that in the
N- ~ limit (with g'N fixed) the expectation values
of products of loops satisfy the factorization prop-
erty

trU y, —trU y, = —trU y, —trU y,

Thus, self-overlapping loops do not disentangle in
the large-N limit. (A similar result has also been
proved in the lattice case. ')

One notices also that the correlation function in
Eq. (5.2) is not a positive definite, vanishing, and
changing sign when the area of overlap satisfies
tanhg 'A' =1/N. A similar behavior is exhibited
also by the average of the other self-overlapping
loop given in Table II. It may seem disturbing
that the sign of these loop averages depends only
on the areas of overlap and therefore can be
changed by rescaling the entire loop. However,
this qualitative change under rescaling is a com-
mon feature of all correlation functions involving
overlapping loops and, since in two dimensions the
coupling has units of mass, is only when g ' is
changed in the same way as the length scales that
the physical results remain invariant. Yet, the
physical meaning of the indefinite sign of these
loop averages, if any, is not clear at this point.

(b)

+ O((1/N)') (5.3)

as required by general a.rguments in the 1/N ex-
pansion. ' An analogous result does not hold how-

ever for loops that overlap with themselves. In-
deed, corresponding to the loop in Fig. 10(b), for
large N Eq. (5.2) reduces to

(c)

—tr(U[y]U[y']) = (I -g'NA') exp — (%+A')1 g'N
N

+ O((1/N)')

trU y —.trU y' . 5.4

(e)

FIG. 9. Overlapping loop to be evaluated after remov-
ing the lower portion of the loop in Fig. 10(b).

FIG. 10. Loops whose expectation values are listed
in Table II. The areas of each region include always
the area of the overlaps that occur within that region.
So, for example, in (c) Ag includes A'and in (g) A' in-
cludes A" while A is the total area enclosed by the outer
boundary.
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TABLE II. Expectation values corresponding to the loops in Fig. 10, and their N ~ limit.

Loop {figure)

10(a)

10{b)

10(c)

10(d)

10(e)

10(f)

exp — (A& +A.2)
gN

2
hsa

N(coshg 2A' —N sinhg 2A.') exp — (A. +A.')
2 J

Ncoshg A.' ——sinhg A.' exp — (A&+A2) .

h

E

I

1 —
2 [1—exp(g NA') ] exp — (A &+A2)

1
N 2

1 . 2 & gNcoshg A2- —sinhg A2
~

exp — (A&+ 2)N j 2

1 —
2 [1-exp(g NA2)] exp — (A)+A~)

1 g N
N 2

N(1—g'NA') exp — —{A.+A') +O {1/N2)
2

exp — (A) +A.2) +O (1/N )
g N

2

exp — (A &+A2) +O (1/N )
g N

2

exp — {A&+A2) +O(1/N )2
ia

exp — (A&+A2) +O(l/N )
g N

2

10(g) +3 icoshg (A' —A"}+ 2 c os hg (A' + 2A" ) h g 2N{AI + Q~ii ) +Q (g 2N) 2Air (2AI +Air ) ]

—3N sinhg (A' +2A") x exp g -- (A +A' +A") +P(] /N2)
2

+N2[coshg~(A' +2A" }—coshg (A' —A")Q

g Nx exp — (A. +A' +A.")
2

C. Schwinger-Dyson equation for loops

Recently, there has been interest in studying the
expectation value of non-Abelian loop operators by
considering the variations induced by infinitesimal
deformations of the contour. In the continuum for-
mulation this leads to a second-order functional
equation' which presents, however, technical dif-
ficulties regarding the limiting procedure involved
in taking derivatives with respect to paths, A sim-
ilar equation has been derived also in the lattice
theory where it becomes a mell-defined identity
with the small deformations having the size of
one fundamental plaquette. "

Borrowing the relevant diagrams from the lat-
tice equation" and using the corresponding loop
averages in Table II, one finds by direct substitu-
tion that

from the rest of the loop. ) Thus, the continuum
loop averages satisfy the naive continuum limit
of the loop equation defined in the lattice, with the
result being quite insensitive to the detailed shape
of the small deformation.

Notice, however, that due to the negative result
in Eq. (5.4), this loop equation does not linearize
in the large-N limit and therefore, in terms of the

1
lim 2, , (W, +W, —W, —W,) =W,
A'

(5.5)

where 8', 8"„.. . , S; are the expectation values
corresponding to the loops y, y„. . . , y, in I"ig. 11,
and 4' is the area of the small deformation in each
of the loops y„. . . , },. (This holds regardless of
the shape of the loop y away from the point where
it is deformed since, as shown in Sec. III, the re-
gion of the deformation can always be isolated

FIG. 11. A loop p and its deformations entering the
Schwinger-Dyson equation for loops.
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propagation of strings, it includes nontrivial topo-
logical interactions. "
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APPENDIX: NON-ABELIAN STOKES'S 'FHEOREM

We derive here a non-Abelian version of Stokes's
theorem which, besides simplifying the computa-
tions in the two-dimensional theory, may be of in-

terest in its own right. Throughout this appendix
the gauge group, its representation, and the di-
mensionality of space-time are all arbitrary.

For our purposes it is convenient to define the
non-Abelian group element U[y] by means of the
differential equation describing parallel transport
along the path y. Using the notation introduced in

Eqs. (3.2) this can be written as

U[,r, ]=vg& „(r(s))%"(s)U[,r, ]

Let $ now be a one-parameter family of paths,
parametrized by 7, 0 & 7 «1, such that for all 7

the paths ((r) have fixed starting and ending points
[Fig. 2(a)]:

9
$~(v, s) =0 at s=0, 1. (A 5)

To each path P(v) we assign the Lie algebra, ele-
ment

&[((~)]=fU '[&(v) J d U[$(v)],
d

(A6)

6 [$(v)]=0-'($(v, 0))Q[$(v)]II(](r, 0)) . (A7)

Given a loop y we are interested in writing the
group element U[v ] in terms of a surface integral
over an oriented two-dimensional sheet $ whose
boundary is given by y. This amounts to associ-
ating a non-Abelian group element to a sheet,
which we will do by means of an equation analog-.

ous to that in (Al). To that end let us carry over
to the case of sheets the notation introduced in

(3.2) for paths. Thus if 0( v„v; ~1, we denote

by, $, that portion of the sheet $ extending from
T2 Tg

the path f(v, ) to the path $(r, ) given by

which is gauge covariant due to the fixed-end-point
condition in (A5). Indeed, using Eq. (A3b) it fol-
lows that under the gauge transformation in (A3a)

8[)(v)] rotates into

with

U[,y, ]=1 at s =0. (A lb)
, t, (~)=k(v, +(v. v, )v). —

As before,

(Asa)

It is easy to show that all the usual properties of
U[z] follow directly from these equations without
need of using the explicit path-ordered expansion
in Eq. (3.1). In particular, one has

U '[y] = U [y '7 and U [ y~]U [ v, ] = U[ v ] (A2)

(ABb)

Then, using the Lie algebra element 8[)(v)] in

Eq. (A6) we define the group element S[$] by means
of the differential equation

for arbitrary s„s„and s in the unit interval and,
under a gauge transformation

with

s[,g,]= e[g( )]s[,g, ] (A 9a)

A. ' =0 'A 0+ —0 '& 0 (A3a)
S[,$,]=1 at r=0. (A Bb)

U[y] rotates to

U'[r] = & '(r(I)) Uh ]&(r(0)) .

It also follows from Eqs. (A1) that

U[,r,]= vg U[,v, ]A„-(v (s))v (s)

(A3b)

(A4a)

From here and (A6) it follows that

(Ufh( )]S[,h.]U '[((0)])=o

and using the boundary condition (A9b) we get

S[$]= U '[$(1)]U[((0)]= U[$ '(1)]U[$(0)] . (A10a)

But, since the starting and ending points of the
paths t'(0) and $(1) coincide [cf. Eq. (3.7)] this re-
sult becomes

with S[t 7
= U[s~], (A10b)

U[,y,]=1 at s =1. (A4b) where s) is the boundary of the sheet $, oriented
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according to the initial path $(0) [Fig. 2(b)].
equation has the desired form: it expresses the
loop variable U[8(] in terms of the sheet variable
S[f]. It is a consequence of the pure gauge form
of 8[)(»] in Eq. (A6). The group element S[)]
can be interpreted as describing parallel transport
along a path through "path space, " that is, a sheet.
But since the corresponding gauge connection
8[)(»]has zero curvature, S[$] depends only on
the end points of that path, that is, the initial and
final paths of the sheet $. From this point of view
the "gauge potential" 8[)(v}]in Eq. (A6) is just a
smooth, nonsingular version of Polyakov's chiral
field in path space. '

To obtain an explicit expression for S[$]we must
write 8[)(v)] in terms of the original variables in
the theory. Using the notation in (3.2) for the path

$(v) and replacing v by v+ « in U[,$(v),] we get

U[,$(v+ «),]= U[,$( )o]+ ~v
d U[.(( )o]+
d

using Eq. (Ala),

gpss

i@A„($(v,s)) (v, s)U[,((v),]

+ l5T U[ ((» ]+O((5T) }
d d

=i@A„($(v+«,s)} (v+Qv, s)U[ $(v+6», ]

and expanding the right-hand side up to linear or-
der in 57 we obtain

8( ii 8)v
=&a'8„A„(((»s)} (vis) —(v s)U[.&(».]

82( ii

+igA„(((v, s)} (v', s) U[,$(v)0]

8(~ d
+iI,A„($(v, s)) —(v, s) —U[,](v),]

Differentiating both sides with respect to s we get, or, using Eq. (A4),

U[,((».] —U[,g(T),] -zg (T, s) (v, s) U[, ((v),]8„A„(((v,s))U[,F (», ]
d d . 8$' 8$"

82(ii
+ig

8 8 (v, s)U[, $(v),]A,(f(v, s))U[,((v),].
We can simplify this further by using again Eqs. (Al) and (A4) to obtain

U[,$(»,] U[,~(v), ]—igA„(((v, s)} (v, s) U[,&(v), ]

8)~ 8("
ig —(v, s)—(vis)U[~((v), ]F„„($(v,s))U[,$(v)o]

where E„„=8,A„—8„A, —i@[A„A„]is the field
strength. The boundary condition in Eq. (Alb) re-
quires

U[,((v), ]=0 at s =0

and using also the boundary condition in (A4b) and
the fixed end-point condition in Eq. (A5) we get,
after integrating over s,
d 1

$ 8(x 8)v
U[$(v)] =-ig ds (v, s) —(v, s) U[,$(v),]

0

X E „(((T s)}U[ ((» ] (All)

which is again a smooth nonsingular version of the
small deformation equation for the string variable
U[y].' Using Eqs. (A2) we finally obtain

1 8((e 8~(x
8[&(v)]=8 ds (v, s) (v, s)U[, ((v) ]

x E„„($(v,s))U[,$(v)o]. (A 12)

Equations (A9) can be integrated, as in the case
of string variables, into a w-ordered exponential

1

s((]=Te PIi dTQ(((T]]I,
0

which together with Eq. (A12) gives

s((]=TexeIix I dT f de ]( (]T(T(,
0 0
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This, together with the previous result

~[a) = U[9~) = U '[~(1))U[~(0)), (A 10)

constitutes the non-Abelian version of Stokes's
theorem we were after.

Notice that, in the Abelian case, this result re-
duces to the usual expression for Stokes's theorem
and, in the case of a loop in two dimensions that
overlaps itself, it provides the correct winding
number factor in Eq. (2.7). Indeed, since the one-
parameter family of paths $(7) evolves smoothly
from one side of the loop to the other, the sheet $

will fold on itself in the regions of overlap the ap-
propriate number of times so as to provide the
correct counting as given by the winding number.

In the non-Abelian case the string variables
U[,t(7),] in Eq. (A13) are necessary in order to
obtain a gauge-invariant result for the flux of the
non-Abelian field strength through a surface. They
introduce an explicit dependence on the gauge po-
tential but, as shown in the main text for the two-
dimensional case, this dependence can often be
removed by exploiting the freedom of parametri-
zation of the s'hect $ in order to match an appropri-
ate choic e of axial gauge.
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To be precise, thjs holds when the sheet does not fold
on itself and, for each v., the path $(v) is parametrized
with constant speed so (8/Bs) [(8!Bs)(";(v,s)] = 0.

The argument here and the resulting tensor structure
in Kq. (3.9) is the same as in the case of the group in-
tegrals encountered in the strong-coupling expansion
in the lattice theory. See, for example, S. Samuel,
IAS report, 1980 (unpublished).

The case k = 3 involves 6 x 6 matrices but they are
fairly simple and can be diagonalized explicitly. The
results have not been included in Table I to save space,
but one of them was used to evaluate the loop average
in the last entry in Table II. I am grateful to M. Sheeny
for his help with the diagonalization of some of these
matrices on the computer. (This was done with
MACSYMA which is supported by DOE and other agen-
cies. )
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