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Zero-point oscillations, local stability, and the effective action
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We define a gauge-invariant action functional for non-Abelian gauge theories by deriving 't Hooft's generating
functional from the vacuum-to-vacuum transition amplitude, and we explicitly 'demonstrate its gauge-invariance
properties. We then examine the effective action in the loop expansion and show that in the presence of a
nonvanishing background field the unrenormalized one-loop term can be written as the change in the zero-point
energy of the theory. Finally, we consider the interpretation of an imaginary part of the effective action and its
relation to local stability by examining the source of such an imaginary part within the Euclidean theory.

I. INTRODUCTION

The effective action functional 1'(p, ) of a quan-
tum field theory is commonly used to study sym-
metry properties. It is widely used in a semi-
classical (loop) approximation to study the effect
of quantum phenomena on certain classical sym-
metries and hence is extremely useful in the
study of spontaneous symmetry breakdown. ' The
effective action, like the classical action, may
also be used to study the dynamics of the theory.
It is a generator of Green's functions and has been
used in the study of vacuum stability. In this re-
gard, it is hoped it will be useful in the study of
confinement in quantum chromodynamics (QCD),
where a nontrivial vacuum configuration may be
responsible for col.or confinement. '

There are a number of definitions of I" in the
literature. "' We will define I" as the generator
of one-particle-irreducible Green's functions. "
It has been shown for nongauge theories that this
definition is such that'

where G'" is the Feynman propagator of the theo-
ry. The higher functional derivatives of I are the
full irreducible vertex functions of the theory,
whereas the functional derivatives of the classical
action give the bare vertex functions. " In the
tree approxima. tion, the effective action I'(p,.)
reduces to the classical action S (P,.).

I' is usually derived from the vacuum-to-vacuum
transition amplitude"' '

where

Z(J) = exp[iW (J)]

and W(J) is the generating functional for connected
Green's functions. Now I is defined by the Legen-
dre transformation

I'(@,.) = W(J, ) —J,.y,.

where

0
5S

0
5r

where i runs over all indices of the theory in-
cluding those of space-time, S (g, ) is the classi-
cal action, Q; is the operator field, and

i.e., p,. is the vacuum expectation value of the
quantum field. With this definition, we can also

, show that

in analogy with the classical equations of motion,
i.e., J, (&f&, ) is an external source coupled linearly
to the fields, and also

(4)

If the above definitions are extended to gauge
theories, l"(A„) is, in general, not gauge invar-
iant except perhaps when evaluated at its mini-
mum (J, = 0).' Renormalization procedures needed
to regularize I' will also be gauge dependent,
although physical processes should still maintain
the gauge invariance of the theory. Recently, a
number of alternative functionals have been pro-
posed in order to define a gauge-invariant func-
tional from which we could give a gauge-invariant
renormalization scheme. "" These employ the
so-called background-f ield methods and gauges.
't Hooft" defines such a functional. We will show
in Sec. II that this functional can be derived from
the usual definition of the effective-action func-
tional by way of a Legendre transformation. We
will then explicitly demonstrate its gauge-invari-
ance properties.

Our interest in the above study has been piqued
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by recent developments in the literature. In an
attempt to discover a model for the nontrivial
vacuum of QCD, several authors have investi-
gated the one-loop approximation to the effective
action in the presence of a constant color mag-
netic field B,'."" Such a configuration provides
an effective infrared cutoff for the theory, al-
though renormalization-group calculations cannot
be readily extended to small values of B. For
such small values of B, the one-loop term lowers the
field energy and, although the range of applicabil-
ity of this calculation is unclear, it has been sur-
mised that a constant color magnetic field leads to
a lower ground-state energy than the zero-field
(perturbative) ground-state energy. Nielsen
and Qlesen" calculate this one-loop effective
action by extending the result that the one-loop
effective action for nongauge theories in the pre-
sence of a nonzero constant background field
can be written as the change in the zero-point
energy of the theory due to the background
field. ' " In Sec. III, we verify that this result
can be extended to gauge theories with l defined
as in Sec. II and to theories with spatially depen-
dent background fields and we demonstrate under
what conditions it will presumably break down.

The calculation of the effective action in the
presence of a constant color magnetic background
field also leads to an imaginary part of the ef-

fective action'"" " in analogy with the effective
action for a constant electric field in QED. ' This
has been interpreted as an indication of an in-
stability of the theory when expanded around a
constant B field, and Nielsen and Olesen proceed
to search for other field configurations which pre-
sumably lead to even lower energies and a stable
vacuum. "" In Sec. IV, we investigate the field
modes responsible for this imaginary part by
examining the Euclidean version of the theory.
We point out some ambiguities in the definition
of the imaginary part when looked at from this
point of view. By going to Euclidean space we
are also able to make analogies with the classical.
stability analysis and we conclude that this in-
stability is actually of classical origin although it
appears in the first quantum correction. (Indeed,
the classical Yang-Mills theory in the presence
of a constant magnetic field has been shown to be
unstable. "") We. compare this type of instabil-
ity with those of quantum origin pointed out by
Callan a,nd Colema, n'"-" a.nd with those due to
pair production pointed out by Schwinger. ' In
analogy with the last example we show under what
conditions the imaginary part can be used to
calculate a decay rate and under what conditions
the loop expansion is still well defined.

In See. V we discuss and summarize our main
results.

H. GAUGE-INVARIANT ACTION FUNCTIONAL

A. The effective action

't Hooft's background-field method" reduces to an older formulation' ' ' at the one-loop level. This
older formulation generates reducible diagrams when we go to higher order in the loop expansion, where-
as with 't Hooft's method we generate only irreducible diagrams. 't Hooft's functional is

le'

xxp &D{A,J) = f[ d)]d{x]d)d] {dx{(d)]ex&xxfd' (D(A+Ax)+J'„A"' ——{D'„'{A}A"']

—d
' "{D'„'(A )D ""(A +A )]d ')

A few comments are in order: A'„(x) is a c-num-
ber field, - representing the quantum field over
which we are evaluating the functional integral.
X'„(x) is a c-number external field around which
we are expanding. J'= J'„'(X), where J'„(X) is
to be determined by the equations of motion

where the functional derivative above is meant in
the sense of a total derivative rather than a part-
ial derivative. The Lagrangian density X may in
general contain other sources composed of

charged or Higgs particles coupled in a gauge-
invariant way. We will not consider this possibil-
ity in what follows. {t}'(x)and {t)'*(x) are ghost
fields and

D'a(X) 5'ss + c"~X' .P o

Also, consistent with Eq. (10), J"'(X) can be
constructed so as to satisfy

Dao(A
—

)Z ~s(A
—

) 0

Now define
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't Hooft demonstrates that I'(A) is indeed the
generating functional of the irreducible vertices.
To define the physical theory we demand that

J'„(A)=0 .

This determines A' and is analogous to the classi-
cal equations of motion since

dl (A)
dAO

(14)

Wjj, A(J)] is the generating functional for the
connected Green's functions. ZIJ, A (J)] can be
derived from the Hamiltonian formulation of the
functional integral within the A. gauges" to give

t

In analogy with the scalar theories, the second
functional derivative of 1 is the inverse propa-
gator and the higher functional derivatives give
the irreducible vertices.

We will now proceed to derive I'(A) from the
vacuum-to-vacuum transition amplitude:

(0*]0 ) -=Z[d, A(d)] = exp(—tt(d, A(d)] ). (15)

Z[), 4(Z)]=f [45]5(t'[A, X(d)l) 5 t(„t,)
x ex 0 d'xid(A)ed'„4"']j, (15)

where A'„(J) is an as-yet-unspecified but invert-
ible function of J'. g'[A, A(J)] is the gauge con-
straint and det(dg'/d80) is the appropriate Fad-
deev-Popov determinant. Since g' is a cyclic
variable in the sourceless theory we may freely
fix X' as long as the theory remains well defined.
We choose the so-called covariant background-
gauge condition

X'=D'„'(A)(A'" A"') --f'(x) .
The action is invariant under inhomogeneous

gauge transformations of A'„(x):

A'(x)-A'+ c"'8 A' —8 8'=A' -D" (A)8'
(l8}Therefore,

d' d' C4, 'X 4 td Dac(A)D(50(t(A}
de~ dA' d&

We now make the change of variables A'„-A'„
+A'„(J) to get

exp —tp[d, A(d)]j = f I ]dt«(D leAed-f''(x)) det[-D )D(A("e4 )+"A']

x exp — d'x[4(A+4)+d"'(4'+4')] j
l.et us take W to be formally only a function of J, although as yet we still have not specified A'„(J). Then
we may define I' by the Legendre transformation:

I'(Ap) =—W(J) — d'x J'„4, de

where we define
dW

a, p ~a
as the physical field. Therefore,

exp —1'(A, ) = f [44]«D (A)A" f'( )) et[- xd( ) D-e4(DA)3A
dx

(2l)

(22)

exp
@

d'~ +A +J"' A~ A'„+ ~",
~ A'„-A (23)

Thus if we choose A'„(J) such that

A, (J) A, (J)
d W(J)
dJ

then all the J dependence at the tree level will cancel. We now use the usual exponentiation' ",of the
gauge-fixing term and the Faddeev-Popov determinant to give

)~ ~

exp —P(4) = [dd(x)][4()(x)]Ii(5 "(x)]exP 0~ f d
(x (D4+ 4) ed@4"'——[0'e(A+A "e]'

ml
lee

—0"I (DA) 0( 4)+]4')5

(24)
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5w' 5 w dA»
(25)

where by the partial functional derivative 5 we

and we have reconstructed 't Hooft's generating
functional. Also, Eq. (10) follows from the Le-
gendre transformation, Eqs. (21) and (22). Again
as in the scalar case I" generates the one-par-
ticle-irreducible Green's functions. To the tree
level I' is just the classical action. X'„(x), how-
ever, is no longer the vacuum expectation value
of the quantum field. To see this, note that

dWQ, A (J)j

mean the functional derivative of 5'with respect
to only the explicit J or A dependence. From the
definition of W, Eqs. (15) and (16), we can see
that

6 W (O'I A'„10 )
ar" =

&010-) (26)

Therefore, A'„ci &A'„). The distinction develops
because of the dependence of the gauge condition
on A'„. The difference between this and the scalar
theory. is the implicit 8 dependence in p' through
its dependence on X'„(/). To see the explicit
distinction, we calculate &A'„). In Eq. (26), let
us change variables A'„-A'„+ X'„(J) to give

Id A]A '„ll [X' )][,A +A )] dec (de '/ de ') ex P
— d 'x [d (A e A ) —d (A ) e d dd "']j&Aa) Aa (J)+

[dd]il[d']de((dd'/dee)exp —fd'x[d(d+A) —a(A)+d'„A"']j

(27)

The second term above is the expectation value of
the quantum field calculated in a shifted ' theory.
Therefore let us write this as

&A„)=A'„(Z)+ &0', (A; ~0)/&O, jo ) . (28)

B. Gauge invariance

We now proceed to demonstrate the gauge-in-
variant properties of the effective action. If

A~ A~ + c~»~0»A~ & e~
P (29)

then Eq. (11) is consistent with

Ja (A) Ja + Cal)c8))dc (30)

The difference between &A'„) and A'„(J) is of order
S. In the usual formulation for scalar fields, the
expectation value of the quantum field within the
shifted vacuum vanishes. - Here, however, in or-
der to maintain gauge invariance (as we shall pre-
sently show) the shifted vacuum expectation value
of A' dc~s not vanish, or to put it another way,
the physical field or order parameter of the theory
differs from the vacuum expectation value of the
quantum field. This result is similar to that of
Fischler and Brout" where they demonstrate
that, to preserve gauge invariance for an Abelian
theory with scalar fields, the order parameter
is not taken to be the naive vacuum expectation
value of the scalar field.

change of variables

Aa (x) A'+ Ca['c8[Ac
/l

~a(&)~ ~a+ Ca[)c8])~c

(t 'a(x) —y'a+ c"'8'y'*,

(31)

A' A'+ c'~'8~(4'+A'& 8 8'

=A -D"&A+X)8' (32)

then the value of the functional integral is invari-
ant. This change of variables is equivalent to a
gauge transformation of the quantity g'„+ X'„).
Therefore, the action f d'x S(A+ A) is left in-
variant. The measure QAj is invariant with
respect to such linear transformations. The
Faddeev-Popov determinant is also invariant
as demonstrated below. (This follows a similar
proof due to Abers and Lee.") Define L(A, X) by

then the functional integral, and hence the ef-
fective action I', is shown to be invariant with
respect to gauge transformations of its argument,
A'„(x) (Refs. 12 and 15). I'(A ) does, however,
depend on the choice of the background gauge
parameter a. We will show that for the physical
theory defined by Eqs. (13) and (14), the value of
I'(A) is left invariant by changing (].'. The value
of Aa„(J=0), however, is not invariant.

If we keep A'„ fixed but make the change of
variables

If we make these transformations within the func-
tional integral, Eq. (9), and if we also make the e(A, A) f [Ã)ep-(A)] =/x, da„( (33)
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where

A"„=Q(4„+A„)Q'+QB„Q ' —A„. (34)

This is just the finite version of the infinitesimal
transformation, Eq. (32), Also, A, =A'„-T', whe. re
T' is a matrix representation of the group gener-
ators. Now, A""' is defined by group multipl. ica-
tion, i.e., A. ~~'=A'„'", where QQ'=0". Also dQ
= d(QQ') = dQ. Therefore, by changing variables
A. „-A."„', we have

independent. Thus we can contruct a gauge-
invariant renormalization scheme for the vector
part of the theory.

When 8'„(X)= 0, the one-loop approximation to
the above formalism is equivalent to an approxi-
mation in which A „(x) satisfies the classical
equations of motion. The one-loop diagrams sat-
isfy the ordinary Nard identities rather than the
Slavnov-Lee identities, and the only renormaliza-
tion needed is a coupling-constant renormaI. iza-
tiOn 12~ 14 ~ 15 '

a()( 'X)f5,ID a)A„' -f(x))d(n'G)=1 . (35)

The integral above is identical to the integral in

Eq. (33), since we are integrating over all Q.
Therefore we must have

~(A"', X)= ~(A, X). (36)

Equation (33) can be solved for b, (A, X}near the
constraint surface defined by the 5 function, to
give

D' g)D""'(A+ A)8'= —D'~gL)A"'
2n (39)

where 5Q. is an infinitesimal, then

2

I))„'(X)~"')'-——,
'

(( —," I))"g)"')'

1
(X)A ]'

(40)

Therefore, the only effect of changing variables
with the transformation (32} and (39) is to change
the value of a to 5n. Since the functional integral
is invariant under changes of integration vari-
ables, it is therefore independent of the choice
of c(. (If J'„e0, this is no longer true. ) Further-
more, 't Hooft demonstrates that apart from re-
normalizations due to fermions or scalar fields
in the theory, the infinities of 1 will be gauge

~(A, A) = det[O"tA)D» (X+A)] .
This is just the Faddeev-Popov determinant.
Equations (36) and (37), together, demonstrate
the invariance of the Faddeev-Popov determinant
under the change of variables, Eq. (32).

The only term that we have not discussed is the
gauge-fixing term. In its exponentiated version,
we have the exponential of the integral of —(lff2n)
& fD'„~(A)A "~]'. If we make the change of variables,
Eq. (32), then

D"gi)A"'-D"g)A"' —D"(X)D""g+A)8'.
(38)

If we now specify 8' such that

III. THE CONSTANT MAGNETIC FIELD
AND ZERO-POINT ENERGY

The calculation of the one-loop approximation
to the effective action as a sum over the zero-
point energies of the theory has been suggested
in the work of Nielsen and Olesen, "where they
consider the one-loop effective action in the
presence of a constant color magnetic. field. They
advocate the study of such field configurations as
a tool. in understanding quark confinement. Al-
though vacuum configurations in which (H) e 0
are not Lorentz invariant or even rotationally
invariant, Nielsen and Olesen suggest that such
configurations are important, for the apparent
instabilities in these configurations may indicate
something about the true nature of the Yang-Mills
vacuum. Along this line, Ambjorn, Nielsen,
and Olesen have suggested a theory based upon

a condensate of col.or magnetic flux tubes. '""
Mande1. stam42 has suggested that the instabilities
for constant B indicate an enhancement of the

virtual, low-frequency modes in a Fourier ex-
pansion of the magnetic field. 't Hooft4' has in-
dicated how to study the local stability of theories
with nonzero, topologically stable magnetic flux.
A justification for these programs lies in the ap-
parent result that the real part of the energy is
lowered by the one-loop term in the presence of
a constant magnetic field and in the interpretation
of the calculated imaginary part of the effective
action as an indication of an instability leading
to a lower-energy, stable ground state.

The first indication that the real part of the en-
ergy is lowered for small external color mag-
netic fields was implicit in the work of Vanyashin
a,nd Terent'ev, 4' where-they noted the anomalous
character of the charge renormalization' for a
charged vector field in the presence of an external
magnetic field. A decade later, Duff et al."
used Schwinger's elegant proper-time technique
to write down, the effective Lagrangian for a
non-Abelian theory in the presence of general
external fields. The first systematic calculations
of the explict one-loop effective action for a con-
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stant external magnetic field using both proper
time and renormalization-group techniques were
by Savvidy, "Matinyan et aE'.,

"and Batalin ef; al."
However, they failed to note the imaginary part.
Nielsen and olesen" redid the calculation by as-
suming that the one-loop term cab be written as
the change in the zero-point energy of the theory.
Falomir and Schaposnik" extended the calculation
to also include scalar particles in the adjoint rep-
resentation, but their calculation appears to
depend on their choice of gauge. Yildiz and Cox"
also performed the calculation, in this case in-
cluding scalars and spinors in an arbitrary rep-
resentation, using the definition of the effective
action due to Schwinger. The last three papers
all use proper time techniques to evaluate their
integrals, and all note the existence of an ima-
ginary part.

The one-loop approximation to a pure vector-
gluon theory gives the following for the real part
of the effective energy density":

Reh= —,IH'+, g'EP ln &, ——,
'11N gH

96m' (41)

where N depends on the gauge group SU(N). Re-
normalization-group arguments can be given to
show that this is a good approximation for large
H, i.e., for gH»A', where ~' is the renormal-
ization point. "" If the above approximation is
extended to smaller values of H, it is noted that
there exists a minimum away from H=O. For
the above approximation to hold in this region
it is required that

dg (42)
P(g)

where P(g) is the usual Callan-Symanzik P func-
tion. This behavior of P(g) corresponds to the
ferromagnetic classification of the theory due

to Pagels and Tomboulis" and Gross and Wil-
czek.4' For this to happen, the running coupling
constant g'(&) must become negative, a patholog-

ical result, unless a phase transition to some
ordered system occurs. This is just what Nielsen
and Olesen suggest, although the proof must
somehow come from the theory itself.

As already stated, Nielsen and Olesen suggest
that 'the one-loop approximation t'o the effective
action can be written as the difference in the
zero-point energy of the theory due to the pre-
sence of an external vector field. This result
has previously been found for particle theories by
Coleman and for scalar field theories by Salam
and Strathdee. " It was also pointed out by Dolan
and Jackiw" and by Weinberg, "as the zero-
temperature limit of scalar and fermion field
theories formulated at finite temperature. The
extension to vector gauge theories is complicated
by the gauge problems associated with the con-
struction of the effective action. The zero-point
energy of the theory is a gauge-invariant quantity,
and hence problems with the gauge noninvariance
of the effective action would naturally lead to
problems with this interpretation. With the
formulation of the background-field method of
Sec. II the effective action is gauge invariant
and we are able to show the equivalence of the
one-loop term to the change in the zero-point
energy due to the presence of an external field.
We will demonstrate this result for a limited
class of external background fields A'„(x) and
clarify to what extent this class may be enlarged
without changing the interpretation. We will
then verify the result explicitly for the case of a
constant external magnetic field.

To calculate the one-loop approximation for I',
we expand the exponential in Eq. (9) in powers of
A„. Since we are interested in vacuum configura-
tions, we take the case J'„(2)= 0. This is there-
fore the gauge-invariant formulation of the theory.
The one-loop approximation is found by keeping
only quadratic terms in the fields A', (t)', and

The effective action to this order is then

( P)=df d xz(d) —I)I)e'I)ef[dd][dd][dd *]exp ——f d'x I[II ()d[ d (]x(„)Id)]'„—[Iee(x)d""n]'

+ 2gF""'(A)c' 'A~ A'+ —[D~(A)AI' ]'
4C P

+ 2Q'*[D„(A)D"(A)]' Q (43)

where

Z(A)= =,'F F ", F„„(A)=s„A„'-s„A'„+gc"A'„A„', (44)

and the normalization X is defined so that the one-loop term I', (the logarithm above) vanishes when A'„
= 0. Note also that

~jg 1
gA
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and

gf 6 F f)og

(45)

As stated in Sec. II, to the one-loop order we may freely choose A'„ to be solutions of the classical
equations of motion. Integrating by parts, we find that the one-loop term alone becomes

D, (A)= ale-Dj[dA][dd][dd ]

xexp —. d'xA"'g D A A "+2gc'"'F A "'-Q' D A A " ' 46

where we have used our gauge freedom to put n = 1. To evaluate the functional integral, we will define
the theory in Euclidean space by first letting

t- -iv, A'- -iA4. (47)

The Euclidean theory is defined from this change of variables by letting the integral over 7' go from -~
to +~. Then

Zs(As) —= exP ——rE (As)g g (48)

This implies that

(49)

Henceforth, all subscripts E will be dropped, and all four-vectors are Euclidean unless otherwise noted.
The Euclidean one-loop term becomes

2', (A)= -K» Df [dA][dd]fdd "]exp (-—Id'e[A" [ll„„(D„(A)D'(A)F'—2dc"'d'„,(A)]A"'.
e 22"(D(A )D' (A))"2'],),

where now the metric is -5„„.
%e shall label the square-bracketed differential

operator in Eq. (50), G';„(x). The functional in-
tegral over A', is then formally equal to

det[G'„'„(x)5'(x -y)] '~', (51)

. where we have assumed that the eigenvalues of
G'„'„are positive definite in order for the Gaussian
integral to be well defined. Bather than proceeding
as above, we can examine the integral mode by
mode expanding the fields A"'(x) in a basis which
diagonalizes G'~„. Since G"„ is a differential op-
erator, it is not diagonal in coordinate space. As
we shall see, in order to show the equivalence of

to a sum over zero-point energies, w e need
G'„„ to be diagonal in frequency space. To effect
this we shall restrict 2;(x) and later we will ex-
amine to what extent this restriction can be re-
laxed without affecting the result. Since 1'(A) is
gauge invariant we will use this freedom to put
A' in the temporal gauge, A;= 0. (This still leaves
us the freedom to make an additional time-inde-
pendent gauge transformation. ) Now we will re-
strict A;(x) to be static. This is a genuine con-
straint, but it is not very severe since our pur-

, pose is to find field configurations of lowest en-

I

ergy and in many cases this can be assumed to
be static. (Jackiw and Hossi" have demonstrated
the existence of time-dependent classical solu-
tions which give rise to lower energies than cer-
tain "gyroscopically" stable static configurations
in the classical theory with sources. It is still
presumed, however, even in that theory, that the
lowest energy field configurations would still be
static. This has been shown in the work of Si-
kivie and Weiss" and Magg. ") With this restric-
tion G~„'„ takes the form

G"=-5 5"s ' u" ( ).gv gv 4 gv (52)

A' = Qf ' C'„„(2,)e'"*2.(e), (53)

where n may be either a discrete or continuous

Now by a similarity transformation let us dia-
gonalize G'„'„ in I,orentz space and group space.
This is a bit tricky (since G is also a differential
operator) and has only been done for a countable
set of external fieM configurations, among which
are constant fields and plane waves. '0 Assuming
that G is still in the form of Eq. (52), we now ex-
pand A'„(x) is normalized eigenfunctions X„(x) of
the differential operator G:
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variable (or both). Then

gbcgvc &
(5 6bck 2+ /bc )Qcceib&c~ (X)gV .//2 gv 4 nb gv tl

n
(54)

where /{ is diagonal in i,orentz and group indices. Then the integral over A„ in Eq. (50) becomes

dC exp —— C"' Q, 5 5"&,'~~" 5,~ & —&' C"„' p,' =pg'det g 5"p '+A."
nb ttt

(55)

where R' has been defined to include any field-in-
dependent constant in the transformation from
A' (x) —C' „(k,). Exponentiating the determinant,
we find that Eq. (50) becomes

I', (A)=Nb Tr6 „5(k, —k,')

x [-,
' In(5„„5"k,2+/" )

—ln(5„„5 'k, '+ Ab„'„„)], (56)

where the second term in the square brackets
comes from the ghost part of the exponential and
is of opposite sign (or power) because of the anti-
symmetry of the (t)' fields. The extra factor of
2 arises from an integration over both the real
and imaginary parts of (t)'. The determinant in
Eq. (55) has as its argument terms proportional
to the unit operator 5„„5(k,—k,'), which have been
slipped through the logarithms above. Now taking
the trace, we set m =n, p= v, b=c, let 44'-k4,
and sum over these diagonal elements. Let us
now evaluate the integral over k4 for one of these
terms. Following the procedure in Salam and

Strathdee, ' we let

1V dk4 ln k4'+ ~„

)tf1 (A )

drab! dk, , In(k, 2+ A,„'), (57)

where the limits of integration have been set to
absorb the normalization', i.e. , N is defined so
that lim-„, l",(A)=0. Performing the differentia-
tion, we have

dk4
d~„'

In assuming that the eigenvalues of 0 are positive
definite, we note that ~„' must also be positive
definite. (When k, = 0, the eigenvalues of G are
equal to &.) In this case, the above integral re-
duces to

J
Xff(A) I y

+

d&' — tan ' —4d c(],, )[/2 ta"
X„(O) n

= 2v([X„(A)]'/' —[X (0)]'/2). (59)

Therefore, Eq. (56) reduces to

1 1d7-= lim — d7 e'"4-"4"
27T y& ~ y 27t

4 4

= lim 5(k,' —k,). (61)
44~ 04

Now writing F,(A) = JdzL, (A), we note that the
first term in I, looks like the change in the zero-
point energy of the theory due to the presence of
the external field A. To see that v& is an energy,
continue the operator G'„'„(A) back to Minkowski
space where it is equivalent to the inverse prop-
agator. If we examine its- decomposition into
normal modes, Eq. (56), we note that in Minkow-
ski space the zeros of the energy transform
(poles in the propagator) occur for k, '= &. There-
fore, the [X(A)]'/2 are just vector particle energy
eigenvalues.

The second term in Eq. (60) is the contribution
from the ghost determinant. It is of the same
form as the first term and will be seen in specific
examples to cancel the contribution from any un-
physical degrees of freedom.

Continuing back to Minkowski. space via Eq. (49),
we now get

&,(&)= fcii Q —({-[&' (&)I"-[&' (())]"]
n~gbb

2([/ib (A)]~/2

-[/" (o)] '}) (62)

Therefore, the one-loop correction to the effective
Lagrangian is the negative of the change in zero-
point energy in the presence of an external field
A'„, where A;= 0 and A;(x) =A;(x). For this field
configuration the electric field E,'(x) = 0, and thus
the kinetic energy is zero. Therefore, the La-
grangian is minus the potential energy, so that
the one-loop contribution to the energy is just the
change in zero-point energy. This agrees with

I', (A)=f devil p —„({[z'„(A)]'i'—[9 (0)]'i']
Ab /l bb

2([/ib (A)]I/2 [/ib (0)]y/2j)

(60)

where a single index on ~ implies a diagonal ele-
ment and where
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our intuition, since in the presence of an external
field, the zero-point energy has changed. We
have, naively, normalized the energy for A'„= 0
by neglecting the zero-point energy (normal or-
dering). In the presence of an external field,
the zero-point energy is now changed, and since
zero-point energy is a quantum phenomenon, this
change should appear in the first quantum cor-
rection to the energy. Another way of stating the
same time thing is that due to the initial (A = 0)
normal ordering of the theory, the change in zero-
point energy shows up at the one-loop order as
zero-point fluctuations around the original zero-
point energy. This is analogous to the argument
given by Coleman of a particle sitting at the min-
imum of a potential. To get the first quantum cor-
rection to the energy, we approximate the poten-
tial by a harmonic oscillator and add the zero-
point energy of the oscillator. This interpretation
is also similar to one implicit in the work of Wein-
berg" in calculating higher-order corrections to
theories at finite temperatures.

We may now ask what happens for E,'-& 0. For
time-dependent configurations which are not gauge
equivalent to the previous case, our simple result
clearly does not follow. We cannot separate out
the k4 dependence as needed. These configurations
correspond to excited states of our system and

the generalization of the discussion in the last
pa, ragraph would thus be more complicated. See
Ref. 51 for an interpretation of I' for time-depen-
dent external field configurations.

For configurations in which A44 0, but A' is
still static, there would only be an addition to
Eg. (54) linear in k, . We could then complete the

square and change -variables to regain a formula.
similar to Eq. (54). It appears that the Euclidean
one-loop effective action would resemble Eg. (60)
with appropriate A; dependence. This linear term
in k, is similar in structure to a gyroscopic term
in the sense of Ref. 47. For this situation the
transition from I'~ to 1 is not as straightforward
since we must consider the A.; (or A;) dependence.
Also since E;'& 0, the Lagrangian is not equal to
minus. the energy. It may still be argued, how-

A" = -By,
so that from Eq. (45)

8"=5' 5 B

(64)

(65)

i.e. , B"points in the third direction in both space
and color space. Then define

Tbc—

0

and Eg. (56) becomes (again in Euclidean space)

I'., (A) =Nb Tr6(k,' —k, )5(k~ -k, )6(k~ k )5

(- in{6 [6 '(k '+ k ')

+ (2n+ 1)g(T')"'BJ+ 2gS „,T"Bj
—1n6 [6"(k,'+ k ')+ (2ny 1)g(T')~~B]) .

(6"I )

Upon taking the trace, we find that the ghost term
cancels with the two terms corresponding to the
zero eigenvalues of 8,„, leaving

ever, that the Euclidean Lagrangian is equal to
an effective energy (see Sec. IV) and therefore,
we should still be able to use our zero-point-en-
er gy interpretation for such "gyroscopic" conf ig-
urations.

When A'„(x) represents a constant color magnetic
field we may take

A'„(x)= 5"A (x), (63)

i.e. , A (x) points in the third direction in color
space. [Here we are taking A; to be in the adjofnt
representation of the gauge group SU(2). ] Also let

A'=A'=A'= 0

I',(A)=N- drdxdr g ' " 2(ln[k'+ k, + (2n+ 3)gB]+ ln[k + k, + (2n —1)gBj.dk4 dk. dk„

n

(68)

Notice the integral over dk„. Since the integrand
is independent of k„, this is analogous to a zero-
eigenvalue problem. This reflects a symmetry of
the theory that we have overlooked. Instead of
integrating over k„we can put our problem in a
box." The sum over n above comes from the
sum over the energy eigenvalues of a linear har-

I

monic oscillator in the y direction of the form

P,'+ (gB)'(y + y.)', (69)

y0=P„/gB . (70)

herefore, in integrating over k„, we are summing
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If gaf „, g dk, kd

x 2(ln[k, '+ k, '+ (2n+ 3)gB]

+ ln[k, '+ k, '+ (2n —1)gB]). (71)

over all possible locations of the origin of the os-
cillator. If me put our system in a box of length

, then 0&y, &L, or 0&P„&gBL,. Therefore, the
integral over k„should just give gBL, . If we
write L, as Jdy, then

Now note that, for n= 0 and k, '+ k,~&gB, the sec-
ond logarithm has a negative argument. This
traces back to the existence of negative eigen-
values for the operator G~„'„, and hence the Eucli-
dean formulation of the theory is ill defined. We
will, for the moment, naively proceed with our
analysis, overlooking this problem, but we mill
return to it in the following section. If we do so,
then in analogy to E[I. (62) we would get in Min-
kowski space

8&(A)= — d'x F— ' [2[(.—'+(2 + B)pa['&' + 2[(.',*+ (2n —()gB("*[-—[2(k. ( ~ + 2((:,*)'~*(). (72[
n

Therefore, we have our result for constant mag-
netic field B. We can easily see the source of the
imaginary part of I'. For z = 0 and Q &gB, the
second term above mill be imaginary. Thus by
writing the effective action as a sum over zero-
point energies, we can readily distinguish the
real and the imaginary parts. We should note,
however, that some of the steps used in the above
derivation are in fact ill defined for these im-
aginary energy field modes.

In the next section we will examine these field
modes carefully and give an indication of when the
one-loop approximation is still sensible. We will
also investigate the interpretation of the imaginary
part of the effective action and we will indicate
the circumstances for which it may be useful in
discussing local stability.

IV. NEGATIVE EIGENVALUES AND INSTABILITY

The imaginary part of the one-loop term of the
effective action in the presence of a constant color
magnetic field was first noted by Nielsen and
Olesen" as due to the anomalous magnetic mo-
ment of the gluon [2'"'E',„(A) in E[I. (44)]. The
result was implicit, however, in earlier works, "
where the energy eigenvalues for vector fields
with anomalous magnetic moments and electric
quadrupole moments mere determined. This work
was then specialized to non-Abelian gauge theory
and tachyonic states were noted. " An instability
in the presence of a constant color magnetic field
has also been pointed out in the classical theory
by Chang, Weiss, and Sikivie, "'"and more re-
cently by Cosenza and Neri. The precise re-
lationship between the classical instability and
the imaginary part of the effective action at the
one-loop (semiclassical) level has not been pointed
out. In this section, me shall investigate the neg-
ative eigenvalue modes and in doing so will show
that a relationship does indeed exist between the

dC exp[+ —,'C(gB —k, ' —k, ')C]- ~,
~ eo

(73)

where we have suppressed indices. These are
just the modes for which, in the second term of
E[l. (68), n = 0. For k, '+ k, '&gB, the integral
above is, clearly infinite, and thus the Euclidean
functional integral diverges. This does not mean
that the theory is ill defined since we are only
looking at the loop approximation. It does appear,
however, that the loop approximation is invalid
in the case of a constant color magnetic field.
Let us be more careful and see if there is any in-
formation that we may salvage.

Imagine a theory such that

kexp 2+k ~ 4k ~ k +~~k

(74)

If this integral is expanded around Q = $0 ——0, then
to quadratic order, when m'& 0', we will have
the same form as E[l. (73), i.e. , a tachyon [nega-
tive (mass)'] is present. Here we are expanding

I

classical and semiclassical instabilities. We
shall evaluate the validity of the one-loop approxi-
mation in the presence of negative eigenvalues and
demonstrate how to "regularize" the functional in-
tegral in order to calculate the imaginary part.
In this context, we can then give a physical inter-
pretation of the imaginary part and connect this
interpretation to that of imaginary effective po-
tentials in the context of nucleation" or the "de-
cay of the false vacuum"'"" and pair production
in constant electric fields. '

As noted after E[I. (Vl), there exists negative
eigenvalues for the operator 0",„ in the presence
of a constant color magnetic field. It can be
shown that these are just due to the anomalous
magnetic moment of the gluon, as noted above.
The Euclidean functional integral, E[I. (55), for
these modes will look, mode by mode, like
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R=~mm+ V(Q)+Gag. (75)

For the case G = 0 (no gyroscopic terms), if we
expand K around static solutions of Hamilton's
equations:

~ . MC =0ci
«cl

then

around a maximum rather than a minimum of the
potential (see Fig. I). Clearly, a better approxi-
mation is to expand around one of the two sym-
metric minima. For the gauge-theory problem,
we cannot solve fomthe minima, but the existence
of negative eigenvalues indicates that we are ex-
panding about a "bad" field configuration. Note
that an expansion about Q = 0 in Fig. I is also
classically unstable.

In a classical analysis, we demand for stability
that we expand around a field configuration which
minimizes the energy, unless, as shown by
Jackiw and Hossi, " there exist gyroscopic terms
in the Hamiltonian. Let

or (79)

To calculate the one-loop term we expand Z~
around static solutions of the classical Euclidean
equations of motion:

(80)

Explicitly

and the quadratic term becomes

O'Z~
0 ~

Therefore, for the theory to be well defined, we
demand positivity of the eigenvalues of the above
kernel, i.e.,

69C 5X 5 V
5m' ' 5Q' 5Q'

~ci ~ci

&(0)=-. —
~

+G4 —-V(4)i s0'l'
st~ Bt

If we again specialize to the case G = 0, then

V(4) = V(0) .

To go to the Euclidean formulation let

(78)

FIG. 1. Quartic potential V(P) with a negative mass
squired versus Q.

For minimality we require that (O'V/5Q')
~

~ & 0.
Now, in the Euclidean formulation of the func-

tional integral, the argument of the exponential,
modulo gauge-fixing terms and ghosts, is equal to
minus the Euclidean action. The general struc-
ture of the Lagrangian density is

(8l)
5(fP g sv' 5Q

Now, under the assumption that we may separately
diagonalize the two terms above, the first term
will always be positive semidefinite. Now from
Eqs. (80) and (76), P,&= Ps. If our theory is class-
ically stable, (O'V/5Q') [ ~„&0, then it will also give
rise to positive eigenvalues at the one-loop level.
Also, if we have negative eigenvalues, (O'V/5$')~@
& 0, then the theory must be classically unstable.
Note that it is possible to be classically unstable
and still have positive eigenvalues.

There are two apparent exceptions to these con-
clusions. The first occurs in the theory of meta, -
sta, bility due to Langer ' and Callan and Coleman. "
In this case we may expand the theory locally
around a minimum of the potential, but quantum

tunneling renders the theory unstable. However,
the quantum-tunneling amplitude is.a nonpertur-
bative, Euclidean time-dependent effect while our
analysis is for static, perturbative fields.

The second exception occurs in the work of
Coleman and Weinberg" when considering theories
with two coupling constants. In this case the one-
loop effects due to one coupling may be of the same
ma. gnitude as the tree terms due to the other coupl-
ing. Thus, a minimum of the classical potential
may turn into a local maximum when one-loop
effects are included. In this case then, there is a
gray. area in the distinction between classical
and semiclassical approximations, for which we

may consider an effective classical theory which
does not encounter this problem.
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For gauge theories things are not quite so sim-
ple. To go to Euclidean space t - -i v and Ap-
—iA4. If we expand around a configuration in
which A.4 10, then there are gyroscopic terms
present. It can be shown, however, (see the Ap-
pendix) that the above analysis does follow, at
least in the case when we expand about static so-
lutions for which A, =0. With the presence of
gyroscopic terms, the above statements do not
hold. However, in this situation classical sta-
bility does not necessitate minimality. 4' It is
therefore suggestive even in this case that there
may be a relationship between classical stability
and semiclassical stability.

Having made this connection, we find it clear
that the existence of negative eigenvalues as in
Eq. (73) leads immediately to the conclusion that
the theory is also classically unstable as illus-
trated by Sikivie, Weiss, and Chang for the con-
stant magnetic field.""

Let us return to the problem of dealing with the
negative eigenvalues. Equation (74) has been
written as a product of integrals. Each integral
is equal to the area under one of the curves in
Fig. 2. The quadratic approximation can be pic-
tured as the product of the areas under the curves
in Fig. 3. For values of k'& m', the curves are
Gaussian and the area is finite. For I)' & m' (the
top set of curves in Fig. 3), the area under each
curve diverges.

Now, if we interpret the existence of the nega-
tive eigenvalues as indicating an instability of the
theory when expanded around a bad field configu-
ration, can the quadratic approximation tell us
anything more about the nature of this instability?
Imagine that we have two different theories, , char-
acterized by the solid curves in Fig. 4. If in each
case we expand about a configuration correspond-
ing to the local minimum of the integrand of Eq.
(74) with k =0 (corresponding to minima in Fig.
4), then our theory is more unstable (we have
farther to fall) for curve II than for curve I, where
m» & mz . We would like to somehow "regularize"
the functional integral over the negative eigenvalue
modes in order to gain some information about the
degree of instability.

exp, '—
y [(k —m ) $

FIG. 3. Quadratic approximations to the integrands
which appear in Fig. 2.

If we formulate the functional integral in Min-
kowski space, rather than in Euclidean space, then
it is necessary to regularize the theory by taking
the prescription of adding an infinitesimal term
imp' to the Lagrangian density in such a way as to
ensure causal boundary conditions. ' It turns out
that this procedure also regularizes the infinities
due to the presence of tachyons in the theory, and
produces an imaginary contribution to l". If we-

continue a nontachyonic theory to Euclidean space,
the ie term is usually dropped, for the theory is
now well defined mathematically. However, in the
presence of tachyonic modes, the loop approxima-
tion breaks down. We would like to define some
alternative "regularization" for the tachyonic
modes which would reproduce the imaginary part
of I'. The advantage of doing so in Euclidean
space will be to help us better understand the phy-
sical meaning of the imaginary contribution.

Iri the work due to Callan and Coleman on the
decay of the false vacuum"'~' and in the work
due to Langer" on nucleation, a similar problem
arises. There, the expansion around the metast-
able minimum gives a real contribution. They are
also interested in calculating a nonperturbative
quantum-mechanical correction due to the possi-
bility of quantum tunneling to the lower vacuum
configuration. To this effect they expand the in-
tegral around the Euclidean "bounce" finite-action

exp[- e' (-m'y'+ ky')]
———[exp+ e(mes )]

exp[- z' (keg„—m $k+ krak)]

FIG. 2. Integrand of minus the Euclidean action ver-
sus the field modes ft)& for various values of k .

FIG. 4. Solid lines are the Euclidean functional inte-
grand for k = 0 versus the field modes Q for ~zz&m'I.
Dashed lines are the quadratic approximation to the
solid lines wh re ~II ~II ~I ~I-
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exp[-
& (m P +kg )] exp[- 2 (-m $ + ) $ )]

FIG. 5. (a) Euclidean functional integrand for k = 0
and positive mass squared in the complex field-mode
plane. (b) Same as in (a) except for negative mass
squared.

solution to the classical equations. They also en-
counter negative eigenvalues due to an expansion
around. a maximum of the action, although not a
maximum of the potential. In order to regularize
these theories, they refer to another well-defined
theory such that the analytic continuation of some
parameter gives the physical theory. Thus to
calculate a contribution due to the negative eigen-
value, they write down a steepest descent integral
in the well-defined theory and, as they analytically
continue to the physical theory, they also analyti-
cally continue both the path of integration and the
boundary conditions into the complex field plane
in such a way as to keep the theory well defined.

. This just corresponds to picking the "paths of
steepest descent. " The ad hoc feature of this pro-
cedure is that, to keep the theory finite, the bound-
ary conditions are also continued, so that in effect
we are computing a different functional integral
and hence have regularized the theory. The justi-
fication in this case comes from the physical sys-
tem. We are expanding around a metastable state
and the imaginary part computed should represent
the decay rate for this state. In fact, for a few
examples taken from quantum mechanics, the de-
cay rates calculated in this way agree with those
calculated from more conventional methods. There
ls howevers no justification that this pl'ocedule
and interpretation are correct in general. With
the hope that this mathematical procedure does
have some general physical significance, we will
apply it to our problem.

First we shall discussour sampletheory, E(l. (74)
with k =0. If we write down the Lagrangian fora Q
theory wit hm' & 0', then the tachyonic theory can
be obtained by continuing +m' to —rn'. The theory
with +m' has a saddle point at the origin in (t) space
and has two other saddle points along the imagi-
nary axis in &f& space [see Fig. 5(a)]. The saddle
point at the origin is a maximum of the integrand
along the real axis and hence the quadratic inte-
gral is well defined. Those saddle points on the
imaginary axis are higher maxima. Thus if we ro-
tate the complex plane, as in Fig. 5(b), we will re-

produce the double humps in Figs. 2 and 4. Our
procedure then is to rotate the contour as we ro-
tate in the complex plane so as to always remain
on the path of steepest descent from the saddle
point. Now depending on how we rotate our con-
tour we will either go up or down the imaginary
axis. There are a number of ways in which to
decide. If we keep the choice arbitrary, then at the
end of the calculation, conservation of probability
(unitarity) will demand a definite sign for the cal-
culated imaginary pa, tt. A'ternatively, we may
keep the imp' contribution to the Lagrangian in
Minkowski space and, upon doing our calculations
in Euclidean space, the pole structure of the ne-
gative eigenvalue contributions wiQ be determined
by the sign of e. In regard to this question we
have also found that instead of making the con-
tinuation noted above, we can rotate P- e" 'p so
that, keeping the is g' contribution, the integrand
changes:

exp (~)(, ) Q'+ ieQ')- exp (i~X[Q' —e @').

This integrand is identical to the type we would
have if we had formulated the theory in Minkowski
space. If p- e '"~4g, then the e contribution would

diverge. For the present we shall proceed as
first mentioned and we will decide the direction of
rotation by demanding unitarity.

Therefore, we shall write these negative eigen-
value contributions as

+$00 m

dP» exp ——,
'

dk P» (k' - m') Q»
m

d ~ exp —p&~
' —k' ~' 82

~ oo

which gives a finite imaginary result.
A few comments are in order. In the theory of

nucleation there is an extra factor of —,'. In that
problem we integrate over all of function. space
up to the negative eigenvalue mode and then deform
the contour to go over only half .of the Gaussian.
In our case there is no metastable region. We ex-
pand around a local maximum of the potential.
Hence, for the integral to remain well defined, we
must integrate over the whole Gaussian.

Second, the contribution calculated by Callan and
Coleman is of exponentially small order and, as
already noted, has a nonperturbative origin, while
our calculation is done in perturbation theory.

Third, in the metastable case some physical
argument in terms of quantum tunneling can be
given for performing such a continuation. In our
case, expanding about a local maximum, no such
argument exists. Our problem is more in analogy
with Schwinger's calculation of an amplitude for
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pair production in the presence of a constant elec-
tri.c field, although his definition of the effective
action does not involve path integrals. ' We will
therefore perform the analytic continuation in
analogy with the theory of metastability, study
our result, and finally compare it with that of
Schwinger.

First let us examine the expression we get upon
performing our analytic continuation to see if it
contains the information we desire. For the case
of our sample theory, the two inverted Gaussians
(dashed lines) in Fig. 4 are replaced in the analy-
tic continuation by the solid curves in Fig. 6,
where the integrand (now imaginary) is plotted
versus the continued kIk axis. Since $=0 is a
saddle point in the complex plane, and a minimum
along the real axis, it is a maximum along the
imaginary axis. If m z' & m,', then the k =0 curve
for II blows up faster along the real axis, but falls
off faster along the imaginary axis than the k =0
curve for I. Equation (82) is equal to the product
of the (imaginary) areas under the solid curves,
above and including the solid line in Fig. 6. It
appears then that the contribution from the theory
with the larger tachyon mass mz will give a larger
contribution. than the theory with the smaller mass
m&. However, what is of primary interest is a
calculation of I'~ which is proportional to the
logarithm of the functional integral. As mentioned
in Sec. III, the logarithm of Eq. (82) is

J
m m

dk in[~ s(~'- k')-'~2] =--' dk in(k' —~2)

(83)

Thus our analytic continuation has produced a real
and an imaginary contribution to I'~, with the ima-
ginary contribution proportional to imam. Thus in
Fig. 6, for m&& the contribution to the imaginary
part is larger due to the larger range of integra-
tion, or the existence of a larger number of tachy-
onic curves above curve II. Thus the imaginary
contribution to the effective action is clearly larger
for larger tachyonic masses, or greater instabili-
ties.

Let us now calculate the real and imaginary con-
tributions of the regularized tachyonic modes in
the constant color magnetic field example. The
term we wish to calculate is

' 21n(k '+ k ' —gB) '~',
2'

where we have rotated w back to Minkowski space.
Now for k,' &gB, the k4 integral is of the form
f+-„dk.ln(k, ' + x') '~' which has already been
evaluated in Sec. III. This leads to a real contri-
bution

4[(k ' - B)'~' - (k;)k~'] .
2 2 7T ~gg 2 7l

For k,'& gB, the k, integral is of the form J'"„dk4
xln(k ' - x') ' ', where x' =gB -k,' &0. For k '
&x', there are still positive eigenvalue contribu-
tions. For k4'&x',

which is just the same form as we get for modes
in which k'&yrP Theref. ore our analytic continua-
tion for the negative eigenvalue modes will repro-
duce the second term in Eq. (Vl) for the case n =0,
for all values of k' = k4'+ k,'. The logarithm in
Eq. (83) can be rewritten as

dk41n +i x' —k4' "'~'

dk4 +im 2+in x'-k4'

(85)

In[+i(m' —k') '~']=*i —+ln(m'-k') '~'. (84}
2

i eXPj-~ j(m —k ) Pk]',

where the + sign is the same as in Eq. (83) and
depends upon which way we rotated the contour for
the functional integral. Therefore, for k,' & gB
we have

awk(kx k')' '+ J dk [lnlk '+k-, ' glkk-
-ln(k '+ k,') '~'].

FIG. 6. Analytic continuation of the functional inte-
2 2grand represented in Fig. 3 for various values of k &nz

where m~L& m~.

The last term in brackets comes from the normali-
zation N. The intergral above vanishes identically.
That is, the real part of the negative eigenvalue
contribution exactly cancels the real contribution
from the positive eigenvalue modes for which k,'
& gB. In analogy to the discussion by Langer, ".
the real part of the effective action in the tachyonic
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sector of the theory as calculated above is the
effective action due to the "metastable" phase. In
Sec. III we interpreted the real part as a change
in the zero-point energy. For k', &gB, the energy
contribution k, = (k,' —gB)'~' is imaginary and
hence only contributes to the imaginary part of I'.
For k,' & 8, however, there is a nonvanishing con-
tribution to the real part.

If we complete the evaluation of the imaginary
part, we find

2A)2
(88)

((0'(o )('= exp
@ r) =ezp(-sr, „4). (Bs)

According to Schwinger's interpretation, ' this is
the probability that no pair creation occurs during
the history of the field.

From Eq. (88), we see that, to conserve proba-
bility, I'; „must be greater than zero. This cor-
responds to letting (I) - e+'" '

g in our analytic
continuation or we have rotated our contour count-
erclockwise.

Note also that to make this connection to
Schwinger's work, it is imperative to be able to
relate the effective action I" to the vacuum generat-
ing functional 8', as was done in Sec II.

As to the imaginary part itself, Schwinger de-
fines 2ImZ as the probability, per unit time, per
unit volume, of a pair being created by the exter-
nal field. There are thus two interpretations of
our calculation. The first is as above, that in the
presence of an external color magnetic field, the
vacuum is unstable and will pair produce. If we
consider Eq. (88), then g'B'/4w is the probability
per unit four-volume of pair production. If this
probability is of order one, the magnetic field
cannot be maintained without radiating. For a
four-volume larger than (g'B') ', we may interpret
our result as meaning that it would be impossible to
maintain a constant magnetic field at all. In a
smaller four-volume, the contribution of the nega-
tive eigenvalues decreases, in agreement with the
conclusion of Chang and Weiss'4 that the classical

Note that the contribution to the imaginary part
of the effective Lagrangi. an density is finite as it
stands, i.e., before we renormalize the ultraviolet
divergence of the theory. This is in keeping with
the relationship of the instability to the classical
analysis. To choose the sign of the imaginary
part, we consider the vacuum generating functional
W(J). In the absence of a source, as shown in
Eqs. (21) and (24), we can simply relate I' and W:

(87)

so that

unstable mode will not exist in a length L smaller
than(gB) ' '. In a classical stability analysis, they
find that the classical unstable modes fall off ex-
ponentially in space. They define a three-volume-
per-unit unstable mode proportional to (gB) ' '.
Chang and Weiss make the analogy between ~gB L
and the Reynolds number in fluid mechanics. This
is also reminiscent of the quantum fluid model of
Nielsen, Olesen, and Ambjorn. "" Perhaps the
QCD vacuum is composed of "pockets" of constant
magnetic field of size L & (gB) '~'.

The second interpretation of the calculation is
that we are trying to approximate the effective
action for the case of no external fields but that,
under the assumption of a spontaneously generated
constant magnetic field, our theory is unstable.
In this regard note that for E =0, the effective
Hamiltonian density equals minus the effective
Lagrangian density. The effective Hamiltonian
thus has an imaginary part, indicating that the
state we are studying is not to be found in our
Hilbert space and is unstable. " From our dis-
cussion about the source of the instability as due
to the expansion about a local maximum, it is
interpreted that for small values of the imaginary
part, the real part of I" per unit time may still be
a fair approximation to the energy functional.
This is also in agreement with the discussion of
Refs. 27-31, for the presumed minimum of the
renormalization-group improved eff ective action
occurs for small values of the magnetic field.

V. DISCUSSION AND SUMMARY

We have derived the gauge-invariant effective-
action functional of 't Hooft" from a formulation of
the vacuum-to-vacuum transition amplitude in the
background;field gauge. Thus the definition of the
gauge-invariant effective action for non-Abelian
gauge theories is made consistent with the defini-
tion for nongauge theories. Also, this connection
allows us to utilize Schwinger's interpretation of
the imaginary part of the Lagrangian density in
the absence of sources. ' Further, we have expli-
citly demonstrated the gauge-invariance properties
of the effective action and, noting this, have been
able to justify the hypothesis of Nielsen and Ole-
sen" that the unrenormalized one-loop approxima-
tion for the effective action, in the presence of an
external field, can be written as minus the change
in the zero-point energy of the theory due to the
presence of an external field. We have justified
this result for the case when the external field
is static and A", =0, although we suggest that it
may be extended to A. ;4 0. In particular, we justi-
ty the use of this hypothesis for the case of a con-
stant color magnetic field, at least for modes for
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which the functional integral is well defined (no
negative eigenvalues in the Euclidean-space form-
ulation). We have also noted that the physical field
in 't Hooft's definition is not the customary vacuum
expectation of the quantum field, but differs by the
expectation value of the quantum field relative to
a new "shifted" vacuum.

We have studied the "semiclassical" stability
of sample theories by formulating the functional
integral in Euclidean space and noting the exis-
tence of negative eigenvalues when negative mass
squared terms are present in the Euclidean action.
By examining the Euclidean formulation of the
theory, we have been able to compare the "quantum
instability" to instabilities arising in a classical
analysis. In this regard, we have been able to
explicitly demonstrate the equivalence of certain
classical and quantum-mechanical stabilities and
instabilities and, for example, have been able to
equate the classical instability of the constant
color magnetic field demonstrated by Sikivie"
and Chang and Weiss, ~ to the quantum instability
noted by Nielsen and Olesen, "Yildiz and Cox,"
and Falomir and Schaposnik. "

As for the evaluation of the effective action when

negative eigenvalues are present, we have referred
to the prescription of Callan and Coleman in the
decay of the false vacuum" and have regularized
the negative eigenvalue modes by analytically
continuing the functional integral into the complex
field plane, where the direction of rotation is de-
termined by demanding causal boundary conditions,
as in the Minkowski-space formulation, or by de-
manding unitarity. This apparently ad hoc pro-
cedure reproduces the results of calculating the
real and imaginary parts of the effective action in
Minkowski space. This procedure resembles that
of "Wick rotating" ordinary integrals and although
the analogy is not complete, the equivalence of
the Minkowski-space calculation encourages us to
speculate that there is perhaps some deeper math-
ematical meaning to the analytic continuation and

perhaps some kind of formal functional Wick rota-
tion may indeed be formulated.

We have calculated the imaginary part of the
effective action for the case of the constant magne-
tic field and have connected its interpretation to
that of pair production in a constant electric field,
thereby showing agreement with Chang and Weiss'~
on the existence of a minimal "length" for the un-
stable mode. We have also shown agreement for
the constant magnetic field case with the interpre-
tation of Nielsen and Olesen" that the imaginary
part represents an imaginary energy density and
hence the existence of lower-energy stable con-
figurations.

By calculating the one-loop term as the change
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APPENDIX: COMPARISON OF CLASSICAL
MINIMALITY AND POSITIVE DEFINITENESS

OF THE ONE-LOOP EIGENVALUES
FOR YANG-MILLS FIELDS

The classical Hamiltonian is

K=2 dx Eg + &';' (Al)

We wish to study the sufficient stability criterion
of minimizing the energy H, subject to the con-
straint of Gauss's law.'

V ~ E' —gc' 'A ~ E'=0 (A2),

Following a derivation by Jackiw and Rossi, "we
therefore extremize Eq. (A1) subject to Eq. (A2)
by introducing the Lagrange multiplier A;. Mak-
ing the ansatz that the minimal configuration is
static, we have

in the zero-point energy of the theory, we can
easily separate the real and imaginary parts of
the effective action. Our procedure of analytically
rotating the field contour in Euclidean space re-
produces the naive calculation obtained by ignoring
the existence of negative eigenvalues and demon-
strates that the imaginary part is a sum over zero-
point energies which are totally imaginary. It
should be noted that the imaginary part of the ef-
fective Lagrangian density is finite and does not
suffer from the ultraviolet divergences which oc-
cur for all of the other momentum integrations.

In most of this work we have neglected the re-
normalization of physical parameters needed to
regulate the above-mentioned divergences. Many
renormalization schemes can be found in the lit-
erature and the renormalization for the case of
the constant magnetic field is shown in Refs. 16,
18, and 22. Premature renormalization, though,
can obscure the essential simplicity of the one-
loop approximation as a change in the zero-point
energy.
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BEfa gg .

=0 = = 6f,jk g ga &abc &' kgb +c
8 t aA'z

(AS)
8A" 5h /

= 0 = = E"+ V'A. ' -gc' 'A' A. '
8 t 6E' 0 0&

i

where 5 is the constrained-energy density. The
second variation of the constrained energy gives

gg
g ~cg+a gA cgEa 8 Oyj

Thus

Gca (D Dn)ca ( DnDn) ca

which is positive semidefinite while

Q = Q a = 2g-CcbaIi b = 2gcc 'E'i4 4j

and

G ca 5 ( D nDn)ac 2g c&a ~&lJ $j

1 5'(E ')' 1 5'(B')'

(Aa)

(A9)

5E'5E (A4)

d4x Ea ' —Ba (A6)

with E'; and B', as defined in E. q. (45). In Euclidean
space

52@ 1 52 (Bb)2

OA,'. eA, 2 SA',.OA,

k~6%~ Dcb Dba 6 k~ C
ba ~bk'

The first term above is of a gyroscopic nature and
leads to the complications noted in Ref. 47.

Now we also expand the action to second order
around a static solution of the classical equations
of motion in Euclidean spac e. The action is

(Alo)

In general, the comparison with classical mini-
mality is complicated. Classically we have a
gyroscopic term, and quantum mechanically there
are cross terms between A4 and A', lf we restrict
ourselves to the gauge choice A.;=0, however,
things simplify. The classical analysis reduces to

52 (gp)2

gA cgA a

and positive definiteness of the one-loop eigen-
values requires only that

dx E;''+ B,' (A6)

where now E',. = F;', . If we expand around static
solutions of (5S~/5A&)„—=0, then the quadratic ap-
proximation to be functional integral has as its
integrand the exponential of

1 Pc
gApcgAP a

G" = 5p, (D„D")"—2gc"as'„„. (A7)

——(D„D,)" A" + ghost terms.
Q A

The ghost term always has positive-definite eigen-
values. The second term is the gauge-fixing term
in the covariant background-field gauge, and all
terms in the brackets are evaluated at the static
classical field A&. Therefore, we desire that the
bracketed operator is positive definite. Call this
operator G'„'„. We have already shown [see Eq.
(50)] that in the gauge n =1 we have

The first term in the latter expression is positive
semidefinite. The second term is the same as in
the classical expression, while the third is the
gauge-fixing term. To compare with the classical
case, let us use the remaining time-independent
gauge freedom to fix the classical fluctuations with
D' (A. ) 5A "= 0. Now in the expansion of the con-
strained Hamiltonian there are terms such as
—,
' (5A") (5'b/5A "5Ai')„- 5A". If we use the above
gauge choice, we may add a term 5A"[D;(A)D;(A)]"
& 6A" to the above expression so that

(52@/5Aic5Aia) &

[ 5(
2bB) 2/5iAc 5Aja]

—(D,D, )- & o. . .

Comparing this to the one-loop expression, we

conclude that classical stability again demands

quantum stability and quantum instability demands

classical instability (modulo exceptions mentioned

in Sec. IV).
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