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Cancellation of equilibrium parity-violating currents
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It has recently been shown that in a rotating equilibrium system there exist neutrino and antineutrino currents
parallel to the rotation axis. This suggests that particles other than neutrinos can also develop equilibrium currents if
parity-violating weak interactions are taken into account. This possibility is examined using quantum field theory at
finite temperature, density, and angular velocity. Regularization and renormalization of such a theory are discussed.
The result obtained is negative. It is found that in the model considered the equilibrium current vanishes in the
lowest order of perturbation theory. This is a surprising result, since the existence of a nonzero current is not
forbidden by the symmetries of the Lagrangian. The question naturally arising from this result is whether a nonzero
current appears in higher orders of perturbation theory or in different models or there is some deep physical reason
which makes the equilibrium current equal to zero for all particles except neutrinos.

I. INTRODUCTION

Reflectional symmetry imposes certain restri-
ctions on the possible form of physical laws. It
requires, for example, that in all vector relations
like X= 5, X and 5 should be both polar or both
axial vectors. As we know, reflection symmetry
is violated in weak interactions. (Another way to
say it is that weak interactions do not conserve.
parity. ) Consequences of this violation have been
extensively studied in elementary particle pro-
cesses, such as particle scattering and decays,
splitting of nuclear energy levels, etc. One can
expect, however, that parity nonconservation can
manifest itself not only in the microworld, but on
a macroscopic scale as well. For example, parity
nonconservation removes a veto from processes
like generation of electric currents by rotation
(j-0, where - means proportionality) or by mag-
netic field (j -8). Macroscopic parity-violating
effects received little attention, since one expects.
that in normal conditions they are vanishingly
small, owing to the smallness of the weak-inter-
action constant. This, however, may not be the
case in the early universe, in stellar collapse, or
in neutron stars, where extremely high tempera-
tures and densities and huge magnetic fields can
be produced.

Two macroscopic effects of parity nonconser-
vation have already been discussed: (i) asym-
metric neutrino emission by rotating black holes
and (ii) equilibrium neutrino current in a rotating
system. ' These effects are based on the two-
component theory of neutrinos and can be easily
understood if we recall that the left-handedness
of neutrinos means that their momentum is always
opposite to their spin. In a rotating equilibrium
system, the average spin density of neutrinos is
parallel to the angular velocity g, and thus
neutrinos move, on average, in the direction

opposite to 4i. Antineutrinos are right-handed
and their current parallel to ~~. The magnitude
of the neut;rino current has been calculated in
Refs. 2-4. If «& T, y then the current on the
rotation axis is given by

where T is the temperature and y is the chemical
potential. ' (I use the system of units in which
0= c=k= 1.) Equation (1) was derived assuming
that the system is infinite in the direction of 0
and that the size of the system fn the plane per-
pendicular to 5 is much greater than T ' or y

'
(see Ref. 3, Sec. IV). If the system is finite in
all directions, we expect that neutrinos are emitted
asymmetrically-from its surface and that the
neutrino current far from the the boundaries is
still given by Eq. (1). The problem of deter-
mining the spatial distribution of the neutrino cur-
rent for a finite system has not yet been solved.

, It is clear that, for a finite system, the word
"equilibrium" here does not mean complete ther-
mal equilibrium. What is meant is that, far from
the boundaries, neutrinos are in a local equilibrium
with other particles. One can wonder what the
state of the system would be if it were surrounded
by walls impenetrable for neutrinos. However,
this problem is difficult even to formulate, be-
cause of the well-known difficulty with confine-
ment of massless fermions to a fixed volume
(Klein paradox, see, e.g. , Ref. 6). An additional
difficulty arises' due to the left-handedness of
neutrinos.

The asymmetry in the neutrino emission by
black holes has been studied in Refs. 7, 8, and
3. It should be noted that there is a close relation
between the two effects due to the theorem' that
a black hole is in equilibrium with thermal radia-
tion having the same temperature and angular
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velocity.
Particles other than neutrinos can be in both

helicity states, and in the free-field approxi-
mation the currents of right- and left-handed
particles exactly cancel. It is possible, how- '

ever, that nonzero equilibrium currents can re-
sult if parity-violating weak interactions are taken
into account. As we know, the particle energy is
modified by interactions: e(p) =e,(p)+ 5t, where
p is momentum, e, (p) is the free-particle en-
ergy, and 5& depends onp, T, chemical poten-
tials, and the interaction constants. For a parity-
violating interaction, 5& is different for left- and
right-handed states. As a result, the equilibrium
concentrations of left- and right-handed particles
are different and their currents may not cancel
completely. If this is the case, then the emis-
sion of the corresponding particle species by black
hole has to be asymmetric. It has been argued" "
that macroscopic parity-violating effects can have
important cosmological implications. In parti-
cular they can provide an explanation for the origin
of cosmic magnetic fields and give rise to partial
separation of matter and antimatter in the early
universe.

The purpose of the present paper is to calculate
the equilibrium current in a simple model with
a parity- violating interaction. The result ob-
tained is negative: it is shown that in the model
considered, the equilibrium current vanishes in
the lowest order of perturbation theory. Although
it is said that all processes which are not for-
bidden by symmetries and conservation laws have
to occur, this seems not to be the case for the
parity-violating current. (The existence of such
a current would not violate CP or CPT sym-
metries. ) The crucial question now is whether
a nonzero current appears in higher orders of
perturbation theory or in different models or there
is some deep physical reason which makes the
equilibrium current equal to zero for all particles
except neutrinos.

This paper has another, secondary purpose:
to extend the finite-temperature -density, and
-angular -velocity quantum field theory, which has
been developed in Ref. 4, to the case of inter-
acting fields. This includes the problem of diver-
gences and renormalization of such a theory. Some
subtle points of regularization and taking zero-
temperature limit will be discussed. It will be
seen that wrong results can be easily obtained
unless these limiting procedures are performed
very carefully. The method developed here may
be useful in other problems, such as bag-model
calculations for rotating nuclei.

The plan of the paper is the following. %'e shall
first discuss the diagram technique and renor-

malization of quantum field theory at finite tem-
perature, density, and angular velocity. Then the
equilibrium current will be calculated in the sim-
ple case of a fermion field g with a parity-violating
coupling to a classical external potential A, .
Finally, the equilibrium current will be calculated
for interacting quantum fields g and A„.

H,. = H -H, —fl (M -M, )

equals

a) b)

FIG. 1. Second-order corrections to the fermion
Green's func tion.

H. DIAGRAM TECHNIQUE AND RENORMALIZATION

The model to be discussed in this paper in-
cludes two massless spinor fields g and ~jr' and
one massless vector field A, with the interaction
Lagrangian

f, = ——,'eA gy'(1 —y')P+ —,'eA, g'y'(1 —y')P'. (2)

The second spinor field P' is needed for two
reasons: (i) it cancels the p' anomaly and makes
the theory renormalizable, " and (ii) if the chem-
ical potential y of the field g is not equal to zero,
the field P' is necessary to ensure the neutrality
of the system. In the following I shall assume that

X =X', so that the "charge" density is equal to
zero.

One could think that the equilibrium currents
of the fields g and g' exactly cancel each other
because the charges of these fields are equal and
opposite. However, the currents still can have
an observable effect, since some of the quantum
numbers of P and g' can be different. I shall assume
that the quantum number of interest is equal to
1 for g, and 0 for P', so that we have to calculate
only the equilibrium current associated with g,
J= —,'[P, yPj . [Actually, we do not need the second
field P' for the lowest-order calculation of the
equilibrium current, since the problems associ-
ated with anomalies arise only in higher orders.
The only role of (' in the following calculation is
to cancel diagrams of the form shown in Fig. 1(b).
The same result could be achieved by introducing
an appropriate neutralizing background. ]

It can be shown that the angular momentum op-
erator M in our model coincides with its free-
field form Mo, and thus the effective interaction
Hamiltonian



22 CANCELLATION OF EQUILIBRIUM PARITY-VIOLATING. . . 3O69

H,. = — A, y" 1 —y' d'

A, 'y" 1-y' 'd'x. (3)

The rules of diagram technique for the Green's
functions can be easily derived from Eqs. (7) and

(8) of Ref. 4. Each fermion line gives a factor

S(x„v,;X„r,), each boson line gives D„„(x„v,;
x„r,), and each interaction vertex gives
——,'ey" (1 —y'). The resulting expression has to
be integrated over x and 7 at all vertices and
multiplied by (-1), where L is the number of
fermion loops. For example, the lowest-order
correction to the fermion Green's function is
given by the diagram shown in Fig. 1(a). The
corresponding analytic expression is

&& S(x» &» x', &')r" (1 —y')S(x', ~'; x",v")y"(1 —y')S(x", ~";x„v,) . (4)

The contribution of the diagram of Fig. 1(b) is equal to zero, since the loops of 4 and 4 cancel eachother.
In the momentum representation, each fermion line gives a factor S(i)„P„&,), each boson line gives

D„„(P„p„v„)and each vertex gives ——,'ey'(1 —y'). Energy and momentum have to be conserved at each
vertex. The resulting expression has to be integrated over all internal momenta and summed over all
internal energies. An overall factor P '(2v) ' has to be added for each energy summation, where )8=T ',
and a factor (-1) has to be added for each fermion loop. For example, the contribution of the diagram
of Fig. 1(a) in the momentum representation has the form

I!S(p„)i„()=—,'e'i) '(2w) ' Efd') d p d q'd''q'))„'(p'-q', p" —i)", (, —( )
n

S(pi p', 4)r" (1 —r')S(q', q", r )r"(1 —r')S(p", p„& )

The free-field Green's functions D and S have
been found in Ref. 4:

D(p„p„v„)=exp iQ (0 xp, ) —iQ M

x 6(p, —p, )D()(P„v„), (6)

S(p, p, g() =exp iQ ~ (V, xp )—+ —,'Q ~ X2

x 6(p, —p, )S,(p„g,) . (7)

An equivalent representation for S(p„p„g,) is

( Pj ) P ~j)2 )

= xp -iQ ~ (V p, )
B

5(p, —p, )S,(p„g,)gQ 1

xexp 2Q ~ Q (8)

Here V~,. =—B/Bp, , a caret indicates that the cor-
responding quantity is a matrix,

~pe Opv-3 y (9)

(10)

is the fermion spin operator, D, and S, are the
free-field Green's functions for a nonrotating sys-

1

tern,

D...(P, v.) =a..(v.'- P') ',
r'(K, +)t) rp+ -p

(&, + x)' —p' —v' (12)

The matrices y~ and y' are taken in the represen-
tation of Bjorken and Drell, ' g „=diag(1, —1,-1,
-1), and the arrow over B/Bf, in Eq. (8) indicates
that this differential operator acts to the left.
The quantities p, and )t in Eq. (12) are the fermion
mass and chemical. potential, respectively. " In
our case p, = 0.

Expanding the exponents in Eqs. (6)-(8) one can
calculate the contribution to 5S proportional to an
arbitrary pow er of Q. Thi s enables one to ob-
tain an expansion of the equilibrium current 3
in powers of Q/T or Q/)t. Since in most physical
situations 0 «T, X, we shall keep only the linear
terms in Q.

The Green's functions (6)-(8) were obtained
using the. fermion and boson wave functions in
infinite space. However, a rotating system cannot
be infinite in the plane perpendicular to the ro-
tation axis, its maximum size being A„,„„=c/Q.
In the following sections we shall calculate the
equilibrium current on the rotation axis assuming
that it is not affected by the conditions at the
boundaries of the system. (An argument that this
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is the case for the neutrino current has been given
in Ref. 4. It has been argued that the effect of
boundary conditions can appear only in terms
proportional to 0' and to higher powers of Q.)

The renormalization of quantum field theory at
finite temperature and density has been dis-
cussed by a number of authors. "" The con-
clusion is that the finite-temperature and -density
theory can be renormalized by the same counter-
terms as the theory in a vacuum. In physical
terms, this means that the ultraviolet behavior
of the theory is not affected by the temperature
and density effects. Mathematically, this result
is easily understood on the one-loop l.evel." In
the ultraviolet limit the temperature and chemical
potentials effectively scale to zero (in other words,
they can be neglected compared to the loop mo-
mentum), the sum over the loop energies can be
replaced by an integral, and the divergent part
of a diagram coincides with that of the theory with
T =X=0. The situation is more complicated for
multiloop diagrams, since they can give rise to
T- and X-dependent infinities. It has been shown
in Ref. 15 that all such infinities cancel among
themselves.

Physically, we expect that the same results
hold for rotating systems as well. Like before,
we can argue that on the one-loop level, the tem-
perature and chemical potentials can be neglected
in the ultraviolet limit and the divergences of the
theory with nonzero T, y, and must coincide
with those of the theory with T = X = 0, ~ W 0.

It is shown in the Appendix that the Green's
functions at X=T=0. ~WO are related to those
at T = X = 0 = 0 by a simple coordinate transfor-
mation p- p —i~v. For example, the full fermion
Green's function in cylindrical coordinates is given
by

3x=T 0(T1 'Pl zl 1 2 %2 2 2) (13)

,(p„p„&)=exp iYh (V, xp, ) + —,'5 Z
8$

X 6(p, —p2)S„T (2 o(p„g) . (14)

X.=T=Q=O( 1 +1 1 1 12 2 ~2 2 2 2)

(Here the primes indicate that the corresponding
quantities are taken in cylindrical coordinates. ) In
momentum space, Eq. (13) takes the form

FIG. 2. First-order correction to the fermion Green's
function in an external field.

The derivation is similar to that of Eq. (69) of
Ref. 4. Relations like (13), (14) apply to all Fey-
nman diagr,".ms. This shows that vacuum counter-
terms renormalize the theory with T =y =0 and
»WO, and thus provide a one-loop renormalization
for the theory with nonzero T, X, and ~~. We
expect that this result can be extended to include
multiloop diagrams.

III. CLASSICAL EXTERNAL FIELD

Before treating the complicated case of inter-
acting fields, let us consider the equilibrium
current in a classical time-independent external
field A„(x). The corresponding physical situation
can be pictured in the following way. As we know,
the weak interactions at low energies can be de-
scribed by a current-current Lagrangian of the
form

If we take j„=2gp" (1 —y')g and replace &' by its
average value (which is proportional to the density
of the corresponding particles), then Eq. (15)
reduces to Eq. (2) with eA" =G'~~ (and without
g'). Thus the Lagrangian (2) with a classical field
A„can be thought of as describing the effect of
neutral-current interaction at low energies, when
the temperature and chemical potential are much
smaller than the vector-boson mass.

According to Eq. (6) of Ref. 4, the equilibrium
current on the rotation axis is given by

J=(—,
'

[ p, y g] ) = -T r py63(0, T; 0, T + 2)j, o (16)

Here 63 = 3 —SS S(x„T»x„r 2) is the full fermion
Green's function, angular brackets mean statistical
averaging, and the limit e-0 is taken symmetri-
cally for &-+0 and E- —0. In the first order of
perturbation theory, % is given by the diagram
shown in Fig. 2 and we can write

il 2(pp„)(=—2 '(2y) ' fd'p, dp S(p„p,', ()y'" ('1'—y')S(p,', p„()A„(p,'-p') (17)

and

J=(22) (2y) pep' f dp dpd( 2'd p'Ty(yd(p p 2 )y (1 —y)S(p p 2 )) (pl pAlll- (16)



CANCELLATION OF EQUILIBRIUM PARITY-VIOLATING. . . 3071

Let us first consider the case of a constant potential

A (x) = (Ao, 0, 0, 0, ),
where A, =const, which corresponds to a static uniformly distributed source W„ in Eq. (15). In the mo-
mentum representation

A., (q) = (2m)' |)(q)(A„0,0, 0) . (20)

If we take S(p„p,', P)) in Eq. (17) in the representation of Eq. (7) and S(p2, p„f,) in the representation
of Eq. (8), then the terms with gradients vanish upon integration by parts and we get

S=,Pe" f S'p Tr(yp(p, ()y (1',—y')S(p, K,)j, „.
2 271

(21)

Here

S(p, (, )=exp(-.'rr Z — S,(p, P),
E

(22)

S(p, (, ) S (p=(, ).exp, (-.'ry Z',

8$)
(23)

From the symmetry of the problem it is clear that J is parallel to ~, and thus it is sufficient to calculate
J. . Expanding S and 8 in powers of and keeping only the linear terms we obtain

eAp 3 p 5 8Sp 8SpII ~ J = ', ge"( d'p Tr II yS,y'(1-y') ' 0 Z+(0 y)(~~ &) '
y (1 —y )S()4P(2v)'

A Q2 82
, g e'~( d'p, Tr(y'S, (p, g()).

2)T 8X
(24)

Here I have used the cyclic property of the trace
and the re].ations

8
d'Pff(~p —X) f(~, + X)l, —

(y II)(i II) = (Z II)(y II) =II'yoy',

p »p »pPS 0 0
p p

The summation over l can now be easily per-
formed with the aid of the standard formula

(25)

(26)

(31)

(32)

where e~= ~p ~

and f(x) is the Fermi function (28).
The integral over momenta can be evaluated"

and we get finally

i= (2~') 'eA, Y&.

sQx(( )= —s,. fd(f(p)p(pl, (27)

where t, =i7(P '(2l +1),

f(K) =(e"+I) ' (28)

and the integration contour C encircles, in the
counterclockwise direction, all the poles of f(t)
but none of the function F(f) For further .ref-
erence, I write a similar formula for summation
over boson frequencies, v„= 2wi(8 'n:

1

p
QF(v„)=

2
. dvn(v)F(v),

I

where

n(v) = (e'" —1) '.

(28)

(30)

Deforming the contour of integration and finding
the contribution of the poles of S,(p, t) we obtain

(33)J=-eAp J,P
8X vs

where J„ is the neutrino current. Substituting J„
from Eq. (1) we obtain Eq. (32).

As has been mentioned above, a constant po-
tential. A, corresponds to a static uniformly dis-
tributed source 7'~ in Eq. (15). This means that
particles contributing to &, are out of equilibrium
and do not rotate with the system. Let us now
see what happens in the equilibrium situation with
a rotating source 7'~ = & (1,0 xx). Then

This result can be easily understood in the fol-
lowing way. The effect of the constant potential
A, on a massless spinor field is to change the
chemical potential of the left-handed component
of the field by -eA„while the chemical potential
of the right-handed component remains unchanged.
Thus we can write
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A (x) =AD(1, -0xx),
A (q) = (27})'A,(1, i-Q x V )5(q),

(34)

(35)

where Ap: const. The equilibrium current is now

equal to a sum of two terms, J=J,+ J„where J,

is the contribution of A, (q) and js given by Eq.
(32) and Z, is the contribution of the vector po-
tential A(q), Since A(q) is proportional to &, we
can neglect the 0-dependent terms in the fermion
propagators:

rr T, = "",+ed f d p yr((y )er}» Prp}. (y-(y) }.2P 2v' (35)

It is easily understood that in V~&p only the numer-
ator of Eq. (12) has to be differentiated,

V~S()(p, g, )-V[(g, + X)' —e~'] (3'f)

I

It can be easily shown, using integration by parts,
that

since the other term vanishes upon taking the
trace with y'. Using the relation

=-, iyXy
and Eq. (25) we obtain

= —(2v)-' eA, fP—
~X

x [f (g~ )() y f (e~+ g)].d p
Cp

(38)

(39)

d'p[ f(ep- g) -f (g~+ )()]

(40)

Now we see from Eqs. (31), (39), and (40) that
J =J, + J, =0. The equilibrium current vanishes
if the source of the potential A„rotates with the
system.

Ive INTERACTING FIELDS

We shall now turn to the calculation of the equilibrium current in the case of interacting quantum fields
with the interaction Lagrangian (2). The calculations here are rather complicated and will be carried out
only in the zero-temperature limit. We shall see, however, that the temperature cannot be set equal to
zero at the beginning by replacing the sums- over frequencies by integrals

$00—g- —f 44. .
Cp

If this is done, then some of the terms are lost and the answer is incorrect. Examples of this sort are
known in solid-state physics. '7 The source of the difficulty is the singularity of the Fermi function at T= 0.
The correct procedure is to take the limit T-0 after the summation over the frequencies.

In the second order of perturbation theory, the equilibrium current on the rotation axis can be written as

T=-s-'( ) 'Le" fed'p, 4-p, yr(yeplp p 4)}, , „„
2

= S- (Se)- g ed f d p, d p, d p d p" Tr}y S(p„p, p)SS(p, p, )S(pp, p, 4 )}, .
Here

pp(p„p„p)=! e'4 '(4 ) 'g f d'4'd'p p (p, -p', pe. ':p-p„)p() y )Sy-(p', p", p-„)y'" () y') (44)-
n

is the mass operator and I have used Eq. (5) for
58.

The integrals (41) and (42) are divergent and
have to be regularized. Dimensional regulariza-

I

tion has proved to be a very powerful and elegant
regularization method of field theories both in a
vacuum and in a medium. ' However, it appears
not to be appropriate for our problem, since the
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D", (q) = D,(q~O) -D,(qg),
Do(qlÃ) = —(q' -M')-',

(43)

matrix y' and the vector product are not uniquely
defined in n-dimensional space with n 44. A natural
choice in our case is the Pauli-Villars method.
As we shall see, it is sufficient to introduce just
one boson regulator field. This amounts to re-
placing the free boson propagator D,„„in E(I. (6)
by

D,), (q)- D".
) .(q) = —g),.D'. (q),

where

q=-(v, (I). (44)

The limit M -~ has to be taken after all summa-
tions and integrations in E(I. (41). If some of the
terms diverge in the limit M- ~, we expect that-
such divergences can be combined with the bare
parameters of the theory to give the corresponding
renormalized parameters. We shall see, however,
that no renormalization is necessary in E(I. (41).
The reason is that the mass renormalization is
absent for a massless fermion field and the charge
renormalization is not necessary in the second order
of perturbation theory. Thus the equilibrium current
(41) has only to be regularized.

A. The mass operator

1

In this section we shall find the linear in Q contribution to K(p„p„f,).
Let us first consider the contribution of terms with V, x p, in S and D&, . Omitting terms proportional to

Z and M we obtain

K(p„p„() e')) '(2F) ' Q f d pd p '1+(()'[vx(p, -p )]
n

x«6(p, -p'-p. +p")D". (p, -p", k$-k„) I+iQ'(&' p )sg
La

x ~(p' —p ) S (p", g )(1-y') .
Here V, —= V», V =-V~ and I used the identity

(45)

(46)g»y" (1-y')Sy" (1-y') =- 4S,(1 -y') .
Integrating by parts in the term proportional to V' x p, neglecting Q' and using sS,(p, g„)/sg„=sS,(p, g)/sx
we find

5R(p„p„g,)~ 1+iQ (&, xp, )—5)tp, —p, )K (p„g,)
~X-

Here

2
—

(2„~(&, (~ t'(i -i*))Q, ( f )($,d-5')&,"pp, —p', 4- )&(.( (r)(&)') . .
fl pf

(4'I)

@4(p(r)=e))(2&)pfdp&(p9 dr()S(p()()7) (46)

is the mass operator for a nonrotating system.
Let us now consider the contribution of the terms proportional to Z and M. Neglecting all other terms

we have

K(p„p„gg)~--,' e'QP '(2m) '6(p, -p, )

xg d'p' 2ie,„„~y"S,(p', g„)y"(1-y') D", (p, —p, g&
—&„)

+-', g„„D",(p, -p', g, —g„)y"(1-y') Z, So(p, K„)y"(1-y')
n

(49)

Using the commutation relations for y matrices it can be shown that

+o))my"y Y" = i(~qy +y ~q) (6O)
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g) .r" (1 r-') z,r'r" (1 r-') = 4r'z, (1-y'),
and Eq. (49) takes the form

3R(p„p., L&)~2Q Z 5(p, p—,) —3tl0$., t&)
8X

(51)

2

(2 )3 5(pl p2)/ sg
d P Do(p2 p 9 ~l ~n)

7r n n

&&[z Qs, (p', t„)+s,(p', l„)z Q](1-r').
Combining Eqs. (47) and (52) we obtain finally

I

II(p»p„f, )= 1+iQ ~ (V, xp )—+-,'Q Z —6(p, -p, )II (i),)
ha

I

(52)

e Q ~ 7 QP —P2 2-P Do P, -P S, P 1-y'
p~ 0,

-le'e(p, —9.)f,P. (er,'(p. 9')(r PT-P(9')e&, (9)& 0)()(- r').
pr Bpo

Here P, = (f, + y, p, ), P = (P„p ), P, = f„+y, and I introduced a shorthand notation

(53)

(54)

The last two terms in Eq. (53) are free of divergences and, as expected, all the divergences are confined
to 5g,(p, ).

B. The equilibrium current

In Eq. (44) for the equilibrium current let us take S(p„p, P, ) in the representation of Eq. (7) and

S(p, p„g, ) in the representation of Eq. (8). Then the terms with gradients vanish upon integration by
parts and Eq. (44) takes the form

J = -p '(2m) ' g e' 1 d'p, d 'p2 7 r (ys(p» g I)%(p» p» f&) S(p» f)}, (55)

where S(p, f,) and S(p, f, ) are given by Eqs. (22) and (23), respectively.
Since J has to be parallel to Q, it is sufficient to calculate J ~ Q. Substituting E q. (53) in Eq. (55) we ob-

tain, after a simple transformation,

J ~ Q =- —e' Tr (y ~ Q)(Z ~ Q) ' S0(p )(I-y3)S0(p)
~X

+y QS0(p)S0(p')(I r') ' -Z ~ Q D.(p-~')
~X

Q p XQ ~ ISO p y 0 p 0 P P
».(P), s

p p'

I

Te (r ~ A)s (9)(r 0) ' (1 r )&,( )) rr9". (9.—-'9 )

-ie', Tr((y ~ Q)[(p p')x Q] &PS0(p)S0(P')(I -y')S0(p)}D0(p-i')
p p' ~po

+ 1 2 Tr ((y Q) S (p)[Z QS0(p') + S0(p') Z Q] (1 r')S0(P)}&o-(P -P )
p pt 8 0

=Q (J, +J, +J, +J4+J,). (58)
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Here P=(P;p), P =(P., p), P.= ~~+ x, P.= ~.+x.
Using Eq. (25) and the identity

(P x Q) ~ V~S,(p) = —[Z. QS,(p) —S,(p)Z ~ Q]

we can rewrite the first three terms of Eq. (56)»
I

(»+&. +T)=-'*e))*—„f f T&&'~a(u)~.4 —~)~.()'))~".(e)
P c

where I made a change of variables q= p- p . Calculating the trace and. using the identity

2pop (P -q) -(Po- q.) (Po'+ p') = Po[q'- (P- q)'1- q.p'

we get

(57)

(56)

(59)

Q ~ (J, + J, + J3) = 2 e'Q' lim M'
P'(P —q)'(q'- M') p'q'(q' —M') P'(P —q)'q'(q'- M') (60)

Now let us consider J~. It is easily understood that in V~S,(p) only the numerator has to be differentiated,
since the other term vanishes on taking the trace with y'. Thus, we cari replace V~S,(p) by y p '. At this
point it is convenient to average over directions of Q. This amounts to replacing 0'0 by —,O' O' . After
such averaging

(y. Q)[(p —p') «].y

becomes

——,1 Q Z ~ (p —p')

where I have used Z = —y & y. Now the trace is easily calculated and we obtain
2

0 ~ J~=-~3 g 0 lim ~ (P P '[PZ ' $-P )-Pop (P-p')]D". (P-p')j.
N~ P p ~PO

(61)

Similarly, we find

Q ~ J, = 4e'Q' lim ~ Q)() P P 'Dg(P-P )) +, e'Q ~ (P P [Pop POP' P]Do(P P 0.
P P' 8P0 P P' ~~0

(62)

An explicit calculation shows (see the next subsection) that Q '(J~+ J,) is finite even if we use D()( p —p') in-

stead of Doe(p -p ). Then it is clear from Eq. (48) that in the expression for Q (J,+ J,) we can simultaneous-

ly replace Do(p-p) by D,(P-P~M) and lim„„by (lim„, -lim„„). This step simplifies the calculation,
because it decreases the number of poles in the integr ands of Eqs. (61) and (62). Introducing a new vari-
able q= p-p and using the identity

2(po- q)p'+ 2(P0- qo)P .(p + q) —2PQ(P'-q') = (Po- qo)(P —q)'+ 2P.P' (2PO- qo)q'- (62)

we obtain

2 Q2 /I m hm') s Po q() 2P() qo M (2P() qo)

Po2
64'( — )*(q' — ') I

'

The integrals in Eqs. (60) and (64) will be calculated in the next subsection. Here I would like to indi-
cate two traps one can easily get into. The first trap is the zero-temperature limit. If we set T =0 at
the beginning and replace the sum over qo by an integral, then Eq. (64) would immediately give zero. How-

ever, as we shall see in the next subsection, the correct procedure (taking the limit T-0 after calculating
the sums over p, and q,) gives a nonzero result. The second danger has to do with regularization. Since
the term with lim„, in Eq. (64) is finite, one can be tempted to drop the term with lim„„. However, it
will be shown that the regulator term gives a finite contribution. A simila'r situation occurs when Pauli-
Villars method is used to calculate axial" or trace" anomalies.
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C. Calculation of the integrals

~e shall first consider J + J,. Using Eq. (29), let us perform the p, summation in the last term in tbe
curly brackets of Eq. (64):

[(p-q)'(rp-M')j '= —
q„, f d~~'(v)[(P-rA'(q -'I')j'

f («& ~ - X) f («()-o+ X)
2«, qf(po «p--, )' Ee'-]

&' (E,) n' (E.)
2E, [(p -E,p-«, '] 2E,[(p +E,) -«, ]

where E, =(p+M')'~' and I have used for real «, n'(-«) =n'(«), n'($, +«) =-f'(«). In the zero-tempera-
ture limit n(«) =0, f(« —X) 8(X —«), f'(« -X) = —5(« —X), and thus

s . . . 5(«. .-X)
p Q „[(p e)'(e-'-M')]'=-2X(~':— E.) ~

Carrying out the P, summation in a similar manner, we obtain

In the first and second terms of Eq. (64) the (I, and p, summation can be done in a similar way (the first
term gives no contribution at zero temperature). In the third term it is convenient to write

The resulting expression is

0 (J, +J,) = — —,lim —lim
~

N 0 N co)

"r&p&g&& -x, . +, 5c -x, — ' +

s 6(X -«~)(2«~+X), E, +~«.
8m' .Ã, [(i, -x)'-~, 'j &~,[(&.+~,)'-x'j ..I' (65)

where « = (p'+m')'~' and I have used the identity

2X —2E(( X —2«( X(E() +2«()

E,[(E, -X)' —«,'] «,[(«, +X)' —E,'] E,«,[(E,+«,)' —X']

Now we have to calculate the integrals in Eq. (65) in the limits M-0 and M-~. Let us consider the zero-
mass limit first; then the term proportional to lM does not contribute. To avoid spurious infrared di-
vergences, we shall not set M =0 in the remaining terms until after the q integration.

The q integration can be performed using the relation

r
6 p+X

d'q5(«, , —X)E(q') = (e')ede
+

g I & &-X.I

and we obtain

2Q2 2 4 +MII. (J. J,)~ .= —
2 2, , d'p 26(«, -X) ——.~(«, -X) -«, '[j(X -«,)»

[(«~+X)'+M']' +«, -X [(«& -X)'+M']'"+«, +X

[(«p+X) ™] +«j)+X [(«j, —X) ™]+«~ -X

(66)

(67)
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At this point it is convenient to go to the limit
M =0. As M-O, the last logarithm in Eq. (61)
becomes

E 2

ln
&~ -X

with e & 0. I(e) is easily calculated using inte-
gration by parts and we find I(0) =-,'. Similarly,

ln xdx =1

for & & X and

4& yx(x —&) )
~(x+e,)

5n
( J4+J,) p n

= —12, X 'f~,
12m

(68)

for & & X. Note that dangerous terms proportional
to lnM' cancel out. After a simple transformation
we obtain

2e2Q2 1

+ ln 2
——

2 xdx ~

To calculate the second integral in the curly
brackets, let us introduce z =x2 and define

1(c) =-,' f (In „)——)dz

where n =e'/4))'.
The infinite mass limit can be found in a simi-

lar manner, but we shall take a shorter route.
Let us first examine the two terms proportional
to M' in Eq. (65). In the first of these terms the
integration is limited to the region

I pl, lql —x
and we can neglect (e~ —X)' and q' compared to
M' in the denominator. In the second term the
integration region is infinite and we can neglect
x', but not lpl or lql. Note, however, that when

Ipl ~ or lql M, then the difference Ip ql can
be neglected (for M»X) because of the factor
5(e~, —X). Therefore, we can get p =q every-
where except 5(&, —X). Treating the remaining
terms similarly, we obtain

II '(J4+J.) ~-- =-
Z(2,). d'Pd'q5(~, , -X) . 5(e, -X) —

2
—.~(~, -X)+

Z Z .
~(x -&~)(2~.+x) &,+3~,

Bn' Xc~ll" E i (E +i )',}„
Differentiating with respect to m' and setting rn =0, we find after. some algebra,

(69)

iI (J~ J,)l )) 3(2m) 'e'fl' lim&&' d'Pd'q5(e& , -X)e~'E~.'(e&+E&) '
M

n X2f)2

24m'3

Combining Eqs. (68) and ('70) we finally obtain

A similar technique can be used to calculate
J, + J, +J, from Eq. (60). The result is

J, +J, +J,=, X'O.
8m3

(71)

(72)

l

is the second-order correction to the electron
density in (massless) QED. Then we can rewrite
Eq. (58) as

& (J +J +J,) =--,'~I'sn")/sX. (74)

The quantity n"' has been calculated by a number
of authors (see, e.g. , Ref. 14) as

An independent test of this result can be obtained
if we note that

n"'=-28' » y'~, P, P -q 0 P Do e

(73)

3
2r3 ' (75)

Substituting Eq. (75) in Eq. (74) we obtain Eq. (72).
Fina11y, combining Eqs. (7l) and (72) we ob-

tain

J =J, +J2+ J3+J4+J, =0.
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V. CONCLUSION

Equilibrium currents induced by rotation have
been calculated for a system described by the
Lagrangian (2) in the following two cases:

(i) C lass ical external field A" =A'(1, II x x).
Physically, this corresponds to a neutral-cur-
rent interaction at low energies (see Sec. III).

(ii) Interacting quantum fields at finite density
and zero temperature. It has been found that in
both cases the equilibrium current on the ro-
tation axis vanishes in the lowest order of per-
turbation theory. The question naturally arising
from this result is whether a nonzero current
appears in higher orders of perturbation theory
or in different models or is there some deep
physical reason which makes the equilibrium
current equal to zero for all particles except
neutr inos?
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APPENDIX

To discuss the relation between the theory with

X =, T =0, 0 e0 and that with X =T =0 =0, it is
convenient to use the cylindrical coordinates. The
fermion Green's function in cylindrical coordinates
is given by4

S'(x„r„x,, r2) =P ' Q e ~1'S'(x„x„g,), (Al)
l

where g, =(21 +1)miP ', 2 =7, —7, ,

S'(x„x„&1)= exp —iQ iS,'(x„x„g(),a 8't
af, s

(A2)

and S,' is the Green's function for a nonrotating
system.

At X =T =0, f, becomes a continuous variable
a,nd Eq. (Al) takes the form

Quite similarly, it can be shown that the free-
boson zero-temperature Green's function can be
obtained from D,' by the same coordinate trans-
formation (t) - (t) —i07'.

The function S,' can be written as

0(+1 41 1 1 2 42 2 2)

where the summation is taken over all half-in-
teger values of m. A similar expression with an
integer m can be written for the boson Green's
function. After the Q integrations, only the terms
with Zm, =0 remain at each vertex in all Feyn-
man diagrams, and it is easily understood from
Eqs. (A5) and (A7) that the 0 dependence drops
out everywhere except the external lines. This
shows that Eq. (A5) holds for the Green's func-
tions of interacting fields as well. This com-
pletes the proof of Eq. (13).

In conclusion of this Appendix, I want to give
a direct proof of Eq. (13), without using the per-
turbation expansion. By definition, the fermion
Green's function in cylindrical coordinates is
given by (see Ref. 4)

8' (x„&„'x„r,) =Tr/pT, (I) (x„7,)g (x„r,)),
(A8)

where x stands for (2, Q, z), T, is the 7-ordering
operator,

g(x, r) =exp[7(H —M B)]P(x,0)

x exp[-r(H —M 0)] (A9)

is the Matsubara field operator in cylindrical
coordinates, and p is the statistical operator.
Assuming for definiteness that v'=—7', —v, )0 we
can rewrite Eq. (A9) as

8,'() (x„x2„0)

Here I have used

( 1 41 1 1 +2 42 2 2)

=S'(2 „4t„)-Q„z, -z„v, —r„2"„0,0, 0) . (A6)

S'(x„7'„x„7)=(22ai) '
dg e~'S'(x„x„g). (A3)

f oo

(0 M4'Q )
y (x~0)e-&(a-M 'o

&y (x 0)].

From Eqs. (A2) and (A3) we find

Here

4'(x„e, ;x„)=exp (- (eeee 4,'(x„e;x„e,),(A4),
8or

S'(2 „y„z„7„2.„y„z„7,)

z p expIT(~ 2-f~n2 2)l(1),2(xl) (l)22„(x2) ~

n, k

(Al 0)

(A5)

(Al 1 )(t) „,( x) = (n
i q (x, 0)

i k),

in) and ik) are eigenstates of the Hamiltonian H
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and z component of angular momentum M„co„~
=E„-E~, m„~ =M„-M„, M„and E„are eigenvalues
of M, and H, respectively. At

Noticing that in cylindrical coordinates the P de-
pendence of g,~(x) is given by the factor
exp(iM~&f&), we can rewrite Eq. (A13) as

(A12)
p„=5,„,

where
~

0) is the vacuum state with E, =M, =0, and

Eq. (A10) takes the form

gng( 19 t s 2)X=T=O

gag (Xl & i 2 i )X=2'=0

=exp —2,07 — — 8'& x„T;x„p „8

(A14)

exp —w E, —OM, „x, ~„, x, . Als Equation (13) immediately follows from Eq. (A14).
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