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A variational method similar to the one used for the Ising model is applied to the Hamiltonian Z(2) lattice gauge
theory in three dimensions. It is shown that the proposal of a gauge-invariant ground state leads to a transition in
the Wilson loop integral from the area to the perimeter behavior for a value of the coupling constant close to the
symmetry point predicted by'self-duality, The discontinuity which appears in the variational parameter gives strong
evidence in favor of the first-order nature of the transition in contrast to what occurs for the two-dimensional model.

I. INTRODUCTION

The Z(N) gauge models, the center of the SU(&)
theories, seem to be crucial for the quark-con-
finement problem. ' They are also of great inter-
est for being the simplest gauge theories obtained
from the well-known Ising model, ' and are con-
nected with spin-glass models' and the two-di-
mensional melting theory. '

'The Ising models show second-order phase
transitions characterized by the appearance of a
nonvanishing local order parameter, the magnet-
ization. The properties of both phases can be
described in the Hamiltonian formalism by per-
turbative calculations starting from the extreme
ground states. ' The actual values of the critical
coupling constant may be obtained using the re-
normalization group through different versions
of block-spin techniques. ' The general features
of the phase transition, though with less accurate
values of the critical parameters, can also be
obtained with simpler variational methods of the
mean-field type. '

Going to the lattice gauge theories, mean-field
arguments suggest the existence of first-. order
transitions' based on the abrupt appearance of a
local order parameter. However, the proof that
the ground state of a gauge theory must be gauge
invariant' forbids the existence of nonvanishing
expectation values of gauge-dependent operators.
It is therefore necessary to consider a nonlocal
gauge-invariant order parameter, i.e. , the Wilson
loop integral. " Again, perturbative calculations
show the existence of two phases characterized
by the loop-area or loop-perimeter behavior. '

The requirement of gauge invariance of the
ground state considerably complicates the block-
spin calculations. Using these techniques the
Hamiltonian Z(2) gauge model in two spatia. l di-
mensions has been analyzed" showing a second-
order phase transition, as expected since this mo-
del is dual to the Ising model with transverse field

in two dimensions.
Regarding the Z(2) model in three spa, tial di-

mensions, Monte Carlo calculations" have indi-
cated the appearance of features characteristic of
first-order transitions, which disappear in the
two-dimensional model. In contrast a renormal-
ization-group method" for the Hamiltonian model
shows for the three-dimensional case a second-
order transition too. The same result emerges
from the renormalization-group treatment in the
Lagrangian formalism. "

The purpose of this work is to analyze the Ham-
iltonian Z(2) gauge model in three spatial dimen-
sions using the simplest technique to demonstrate
the features of the phase transition, i.e. , a varia-
tional method of the mean-field type. Though one
cannot expect a very accurate description of the
critical phenomenon, one may hope in this way
to distinguish between a first- and a second-or-
der phase transition.

In Sec. II we recall the properties of this var-
iational method applied to the Hamiltonian Ising
model with transverse field in one spatial di-
mension to show its usefulness in understanding
the phase transition and its limitations regarding
the critical coupling constant compared to the
exact value.

In Sec. III we apply the variational method to
the Z(2) gauge model with the requirement of
gauge invariance of the ground state. Introducing
the Wilson loop integral as a criterion for the
phase characterization it turns out that, exploiting
the self-dual property of Z(2) in three spatial di-
mensions, this nonlocal parameter changes from
an exp(-loop area) to an exp(-loop perimeter)
behavior when the coupling constant 'increases.

Because of numerical complications, it is not
possible to consider exactly a system with a too
large number of sites. Therefore, in Sec. IV
the variational method is expressed in the form
of an analogous classical three-dimensional
Ising model which allows the use of high- and low-
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temperature expansions extrapolated by means
of Pade approximants. It is possible to appreciate
the first-order nature of the transition in the
three-dimensional case through a discontinuity
of the variational parameter which appears when
the coupling constant crosses a value in quite good
agreement with that expected by self-duality.
When the same method is applied to the two-di-
mensional model one may still define a phase
transition but without discontinuity of the varia-
tional parameter consistently with its second-or-
der nature. "

A few concluding remarks are contained in Sec.
V.

H. HAMILTONIAN ISING MODEL IN ONE DIMENSION

We start analyzing this well-known case with
the variational method. 'The Hamiltonian in terms
of Pauli matrices

I 8 ='tT /2
L

i
8 = grcsin 1 /2 ~r

/' / /'

-8

(b)

Fig. 2(b).
The. order parameter is

FIG. 2. Ising variational ground states. (a) Nondegen-
erate state for X«; (b) doubly degenerate state for

2'

H= -g o, (n) —A. g o~(n)os(n+ 1) (1)

is self-dual since, defining according to Fig. 1

o,(n) = o,(n)o, (n+ 1), o, (n) = P o,(m), (2)

we obtain

(4)

03 tl 03 Pl+1, 3
tf

showing that the phase transition must occur at
the symmetry point ~ = 1.

If we make the mean-field assumption that all
spins behave in the same way and write the ground
state as'

0, for X&~

where the upper degenerate state has been taken
for X& &. The critical point occurs at A. = —,

' where
the magnetization is continuous, showing that
the transition is of second order. Comparison of
the variational magnetization with the- perturbative
expression' (o,)„„=1—I/8X' is good for X& 1.

If we now consider the variational method with
the dual variables, defining the ground state of
H, Eq. (3), in terms of an angle 8 as in Eq. (4),
the transition occurs at sin8 = A./2= 1. This means
that the critical point is not uniquely predicted by
the variational method. The second-order char-
acter of the transition is evident because of the
continuity of the variational parameter 8 (or 8)
through the critical point, but the order parameter
expressed in dual variables is nonlocal and reads

the energy

E(8)= (8 ~H~ 8) = -N, (sin8+ A. cos'8)

has two minima: (i) cos8=0, E, = -N, ; (ii) sin8
= I/2A. , E,= N, (X+ I/4X), -where N, is the number
of sites.

For ~&& the second solution is impossible and
the ground state is given by Fig. 2(a). For X& —,

'
the' second solution has lower energy and corres-
ponds to the doubly degenerate ground state of

x—o. x~x o—x
l1 fl rl+q

(i)(v(n)(e)= (i) .Q ir(R) i))
n&n

(sin8)" for && 2

1 for A, &2

which is not correct for finite values of ~ above
the critical point.

III. HAMILTONIAN Z(2) MODEL IN THREE SPATIAL
DIMENSIONS

Defining o, and v, variables at each link of the
cubic lattice of Fig. 3, the Hamiltonian

FIG. 1. Ising one-dimensional lattice. Crosses denote
direct sites and open circles denote dual sites.

H = — a, —X a,v, 03@,
1iass p1aquet tes
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is gauge invariant, i.e. , GHG ' = H with G
= Q ', , o, where the 6 links emerging from a par-
ticular site are included.

In the sector of gauge-invariant states the var-
iables on the vertical links may be chosen 0,=1
and their conjugate momenta o, determined by
the condition G= 1. The model turns out to be
self-dual since defining

~ I+0 P

o&= o~ososo~~ (Ts(1) =,„,o&(2), 0'~(3) = 1,
(xg

as shown in Fig. 3, we may rewrite

H = Hj/&= - Z o, - & Z o,o'Ao, ,
l

(7)

(8)

FlG. 3. Z (2) three-dimensional lattice. Thick solid
links are those affected by gauge transformation on a
direct site. Open circles denote dual sites. Thick dash-
ed lines show direct links involved in the definition of
03 on the dual link represented by a thick dashed-dotted
line [see Eg. (7)]. Links on curve I in plane 1-3 are
involved in the Wilson loop calculation [Eq. (9)]. Dual
links starting from open circles along direction 2 are
affected by Eq. (10).

where I' is the perimeter of the loop 1".
On the other hand the description with dual var-

iables corresponds to applying the dual gauge op-
erator G to

~

8). The variational angle 8 is now
expected to vanish for X- 0 so that in this limit
the interference terms in Eq. (10) tend to dis-
appear leaving as leading contribution

Cr = (sin8)"=exp(A lnsin8), (12)
o

where A is the area enclosed by I',
We shall see in Sec. IV that the variational

~

0)„
is not able to reproduce the area law for small ~
whereas the dual variable state

~

0)~ exhibits the
perimeter behavior for large ~. This better de-
scription of the direct Wilson loop with the dual
variational state can be understood by noticing
that

~

0)~, due to Eq. (7), contains overlap of di-
rect spin states suitable to the study of correla-
tion functions.

can be calculated alternatively either as the ex-
pectation value of the 0, 's along a closed loop,
Eq. (9), or as that of the product of the o, 's cor-
responding to the dual links perpendicular to all
the direct plaquettes contained in the loop I', Eq.
(10). We shall see that each treatment easily de-
scribes one of the phases.

Using the direct variables the gauge-invariant
ground state will be obtained applying the operator
G any number of times on a state

~

8) of the form
of Eq. (4), but with product over all links instead
of sites. For ~-~ one expects 0- 0 so that the
interference terms both in the numerator and de-
nominator of Eq. (9) vanish and

Cr = (cos8) = exp(P lncos8),

where the sum is now on the dual links and pla-
quettes. This result is gauge independent.

Since it has been proved' that the ground state
must be gauge invariant G

~

0)~=
~

0)„we take as
nonlocal order parameter the expectation value of
the gauge-invariant operator given by the product
of o, along a closed loop I' (Wilson loop)

IV. ANALOGY OF THE VARIATIONAL Zt 2)
WITH A CLASSICAL ISING MODEL

Starting from the non-gauge-invariant state

COS 28

sln2 6 (13)

(9)

(10)

Then, as shown in Fig. 3, the order parameter

,(o I o, o, 1 o),

If we use the dual variables we notice that II is
invariant under 6 =+~,(o,o,o',o,) =Q", , o'„where
the six links emerging from a dual site are nor-
mal to the six plaquettes p.

Taking a gauge-invariant ground state G
~

0)„
=

~

0)„we may calculate the order parameter as

(o~o. ' o..~O) x(0~&& '''o ~0)
(ol 0)„(0~0),

we obtain the gauge-invariant state
~

0)~=S
~

8)
with

(14)

,(0~0), g jg (s n8)&'- "'/'
&u ~

= (sjn8pl/ g [ e&u &u2

~&s) l
(15)

~ ~ ~

(1 p G )- & G (&-uq)/2
u 2 S

si tes "s
where p,, are variables defined on the sites and
which may take the values +1. 'Therefore the
norm of the ground state may be written as
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where e '~= sine and 1 and 2 denote the two sites
joined by the link I. Therefore, (0~ 0), is equiva-
lent to the. partition function of a classical three-
dimensional Ising model with the correspondence

E 8) = (e ~i "xi'2 i)
Nr

D-1
+ X(cos 8)'(6, „,« ~), (19)

P-~. X-0 P-O. (16)

In the evaluation of Cr [Eq. (9)] it is necessary
that all the interference terms have the same
value of p, along the loop, i.e. , all the link spins
must be nonf lipped, giving X-0 P-~. A. -~ P-0 (20)

where ( ) indicates the statistical average.
Using the dual variables we have again an equi-

valent classical system of spins p, with the cor-
respondence

5 g e»»~6
g~, g2'f g l

C =(cos8)~{'& ~n ""
~ &s) l

(17)
and the Wilson loop, in the form of Eq. (10), is
given by

(21)
It is clear that for P -~ only the aligned config-
urations will survive and the perimeter law equa-
tion (ll) emerges.

Regarding the calculation of E(8), the plaquette
terms will be analogous to Eq. (17) whereas each
link term will include

Q (sin8)'»»'i Q e~'»»'i'.(0~(& )i ~ 0)i
„(0[0),

S) r

With the number of the links and plaquettes re-
lated by N, /N~=2, 1 for D= 2, 3 dimensions, the
energy per link will be

where the links l, which are inside the loop l",
join the dual classical spins p, , and p™,. For X-0
all the dual spins tend to be aligned, the statistical
average of Eq. (21) tends to 1, and the Wilson
loop shows the area behavior. Since for infinite
lattices self-duality is exact, the energy E(8)
has the same form of Eq. (19) with the replacement
X- I/A. .

'To compute the above expressions we turn now to
approximate methods'6 comparing the three- and
two-dimensional .cases.

(i) Logu temperatur-e expansions. Including up to four spin-flip configurations and letting x = sin 8 we ob-
tain

1+ 2x'-2x + 10x -24x'0+ 84x'2-246x' D= 3

1+ 2x2+ 4x~+ 12x + 24x D = 2
(22)

and similarly with up to three spin flips we obtain

1 —4x' —20x"+ 30x" —140x" D = 3

1-4 '-Ig '-30 ' (23)

to have the same powers in the link and plaquette terms.
With the above expansions Eqs. (22) and (23) we may calculate f(x)= -E(8)/Ni [Eq. (19)]. It is clear that

f(x) will have a, maximum for a small value of x, for A. not too small, the region where the expansions in

Eqs. (22) and (23) are valid.
Regarding the Wilson loop we have

(cos8) [1-P(x'+ 5x")], D= 3
C~

(cos 8)~[1 -P(x'+ 3x')], D = 2

(24)

confirming the perimeter law for large X.
(ii) High-temPerature expansions. Considering up to eight-link closed contributions the expansions in

powers of y = tanhP are

1 —Sy~ —88y6, D = 3,
(~ -26 ( g g u 2)) 1 —4y' —12y' —36y~, D = 2

(25)
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and similarly

8 (I+y )'(I+ 12y' —5y'+ 106y'), D = 3

g (1+y )'(1+ 4y~ —5y + 12y' —6y6+ 16y7), D = 2 .

With sin8= (I -tanhP)/(I+ tanht3), Eq. (19) takes the form

(26)

1+ 2Ay' —8y'+ 24Ay' —(88+ 10K)y'+ 216Ay', D = 3
)=

1+ Ay' —4y'+ 4'' —(12+ 5X)y'+ 12Xy' —(36+ 6X)y'+ 16'', D = 2 . (27)

From Eq. (27) one sees that for X not too large, f(y) has a maximum for small y the region where the
expansion is valid. 'Therefore, we may suspect that increasing X the absolute maximum jumps from the
high-temperature maximum (small cos8) to the low-temperature one (large cos 8). It is noteworthy, com-
paring Eqs. (22), (23), and (27), that if for D= 2 we double the value of A. the low-temperature maximum
remains almost at the same position as for D = 3 whereas the high temperature maximum is more on the
right in a cos 6) plot. Then it is conceivable that in the two-dimensional case the high-temperature maxi-
mum disappears when the low-temperature one appears with a continuous change in agreement with the
second-order transition of its dual Ising model.

We notice that the direct variable variational model fails to predict the area behavior of the Wilson loop
for small values of X. In fact for large square loops we obtain

Cr = 2y~~'[I+ 4y'+ 2(D —1)y'P],
B~p

(28)

(29)

i.e. , again a, perimeter law. One must remark that the phase transition is still described by the discon-
tinuities of the derivatives of the minimum of E(8) with respect to X.

(iii) Expansions with dual variables fox D =. 3. For p-~ the Wilson loop equation (21) in the two-spin-
flip limit takes the form

Cr ~ (sin8)"[1+ 2A sin'8(1+ sin'8)],

whereas for P - 0 since
P1 ~ pal

e '"&~2'~' = (coshp)"' (1- p p tanhp), , (1+ p, p, tan+)
{g» )6A {I» 7eW

the six-link closed path approximation gives

Cr ~ 1 —2P tanh'P(1+ 16 tanh P) .
B p

, (30)

Therefore, as anticipated in Sec. III, the use
of the dual variational state

I 0), allows one to
describe the passage of the direct Wilson loop
from an area law for small ~ to a perimeter be-
havior for large X. This is due to the fact that

~

0), overlaps the direct individual spin states. It
is clear that, symmetrically, the analysis of the
phase transition is correctly described by the
direct state

~

0)~ examining the dual Wilson loop

(o, 5,). One has to note that, though the adopted
order parameter may be partially in conflict with
the variational treatment as indicated also in Sec.
II, both

~

0)~ and
~

0)~ are able to describe the
phase transition looking at the derivatives of the
minimum of the energy with respect to X. For
the former, Eq. (19) is in order with D = 3 and
for the latter, one simply replaces X- I/&. The
result regarding the nature of the phase transition

will be the same.
(iv) Numerical results Because. of the equiva-

lence of our variational treatment with a classical
Ising model one expects the above low- and high-
temperature expansions to be valid at each side
of its critical point, i.e. , cos'6}=0.83 and cos'8
= 0.58 for D = 2 and D = 3, respectively.

Looking at Eqs. (22), (23), and (27) one sees
that higher powers of x have been included inthe
low-temperature expansion for D = 3 in compari-
son to the high-temperature series. The reason
is that for this case the value of x near the Ising
critical point is larger than the corresponding
value of y, at variance with the D = 2 case where
both values are similar. This demonstrates that,
as shown in Figs. 4 and 5, the convergence of all
series is fast except for the low-temperature ex-
pansion for D = 3 between x = 0.5 and the Ising
critical point. So, whereas for D = 2 Fig. 4 indi-
cates that no minimum of f appears, for D = 3
Fig. 5 shows a minimum between the regions of
convergence of the high- and low-temperature ex-
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N

1.4

1.2

1.2

1.0

1.0 I

0.7
I

09 & 10

FIG. 4. Convergence of low-temperature (right) and
high-temperature (left) expansion for D=2 and A, =2.2.
Complete series Eqs. (22), (23), and (27) are represent-
ed by solid lines, dropping 24x and 16' by dashed
lines, omitting -30x and —(36 + 6A)y by dashed-dotted
lines, and neglecting 12' and 12K.y~ by dashed-double-
dotted lines.

pansions for the chosen value of A. . To improve
the convergence of the latter we have used dia-
gonal Pade approximants obtaining in this way
smooth matching for all cases close to the Ising
critical point.

We may similarly analyze the curve f for all
values of the variational parameter 6) and the
coupling X as represented in Figs. 6 and 7 for
D=2 and 3, respectively. 'These curves are cal-
culated taking the average of the expansions with
or without the last term except for the low-tem-
perature D = 3 case where the (7, 7) Pade approxi-
mant, almost coincident with the (6, 6) one, is
considered. The important feature of Figs. 6 and

7, stable against the addition of high-power cor-
rections, is that for a range of X there is a mini-
mum between two maxima for D = 3 which does

0.2
I

0.4
I

0.6

not appear for D= 2.
For D=2 it is seen that by increasing Xthemaxi-

mum f of f(cos'8) moves quickly from cos &= 0
to a value close to that of the critical Ising mo-
del for low values of X. The value off,„remains
at the point of intersection of both expansionsupto
X= 2.22 when the maximum starts moving con-
tinuously in the low-temperature region. 'This is
in agreement with a second-order transition since,

1.2-
E
N

FIG. 6. D=2 variational energy. f =-E/N& is calculated
using the average of solid and dashed curves of Fig. 4.
The numbers on the curves denote the values of A. snd
the full dots the maxima off . From X=2.2 to A, =2.3
there is a plateau suggesting a continuous shift of f ~.

10

E
N

1.1
0.8

1.0
0.5 0. 6 0.7 0.8 0.9 cos'e

0.6

FIG. 5. Convergence of low-temperature (right) and
high-temperature (left) expansions for D=3 and A, =1.
Complete series Eqs. (22), (23), and (27) are represent-
ed by solid lines, dropping x and j terms by dashed
lines, omitting x and y terms by dashed-dotted lines,
and neglecting x and y terms by dashed-double-dotted
line. Dotted-double-dashed line indicates the Pade (7,7)
approximant for the low-temperature expansion.

0.2 0.4 0.6 QS costs ].p

FIG. 7. D=3 variational energy. f is calculated using
the average of solid and dashed curves {left) and Pade
approximants (right) of Fig. 5. The small horizontal
segments in correspondence to the maxima indicate the
perturbative values according to Eq. (31), From X=0.9
to A, =1, f~ jumps discontinuously to the right.
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as shown in Fig. 8, the plot of f (&) appears to
be the union at the critical point of two curves
presenting, within the precision f th

a region, a discontinuity in the second deriva-
tive. 'The critical value of A. should
wi e result X~= 3.28 obtained by renormal-
ization-group analysis. ' 3 0 th thn e o er hand the
variational approach gives for the dual two-di-
mensional Ising model with transverse field a
critical point X =4 instead of X = 3 h'c — c= w ich results
again from the renormalization group. "

For D = 3 there is a clear qualitative difference.
For low values of X there is '

l
is the hi

ere is a single maximum of
f '

e high-temperature region which reaches
in, u or increas-the classical Ising critical point but

ing a second maximum appears in the low-tem-
perature zone. Beyond X = 0 94 th le atter becomes
the absolute maximum and th e corresponding var-
iational parameter cos'6) -jumps discontinuousl

This characterizes a first-or-

Ref. 12.
der transition in agreement with thn wi e result of

e . . Obviously the same conclusion can be
drawn from Firom Fig. 9 where it is seen that the first

~', is discontinuous. Since for
D = 3 the model is self-dual, the analysis usin

ariables gives the same result with a cri-
tical value of ~ again -1.

Regarding the Wilson loop f D= 3,or =, Eg. (24)
~w enthegives a clear perimeter law for A. & X h

value of x corresponding to~~v
'

~~ is inserted. For
& Ao th 'g -temperature expression Eq. (28)the hi h-t

does not reproduce the expected area law. On the
other hand the dualal var~able calculation for A. & X

q. ~ ~~ gives a neat area behavio h
C

avior, w ereas

1.5—

1.0

dS „& dA.

0.5

0.5
I

1.0

10

FIG. 9. D=3 maximxima of f and first derivative with
respect to the coupling constant. Th de iscontinuity in

tion.
A, shows the first-order charact f thrac er o t e transi-

1.5

10'-

1.0

10

/dX

I

2.0
I

2.5

FIG. 8. D=2 max'xima of f and first derivative with
respect to the coupling constant. The full de dot denotes

IS a
poin where a discontinuity in the d dsecon erivative

apparent. P recise determinat'ina ion is obscured b un-
certainty of fm~ for 2.2&A, &2.3.

FIG. 10. D=3 Wilson loo
sionC, K . 24

oop. The direct variable expan-
q. ( ), is shown on the right of A, =0.94 and

th
' '

& on e left. The solid,the dual variable calculation C on th

of P=8 16 32
s e, and dashed-dotted curves corres o d tpon o values

for 4=16
=4, 16 64 respectively. The curves

a reem
or =16 and 64, not shown on the lefte e, are in excellent
greement with an area law. The full dot

Eq. (30) for P=8.
e u ots represent
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for X& Xc the values predicted by Eq. (30) are in
reasonable agreement with those obtained from
the direct variable expression Eq. (24). These
features are shown in Fig. 10, indicating that the
dual variational states give a better description
of the direct Wilson loop.

Finally, we wish to remark that the agreement
of the energy obtained with the variational method
and that calculated with perturbative expansions
is excellent. The former corresponds to the max-
ima of f(x) shown in Fig. 7 and the latter is'

-1 —8X2- 3 X X& 1512+yert
( 1 1 3 1

I
-X ~1+——,+ —, , && 1.

8 X2 512 X4

(31)

On].y for 0.8 & X& 0.94 E„„,which converges
quickly, is slightly higher than f ~ giving further
support to the existence of a minimum for f.

V. CONCLUSIONS

We briefly summarize the achievements of our
variational method in the analysis of the Hamil-
tonian Z(2) gauge model.

(i) From the requirement of gauge invariance
of the ground state we show the equivalence with
a classical Ising model.

(ii) Low- and high-temperature expansions al-
low one to evaluate the variational energy. For
three spatial dimensions the variational parameter
shows a discontinuous change for a critical value
of the coupling constant giving evidence for a
first-order transition in agreement with Ref. 12.
For two spatial dimensions the variational pa-
rameter changes continuously, but it is apparent
that the second derivative of the variational ener-
gy with respect to the coupling constant is dis-
continuous for a critical point. This is in agree-
ment with the second-order transition which is
known to appear in its dual model, the Ising model

with transverse field.
(iii) The phase transition for D = 3 is character-

ized by the change of the nonlocal order para-
meter, the Wilson loop, from an area behavior
(electric confining phase) to a perimeter one
(electric free phase). This follows from the use
of the dual variational ground state because of
the overlapping of direct spin states contained in
it.

(iv) For D = 3 the variational treatment with di-
rect variables predicts a critical value of the
coupling constant A.c= 0.94 compared to the sym-
metry point X=1 and, for D=2, Xc= 2.22 to be
compared with the value 3.28 resulting from re-
normalization-group analysis. "'"

(v) The variational energy turns out to be in
good agreement with the perturbative expansions.

Having shown that the variational method is
able to demonstrate the nature of the phase tran-
sition of the Hamiltonian Z(2) model with a quan-
titative accuracy for the three-dimensional case,
we hope to generalize it to Z(N) to corroborate
the three-phase diagram suggested by several
authors" for sufficiently large N. It would also
be interesting to investigate why the renormaliza-
tion-group methods fail to predict the first-order
transition in the three-dimensional Hamiltonian
Z(2) model.

Note added. After the completion of the present
work we received a report by Cardy and Hamber"
where similar conclusions regarding the first-
order transition of the three-dimensional case
are obtained using overlapping variational ground
states, and another by Drouffe' where the same
result is reached through strong-coupling expan-
sions.
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