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It is argued that if the Hamiltonian of a system of charged fermions does not conserve parity, then an equilibrium

electric current parallel to B can develop in such a system in an external magnetic field B.The equilibrium current is

calculated (i) for noninteracting left-handed massless fermions and (ii) for a system of massive particles with a Fermi-

type parity-violating interaction. In the first case a nonzero current is found, while in the second case the current

vanishes in the lowest order of perturbation theory. The physical reason for the cancellation of the current in the

second case is not clear and one cannot rule out the possibility that a nonzero current appears in other models.

I. INTRODUCTION II, MASSLESS LEFT-HANDED PARTICLES

Pseudoscalar quantities, such as the average
projection of particle's spin on its momentum
(g p), can take nonzero values in a macroscopic
system of particles with a parity-violating inter-
action. A well-known example is given by neu-
trinos, for which the intrinsic parity nonconser-
vation makes (o' p) equal to —p even without in-
teraction. For particles other than neutrinos, the
self-energy correction due to the weak interaction
can have terms proportional to o p, and it is
possible that electrons and other particles have
small nonzero values of (v p) proportional to the
weak-interaction constant. Imagine now a system
of charged spin--,' particles with (say) (o p) )0.
In such a system particles have a tendency to
move in the direction parallel to their spin. If an
external magnetic field 8 is applied to the system,
then the particles are partially polarized in the
direction of 8 and one can expect an equilibrium
electric current to develop in the direction par-
allel to the magnetic field. The purpose of the
present paper is to examine this possibility. We
shall first consider a hypothetical case of mass-
less left-handed charged fermions in a magnetic
field and then turn to a more realistic situation
of massive particles with a parity-violating Fermi-
type interaction. It will be shown that in the first
case there exists an equilibrium current given by
Eq. (18), while in the second case the current is
equal to zero' (at least in the lowest order of per-
turbation theory). The physical reason for the
cancellation of the current in the second case is
not clear: the existence of a nonzero. current is
not forbidden by CI' and CRT symmetries and by

, gauge invariance. At this point one cannot exclude
the possibility that a nonzero equilibrium current
appears in different models of weak interactions
(e.g. , in the Weinberg-Salam model at T 2 m„).

I.et us consider a system of charged, massless,
left-handed spin--,' particles in a constant magnet-
ic field B. We shall first find the solutions of the
Dirac equation

y ~ (ia „—eA „)tjI = 0

with the subsidiary condition

(1+y')/=0 . (2)
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Here I use the system of units in which k = c = 1 and

the y matrices are taken in the representation of
Bjorken and Drell. ' Equation (2) ensures the left-
handedness of the particles. The vector potential
A&(x) can be chosen as

AD=0, A=2B~x . (3)

The solutions of Eqs. (1)-(3) can be found directly
or using the known solutions for an electron in a
constant magnetic field. ' In the latter case the
electron wave functions have to be multiplied by
(1 —y') and by an appropriate normalization fac-
tor.

The resulting solutions g(x( np, p, ) are given by
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for n = 0. Here

e„2=P,'+ 2 enB

are the energy eigenvalues,

(g) (8B)1/4)f 1/4 2 qq /2(n {)-1/2e 1 /2ff (()

j.( l P,P. )=-(8 '.) '[(. P-. ) .'(&)

—(~.+P. )v„,'(5)]

for ~40 and

j, (xl op, p, ) = —(42') 'v, '(g) .

(14)

(15)

H„($) are Hermite polynomials, and

(=&eB (x -p„/eB).

The functions v„(g) are defined so that

r v„*(q)qx= ( .

The normalization condition is

Now it is easily seen that after integration over
p„and p, in E(I. (11) terms with n 0 0 drop out and
we obtain

e'B
&P.f ( IP. I

—x)

e'B
dPf(P-x) .

27K 0

Adding the contribution of antiparticles, we obtain
finally

00

dP[f(p —x) -f(P+x)]
0

=5„„5(p„-p',)5(p, -p,') . (») e'B
2r' X (17)

The wave functions (4), (5) are spread in the di-
rections of y and z and localized in the direction
of x.

The equilibrium current density j, can be writ-
ten as

), (x)=qg qP, f qq, f(q„, —X)f, (xlxP, P.),
n=o ~oo

I

where

or in the vector form

I = —(e2X/2)f 2) B .

It is interesting that the e(luilibrium current (18)
depends only on the chemical potential and not on
the temperature.

An alternative derivation of Eg. (18) can be given
using the finite-temperature and -density Green's-
function formalism. ' In the momentum represent-
ation, the equilibrium current can be written as

j "((I)= -II""((I)A„((I),
j, (x {np„p, ) = g(x lnp, p, )r'p(xlnp p, ),
f(x)= (e++1) '

(12)
where

11~"(q)= —e'(22) 'P

is the Fermi distribution function, P =T ', 1' is
the temperature, and X is the chemical potential.
At T 0 antiparticles are also present in equil-
ibrium with the chemical potential —X. The con-
tribution of antiparticles to j, (x) can be easily
found after calculating the integrals in Eq. (11)
by changing X to —X and multiplying the whole ex-
pression by -1. t An alternative method is to find

the antiparticle wave functions using the charge
conjugation and to add the corresponding term to
E(I. (11). Of course, both methods give the same
result. ] If Xqq 0, we shall assume the existence of
a neutralizing background, so that the total charge
density is zero everywhere.

Substituting the wave functions (4) and (5) in E(I.
(12) we find

xp rq'pyr{y" s(p)y"q(p —q))
~o

is the polarization operator,

(2o)

~Pp
S(P) = —

2
—.-" (1+r') (21)

is the left-handed fermion Green's function, qo

=0, p'=p, ' —p', p, =f, X,+g, =iqf(21+1)p ', and the
summation is taken over l=0, +1, a2, . . . .

We are interested only in the parity-violating
contribution to II""(q) arising from the terms pro
portional to y'. Qmitting all other terms and cal-
culating the trace we find
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(22)

where j, is the "regular" (dissipative) current and
A. =)(/2e'X. In the regions where j,=0, Eq. (26)
gives

(v'+x-')B= 0 . (2V)
We want to calculate the contribution to j which is
proportional to the magnetic field B. This cor-
responds to a linear in j term of II""(j). There-
fore, we can neglect q in the denominator of Eq.
(22). In other words, we shall keep only the first
term of the expansion of II ~"(q) in powers of q.
Higher terms give contributions proportional to
derivatives of B.

Now the summation over Pp can be performed
using the standard formul. a4

To illustrate the nature of the solutions of this
equation, let us imagine a semi-infinite medium

occupying the half-space z &0. A magnetic fie1.d

B,= const is applied parallel to x axis at z & 0.
Then the solution inside the medium is B„=Bp
cos(z/X), B,=B,sin(z/&). The magnetic field os-
cillates along the z axis with a wavelength l = 27(~.

(The condition that Eq. (25) is valid in this case is
I»X ', i.e. , e'«1.)

where f (r. ) is given by E(I. (13) and the contour
C encircles, in the counterclockwise direction, all
the poles of f(t) and none of E(&) Defor. ming the
contour of integration and finding the contributions
of the poles of P ' = I(f +X)' -p'] ' we obtain

Ilia &ikn~Zg

(2~)3 n

nI. INTERACTING MASSWE PARTICLES

Let us consider a system consistirig of two types
of spin- —,

' particl, es described by the field opera-
tors g and $' with the interaction Lagrangian

(28)

where G = const. It will be clear from the calcu-
lation that the same results hold for a more gener-
al model

x - [f'(apl -x) f' (jpl+-x)l, (24) ru(a+ br')g] f(I)'r„(a'+ b' r")g']. (29)

Here, as usual, Latin indices take values from 1
to 3 (and Greek indices from 0 to 3). The integra-
tion over p is easily done and we find from Eq.
(19)

I = —(e'x/2)(')i(IxA=. —(e'x/2))')g . (25)

From this derivation it is clear that E(I. (25) is
valid not only for a constant (in space) magnetic
field, but also for a slowly varying field, when the
characteristic variation length is much greater
than the typical particle wavelength (T ' or X ').

Although no left-handed charged fermions are
known to exist, I would like to discuss briefly the
magnetic properties of a hypothetical medium
consisting of such (and perhaps some other) particles.
As was explained in the Introduction, we cannot rule
out the possibility of the existence of equilibrium par-
ity-violating currents in realistic systems, and this
discussion will give us an idea of what kind of effects
can be expected of such a possibility is materialized.
The Maxwell equations for the magnetic field with
the e(Iuilibrium current (25) can be written as'

Lagrangians of the form (28), (29) are used to
describe the neutral-current weak interactions at
low energies. ' We shall assume for simplicity
that the field (I)' does not couple to the electro-
magnetic field and calculate the equilibrium cur-
rent j of the field P. The model (28) is not re-
normalizable, but this does not cause any prob-
lems in the lowest order of perturbation theory.

The polarization operator in the first order of
perturbation theory in C is represented by the dia-
grams shown in Fig. 1. Solid lines correspond to
the Green's functions of particles (j),

(30)

where Pp=(, + X; double lines correspond to the

VxB=4~j, -A.- B,
V B=O

(26) FIG. 1. First-order corrections to the polarization
operator.
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Green's functions of particles g', S'(p), and are
given by the same expression (30) with mand x
replaced by m' and X', respectively. The contri-
butions of the closed loops of f' particles are
given by

ice'n'8'
3 i

3 (2 )s
~.as+ d P»( r &a S (P)r

x&(p)r'y'S(P)] .

(36)
Using the relation

P (-x.)-Iq f d P r(r. x(P))
~o

=»„(x )
' f d'P[f(qq -x') f(qq qx')1-

yxy= —2if,
where Z=y'yy', it can be shown that

(37)

n', (31) . e &» y' V» S(p)y' = —6i (p' —m') 'y'y'

where HAPP=(p'+m")' ', n' is the density of ('
particles (to be exact, the difference of particle
and antiparticle densities), and I have dropped the
infinite, T- and X-independent vacuum density.
The analytic expression corresponding to Fig. 1
can now be written as

II ""(q)= —Ge'n '
p '(2)) )

'

xg f d'pry(yqx(p+q)r"x(p)y. 'y d(p)
Po

+ r "s (p+ di)r'r'

x S (p+ q)y "S(p)], (32)

where (I = (0, q).
It is clear that in a constant magnetic field the

equilibrium current density l (x) is also a con-
stant, and thus

j'(x) =j'(0) = —(2)p) ' d'qli'" (q)A, (q), (33)

where I have used Eq. (19). The Fourier trans-
form of the vector potential (3) corresponding to a
constant magnetic field is given by

+4i(p' —m') '(y"p„-m)E p .

(38)

Now the trace in Eq. (36) is easily calculated and
we obtain

BQe2n'B2

3p (2)P)'

4 2

d P p. m22+ p2 m23
0 J

The integral in Eq. (39) is apparently logarith-
mically divergent and has to be regularized. We
shall use the Pauli-pillars regularization, which
amounts to subtraction from the integrand an

, identical expression with m replaced by M and
taking the limit M-~ after the P integration.
Actually, we shall see that the integral in Eq.
(39) is finite; however, the regulator term also
gives a finite contribution. A similar situation
occurs when Pauli-pillars regularization is used
to calculate y' and trace anomalies. '

The P, summation in Eq. (39) can be performed
using Eq. (23):

A(q)= ,'( 2)q'(i B-xp 6(q) . (34)

Substituting Eqs. (32) and (34) in Eq. (33) we find

f P& (dy( iys(P) ~y(r" B)1
0

»(P)y'r'S(p)

yS (P)r'r'S (p)-

x[(yxB) v S(p)]]. (35)

From the symmetry of the problem it' is obvious
that j has to be parallel to B. Therefore, it is
sufficient to calculate the scalar product j B. It
is clear also that j ~ B is independent of the direc-
tion of 8, and we can average over all directions.
This amounts to replacing S B" by —,

' B' 5 " and
Eq. (35) becomes

1,
Sm' (Sm')' ] p p'-m'

0

«2 3m2.f (~,)+4, f'(~, )4~~' ~ 4~~4

3m' 3m2—4, j'(~P)+4
6p

(40)

Here

f(~, ) =f(~, -x)+f(&&+x), (41)

eP=(p2+m')' ' and prime means derivative with

respect to 6~. Using integration by parts, it can
be shown that
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$3Pp2 g 3 6 = Q P 3%i c~ ~p

—(3m'/s~ ')f '
(e~ )j .

(42)

From Eels. (39), (40), and (42) we find

2e Gn'B

=n 'e'Ge'8' de' x'+1
0

(43)

This expression is mass independent and cancels
with the infinite-mass regulator term. The final
result is j=o.

IV. CONCLUSION

The equilibrium current induced by an external
magnetic field has been calculated for a system
of massless left-handed charged particles and for
a system of massive particles with a parity-vio-

lating Fermi-type interaction. A nonzero current
is found in the first case, while in the second case
the current is equal to zero in the lowest order of
perturbation theory.

Similar results have been recently obtained for
the equilibrium currents induced by rotation. It
has been shown' that left-handed particles (neu-
trinos) develop a nonzero current parallel to the
rotation axis. The equilibrium current has also
been calculated' for a rotating system of interact-
ing massless spinor and vector fields with the in-
teraction Lagrangian

2 = - -,

'eely~

(1+y ')yA „.
The result is zero in the second order of pertur-
bation theory.

The question naturally arising from these re-
sults is whether nonzero currents occur in differ-
ent parity-violating models or in higher orders of
perturbation theory, or is there some deep phy-
sical reason for the cancellation of the equilibr-
ium currents, left-handed particles being the only
exception.

Similar results for neutrinos and interacting particles
were obtained in the case of rotating systems (see
Sec. IV).
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