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Using ideas and techniques adopted from the theory of self-dual gravitational fields we investigate properties of
self-dual gauge fields. A linear equation which generates these fields is the center for this investigation. Some of the
main results are a natural choice of gauge which leads to (a) a Hertz potential, (b) the Lorentz gauge condition, (c) a
1inear relationship between the field and potential, and (d) the surprising solitonlike behavior of the solutions such
that the future and past asymptotic fields are identical.

I. INTRODUCTION

It is the purpose of this paper to investigate the
properties of, and to suggest an interpretation for,
self-dual (or anti-self-dual) gauge fields. Although
there is a considerable interest in self-dual fields,
the interest has essentially centered on real fields
on Euclidean four-space' ' and been associated
with the instanton problem. We will be concerned
only with (complex) self-dual fields on (real)
Minkowski space. The basic point of view which
we adopt is to view these self-dual (anti-self-dual)
fields as representing right-helicity (left-helicity)
"Yang-Mills particles, " i.e. , the analogs of right-
and left-helicity photons, and that their field equa-
tions represent a (nonlinear) Schrodinger- type
equation again analogous to the Schrodinger-equa-
tion interpretation of the Maxwell equations. 4'~

In Sec. II we establish our basic notation and in-
troduce some mathematical techniques (essential
for the balance of the paper) that are used fre-
quently in general relativity but are largely un-
known in other fields. The main idea is to in-
troduce four (null) basic vectors at each point in
the Minkowski space which are all parametrized by
two angles, i.e., by points on S2; components of
space-time fields, relative to this basis, become
functions of x' and S'.

In Sec. III we exploit this idea by describing a
linear' differential equation on S (with'x' ap-
pearing as parameters) for a function G which can
be thought of as a generating function for the self-
dual fields. By taking appropriate derivatives of
G a self-dual field is obtained. We show that for
essentially all self-dual fields the function G exists.

Using our linear equation we study in Sec. IV
properties of the self-dual fields and show in par-
ticular that very natural gauge conditions can be
introduced such that

b
a g ~ab

V,&
——0,

l ~2~'ab — [bYa3

II. NOTATION AND MATHEMATICAL
PRELIMINARIES

Qn Minkowski space M we will consider the
trivial vector bundle 8 (each fiber being a,n n-
complex-dimensional vector space), i.e., 3
=Mx C". The (global) vector fields e„(A
= 1, . . . , n) form a basis set as does

ee = Gs'(x')'v (2.1)

with G„v(x') being GL(C, n) matrix-valued func-
tions on M. The connection or parallel transfer
of vectors in introduced by defining V, -f rom

with

B
a A ~A a 8

B B ~ a
YA a

(2.2)

being an arbitrary matrix-valued one-form. One
defines the covariant derivative of an arbitrary
vector U= V "eA by

(irk + ye e )+ (2.3)

with a comma denoting ordinary derivatives with

where H' is a Hertz-type potential, y' is the con-
nection, I,b is the gauge field, ~, is the Minkow-
ski-space covariant derivative (unrelated to the
gauge connection), and the + denotes the self-dual
part.

Section V is devoted to a discussion of a general
class of self-dual solutions which vanish in both
the future and past null directions. We prove
here one of our main results. This class of solu-
t'ions has the rather surprising and attractive
solitonlike property of having its asymptotic future
behavior being identical to its asymptotic past be-
havior, resembling very much those Maxwell
fields which are mixtures of half-advanced minus
half- retarded fields.

Sections V and VI involve some conjectures
about a Hilbert-space structure for the Yang-Mills
fields and its relationship to a quantum theory of
these fields.

22 3023 1980 The American Physical Society



EZRA T. NEWMAN 22

respect to the Minkowski coordinates x'.
From (2.1) it follows that, under a change in

basis

r~ a=G~', aG 'o'+G~'&c'aG 'o'y

or using matrix notation,

y,' ——G,G + Gy, G

(2.4a)

(2.4b)

The curvature tensor or gauge field of this con-
nection is defined by

llxo~ II = xo=F.bt'm

llxfg II =X[ oF b(t'n'+m'm'),

II X2~'I[ -=X2 = &.bm'n'

I[xox II —= xo = F,bt'm,

[[Xt~sll =—Xi = oE b(l'nb —m'mb),

I[Xo~'ll =-
Xo = Fabm'n'

~

sa a
+00' + ~p1'

(2.10a)

(2.10b)

Fab yb, a ya, b [yat ybl (2.5)
a a

pfp p m
y p$$ p n ~

(2.11)

F,', =GF„G-'. (2.6)

The curvature tensor satisfies the generalized
Bianchi identities

Ffab c l (aA cl ~ t:cFabl (2.7)

with [y, ybj =y~yb —
yby . From (2.4) one obtains

If one knows the behavior of the tetrad vectors
as functions of position in M then the Yang-Mills
equations could be rewritten in terms of the X's
and y's. 6 To study different questions one could
choose the tetrad in different appropriate fashions.
To study radiation the following choice is very
convenient. Introduce null polar coordinates in M
such that the metric has the form

The dual field is defined by

aQ & gabad~ y Ragged " ~ abed (2 8)

2

ds~=g &dx'dx~=2du~+2dudh — 2dgdg,ab
2Pp

(2.12a)
with &,~„ the alternating symbol. We will now re-
strict. ourselves to self-dual fields, F„=iF„.
(With equal ease we could have made the restric-
tion to anti-self-dual fields. )

Using (2.8) with (2.7) one easily shows that for
self-dual f ields

F",s+ F"~s- roF" = o (2.9)

m, = —(b' —ic'), n'= (t'+a') .1 . ~ . 1

These null vectors now serve as a basis set and
one can find the components of a vector or tensor
with respect to the tetrad. For the curvature ten-
sor and connection form we define

i.e., that the (generalized) Yang-Mills field equa-
tions are automatically satisfied for self-dual
f ields.

Before we treat in detail the properties of self-
dual fields we wish to review and summarize
some technology which will be of great value to
us. This technology, though used frequently in
relativity, is not widely known.

At each point in M we introduce four indepen-
dent null vectors l', n', m', and m' (a null tetrad
set) satisfying t. n = —m ~ m =1, all other products
vanishing. If, for example, one has an ortho-
normal tetrad t', a', b', c' with t t= —a. a
= —b ~ b = —c c = 1 then we could choose

l' = —(t' —a'), m' = —(5'+ic'),1. . . 1
v'2 ' v'2

with &o = —,'(1 +qq) and where q and q are the com-
plex stereographic coordinates (q =e'ocot —,'8). The
tetrad is then choosen as

B . B
l =la

Bx BK

B Bn=———.
eq Bu

(2.12b)

Another useful choice is based on null-plane co-
ordinates with

dso = 2 (du dv —dw dko ),
B Bl=—,m=—,

Bv Bzo

B B
m n

BK BQ

(2.13a)

(2.13b)

In Appendix A we give the field equations for
self-dual Yang-Mills theory in both systems,
(2.12) and (2.13).

Note that the tetrad (2.13) is covariantly constant
throughout M. It is very convenient to study tetrad
systems with this property but where the vectors
l, n, m, m are not associated with coordinate
directions. The following formalism (which is
similar or even. equivalent to the two-component
spinor formalism of Penrose) accomplishes this.

Using coordinate components in some Minkowski
coordinate system x' = (t, x, y, z), let
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l'=2
2 P (1+gZ, g+g, i(r. —g), —1+pe),1

0

m'= (0, 1 —g', —i(I+g'), 2g),
2 2 0

(2.14a)

(2.14b)

m'= — (0, 1 —g', i(1 + P), 2g)),
0

(2.14c)

n =
2 2 P (1 +g, —(g + g), —i(g —g), 1 —gg) .

0

(2.14d)

The g (and t) are complex stereographic co-
ordinates labeling points on a sphere or the ex-
tended complex plane. Note that for any values
of g and g we have the usual scalar-product con-
ditions l ~ n= —m m=1, etc. As g and g move
over the complex plane l' and n' range over all
real null directions. Note flrther that even u hen

g is treated as an independent complex variable,
free from t, the above remarks remain true ex-
cept that l' and n' now range over all complex null
directions. For this case we will denote the free
variable P by p and use & only to mean the complex
conjugate of f.

For fixed but arbitrary p and & (2.14) can be
considered as a global tetrad and tetrad com-
ponents of arbitrary tensors or tensor fields
could be taken, e.g. ,

&„(~;,r, ~) =&.(x')i'(~, ~),
(2.15)

Ab, , (x', g, t') =A,m', etc.

The components are now functions not only of the
coordinates but a1.so of the orientation of the
tetrad via the f and f. We now study the dif-
ferentiation of these functions. All functions
which we use are assigned an integer s, known as
the spin-weight. How the assignment is made will
be described shortly. The differential operators
5 and 5 which act on spin-weight-& functions q de-
fined by

m' =5l',

na la +a+a

(2.18b)

(2.18c)

(2.18d)

and hence m', m', and n' have, respectively,
spin-weight 1, —1, and 0. Furthermore, it fol-
lows that

&~l' =5m' =0,
Q~l' = $m' = 0

(2.19a)

(2.19b)

If to ordinary (i.e. , g and g independent) tensors
we assign spin-weight 0 and if in addition spin-
weights add when two spin-weighted functions are
multiplied, we have a general method of con-
structing spin-weighted functions, e.g. , T,~l'l',
T,~l'm', T,~m'm, T,~m'm have spin-weights,

Without entering into details' we mention that
each regular spin-s function can be expanded in a
basis set known as the spin-s spherical harmonics
,Y, ~, the ordinary harmonies having s =0. Fur-
ther, each regular spin-s function q(„can be
written for some regular g«& as

m—=5l =x'm, ,

n=l +5' =x'n. ,

(2.20)

~ (s) 0 (0)

The process of finding the regular q&»(g, g) might,
however, be difficult. We will see later that the
problem of finding self-dual Yang-Mills fields is
closely related to the problem of finding g«„when
s= 1. (We remark in passing that to find self-dual
solutions of the Einstein equations one encounters
a similar problem but for s =2.)

A simple but important example of a set of spin-
weighted functions are those constructed from the
position vector x', namely,

l =x'l,
g

m =5l =x'm, ,

5r) = 2PO *—(Po'q),
8

5' -=2Pb~"—(Pb 'q),f+s
0 pg 0

(2.16)

(2.17)

having spin-weights 0, 1, —1, and 0. These vari-
ables will play an important role.

From the vectors (2.18) one can construct the
two sets of bivectors

l (,mq)
respectively, increase and decrease the spin-
weight by one unit.

We assign to the vector l' in (2.14a) the spin-
weight 0, from which it follows from (2.16),
(2.17), and (2.14) that

l'=
2 P (I+gg, P+ j, i(t g), -I+-gj),

z (l E nb3 + m fombl) ) anti self dua, l

mQ]

l ),m~)

—,'(l„n» —m„m») ) self-dual.

n
I gmQ$ r

(2.21)

(2.22)

(2.18a) Expressions (2.21) are all anti-self-dual and
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form a basis set for anti-se1f-dual bivectors while
(2.22) are self-dual and likewise form a basis for
self-dual bivectors. The following relationships
are easily checked:

5l t mw = l I.,ns, i + m r,mes, (2.23a)

5(l &,n» + m&,m») = 2ml, n», (2.23b)

Qm (,n~) ——0, 5l ),mq)
——0 (2.23c)

and

5G '= —G '5GG '

we have

(3.6)

We claim that y,
' depends only on x', i.e., is in-

dependent of g and f and furthermore is auto-
matically the connection for a self-dual field. To
see this we first take the gradient of (3.1), i.e. ,

5G, =-G, A —GAl, ,

with A=-8AjBl. Using (3.1) and

l tamp) l [any) m [amp]

5(l „n» —m„m») = 2m„n»,

5m [an~)
——0, gl (amqj ——p .

(2.24a)

(2.24b)

(2.24c)

and

5(G„G ') = —GAG 'l,

l'5(G ~G ) = m'5(G, ~G ') = m'5(G ,G &) =0,

(3.7)

From the self-dual and anti-self-dual character
of (2.22) and (2.21), it is seen immediately that for
self-dual fields n'5(G„G ) = —GAG i.

(3.8)

(3.9)

XO=X& =X2=0 ~ (2.25)
Now by applying 5 to (3.3) and 52 to (3.4) we obtain,
respectively,

Note that if we use the tetrad (2.18) then from
(2.23) 5y,'=5(G,G ') +52hl, (3.10)

2Xi ~XO ~

2X2 ~ XO
(2.26)

and

5 h = —n'5(G, G ') =GAG (3.11)

and hence if X, =p, it follows that X, =X,=O.

III. A LINEAR EQUATION FOR SELF-DUAL GAUGE
FIELDS

In this section we summarize and review earlier
work by Sparling, Goldberg, e and Newman on the
Sparling equation

5G =—GA, (3 1)

where G is a matrix-valued s =0 function of x',
g, and g, to be determined from (3.1) while A is a
given but arbitrary matrix-valued s =1 function of
l (from 2.20) and g and g. Note that the x' appears
in (3.1) only as a set of parameters, entering via
the l dependence on x'.

We will now show that the linear equation (3.1) is
equivalent to the self-dual Yang-Mills equations
where the arbitrary A plays the role of (charac-
teristic) initial data. First we will show that a
regular solution of (3.1),

G =G(x', g, g), (3.2)

does lead to a self-dual field simply by differentia-
tion of (3.2). We then will show that (3.1) will
exist for any self-dual field.

From a regular G we define

where extensive use was made of (3.8), (3.9),
(2.18), and (2.19). By comparing (3.10) and (3.11)
with (3.7) we see that

&'Ya = 0 ~

From the assumed regularity of G and the fact
that y, has s =0 it follows from (3.12) that

Sy,'=0

(3.12)

(3.13)

and our first claim is proved. [Some useful
identities are obtained by applying 5 to (3.3):

h=l'5(G„G i),

5h=m'5(G, G ')

5h=-m5(G G-')

h+55h=- n'5(G, G ').]

(3,14)

Xo =+'slam~ = 0ab (3.15)

In order to show that y,
' is the connection all we

must do is show that the field calculated from (3.3)
is self-dual. From (2.5) and (3.3) after some
s implif ication

F,'~ = 25h L~l, &
—2h &~m, &

—[G,G ' 5hl, —hm~]

+ [G, G ', 5hl, —hm, ] + [5h, h] 2l „m» .
It is seen immediately that

y,'(x, P, P) =G„G i+5hl, —hm

with

h=l'(g, &)5(G„G ').

(3.3)

(3.4)

and hence, from (2.26), that ~&
—

y2
—0. Thus, the

field is self-dual.
We now discuss the inverse problem, i.e., the

problem of deriving (3.1) from a self-dual field.
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The argument we give is a slight modification of
the argument of Goldberg. ' We are now given a
y,'(x') independent of g and g and wish to deter
mine a, G(x', g, g) by the differential equation

y,'=G .G-f+5h/, —hm„

h=t'5(G G ')
(3.16)

By taking the curl (the skew derivative) of
(3.16) and using the argument which led to (3.15)
one is quickly led to the condition that y,

' must be
the connection for a self-dual field as the inte-
grability conditions on (3.16).

Applying 5 to (3.16) yields

By comparing (4.2) with (2.4) we see that for
arbitrary but given (g, &), y, from (4.3) is an
equivalent (gauge related) connection to y,'.

In solving (3.1) the freedom of solution is

G- G =gG, (4.4)

"=G' G -f+gh l —h mYa ta a a

with

h'=ghg ', 5h" =g5hg '.

(4.5)

where g(x') is an arbitrary GL(n, C) matrix func-
tion of x' alone. Using G in (4.1) yields a gauge-
transformed connection

5(G„G ') = —52hl, .
If we define A(x', f, g) by

A= —G &G,

then

A =G 'G G '5G —G '&

(3.17)

(3.18)

Writing (4.5) as
+I G+ G+~f +G+ +G+ f

Ya a Ya

y;=G '(5h -I, h'm—,)G',

it is easy to check that

Ya Ya t

(4.6)

(4.7)

A„=—G 5(G„G )G.

From (3.17) we have

A, =G & hGl,

(3.19)

(3.20)

IV. PROPERTIES OF SELF-DUAL FIELDS

We saw in Sec. III that regular solutions of (3.1),
i.e. , G =G(x', P, F), yield connections of the form

y,'(x') =G,G '+5ht, —hm, , (4 1)

and thus A is a function only of l, &, and P, i.e.,
5G = —GA (I, g, g) which was to be proved.

This proof is based on the local existence of
solutions to (3.16) for G(x', g, g) and thus the
A(l, g, p) will in general be only a local function.
We have also not been able to make an argument
in general for the regularity of A as a function of
& and g, In a later section when we are discussing
asymptotically flat" Yang-Mills fields we will
show that A is essentially the null or characteristic
data for the field, appearing as the radiation field
in the neighborhood of null infinity. This will pro-
vide an alternate proof of (3.1) albeit only in the
asymptotically flat case.

H ~
——2el) m~), 9=0 5G,

which is an anti-self-dual bivector, then

a ~ah 2e l t:ambj

To see this, note that

(G '5G)„=G '5(G„G ')G,

(4.8)

(4.9)

(4.10)

then using (3.14) and (4.3), Eq. (4.9) follows.
The curvature tensor in our canonical gauge

takes the form

F,q
——yq„—y, ~+2G [5h, h]Gt), mq).

Since E,~ is self-dual and the last term is anti-
self-dual, the skew-derivative terms must de-
compose into self-dual and anti-self-dual parts
such that

(4.11)

i.e. , the choice of solution G does not affect
y, (x', r, p) in (4.3). What we have thus shown is
that there is a canonical choice of gauge, up to a
choice of ( and g, i.e. , a complex null direction,
or point on S'x $'. We will almost always adopt
this choice of gauge.

From (4.3) we see that for each (g, g), y, lies in
the anti-self-dual 2-blade or surface spanned by
l, and m, . In fact, if we define the Hertz-type
potential

which can be rewritten as

y,'=G,G '+GG '(5h/, —hm, )GG-'
+ah 2Y[b~a]+ &

0 = 2y(I, ,) + 2G [5h, h] Gl ),m~),

(4.12a)

(4.12b)
or

y,' =G,G-'+ Gy.G-',

with

y, (x', g, g) =G '(5hl, —hm, )G .

(4.2)

(4.3)

where the + and —mean, respectively, self-dual
and anti-self-dual parts.

Summarizing, we stress the simplicity of the
structure of self-dual Yang-Mills fields when
(3.1) is solved for G(x', g, g). The function 8
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=G '5G determines the Hertz potential

a"= 2el «m"

which leads to the connection

we can form the formal solution as

G =I O—'A+5 '(5 'A)A

—5 '(5 '(5 'A)A)A+ ~ (5 3)

and by linear relations to the field

+ab 2+kb~ a3+ ~

We also have from (4.9) that

We now assume that, for the solutions with which
we are dealing, (5.3) converges. Our cia, im is that
to study radiation in either the future or past null
direction only the first nontrivial term is impor-
tant, the further terms falling off faster than x ',
Defining

a
O (4.13) E= —5 ~A, (5 4)

i.e., y satisfies the Lorentz gauge condition.
As a final comment to this section we point out

that under the gaugelike" transformation of A
-A'

A'(l, g, g) =q 'Aq —q '5q,

with q=q(p, g) an arbitrary spin-weight zero ma-
trix valued function of P, g, the new equation

(4.14)

6G'=- G'A' (4.15)

V. STRUCTURE OF ASYMPTOTIC SOLUTIONS

has as solution G' =Gq where G is a solution of
5G = —GA, and that the connection computed from
the G' is identical to that computed from the G.
The relevance of this remark is that when

A(u, g, g) has a limit in either the plus or minus
u =~ direction, the A' can be made to vanish
there. If both limits are equal the A' vanishes in
both directions, if both limits exist but are dif-
ferent the A' can be made to vanish in either but
not both directions.

we see that our problem is now to study the dif-
ferential equation

5F= A(l, g,-p). (5.5)

[Note that each term in the series (5.3) involves
an equation similar to (5.5), the right side always
depending on information gained from the earlier
terms. J

Since A has s =1, it can be expanded in the com-
plete set, Y«, i.e. ,

A(l K r) Q b~~ (Yl, v
LpM

(5.6)

We will consider only one arbitrary term of (5.6)
in (5.5) since the general solution can be obtained
by summing over L and M. We thus consider

5F=b(l)~Y~~=b(l)Y~. (5.7)

(Note that we have suppressed the M in the spheri-
cal function as it plays no role. )

Writing

Although Eq. (3.1) is a linear equation for G,
the demand for regularity in the solutions makes
finding solutions very difficult. To our knowledge
only a handful of solutions are known. We will,
in this section, discuss how approximate or
asymptotic solutions can be obtained. In particu-
lar, we will prove that for a wide class of solu-
tions, the A(l, t', g) constitutes the characteristic
data (and is essentially the radiation field) and

furthermore, if the data is given for incoming
fields (on past null infinity) the propagation will
yield data for outgoing fields (on future null in-
finity) which is (surprisingly) identical to the in-
coming data.

Equation (3.1) can be converted to the integral
equation

RLB
b(l) =&"'(1)=

p~L

the general solution to (5.7) is

where

g (L-1) g (L-2)
P 51 1 L (51)2 1 I.

+
(51)r

L (L-g)
5R-t Y ( 1)8+ 1

and where 8 satisfies

(5.8)

(5.9)

G= —5 '(GA) +I, (5.1)
5H=O. (5.10)

G„=—5 '(G„,A) +I, Gi I——(5.2)

where 5 ' is the uniquely defined' integral opera-
tor inverse to 5, i.e. , 55 g =g and I is the identity
matrix. " By considering the iteration scheme

5l= &(E- 4)(C- 4)
1+ff (5.11)

Using (2.14b) and (2.20), it is easily seen that 5l
is of the form
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where a, g„and (, are functions of x'. Thus 5l
has two first-order zeros in its g dependence and
hence each term in (5.9) has two 1th-order poles.
If we let

S

,Y „—(- ),I' „,
n

(5.18K)

From the definition of the spin-s spherical
harmonics it is easy to show that

L ab ~ ~ .~ k~ m, mb
(6f)' (5.12) which leads easily to the special cases

where there are Z indices on the h~
""

and where
is a trace-free symmetric three-dimen-

sional tensor (hz'" V, =0, V, =I, +n, ) which is a
function only of x', it will automatically satisfy
(5.10) and be of the proper spin-weight s=0, Of

the 22+1 components of h~"", 2Z are deter-
mined by the demand that the poles of H cancel
the poles in F~, i.e., the F be regular on the real
sphere f= t. The remaining components (one for
each L') appear in the final E additively and con-
stitute the gauge freedom.

%e now illustrate these solutions with the cases
L =1 and L = 2. (There are no global L =0 solu-
tions. )

It turns out to be much more convenient to use
coordinates u, r, )), and q of (2.12) instead of x'.
The transformation can be written simply as

'x= uv' x+l'(q, ))), (5.13)

where /' is the same as I' in (2.18a) but with ()), q)
replacing the (g, f) and v' is a constant vector with
v'v, = 2, v'l, =1. %e will use, in addition to l„
the vectors m„m„and n„also defined by (2.18)
with the ()), ))) substituted for (l, r) With .(5.13),
(2.20) becomes

A

ma ma &

1~1
n

n

Sl a fPla j

(5.18b)

)2
m, rn, = —=m„&j'z ——

~

&I'&.
7l '0]

[Note that the mapping q ——g ', )) ——))
' in the

case of the real sphere, i.e., q =g, maps points
of the sphere into antipodal points and that we
can think of P, the parity operator acting on spin-
weight s function T „& by

l' =u, &5l'=x,

l =u+x, 55l

(5.19a)

(5.19b)

(5.18c)

Under P the spin-weight changes sign and in the
expansion in spin-s harmonics the coefficients
change sign by (5.18a).]

Using (5.18) with (5.14) we have

Pa

l =x'l, =a+el,l' (5.14)
so tha. t from B(l) we have

and

5l =em, l'. (5.15)

B' =B(u), .

B = B(u+x ).

(5.20a)

(5.20b)

Note that 5 does not act on the hatted vectors. Di-
rectly from their definitions we have

For L =1, (5.7) and (5.8) become

l,l' = (& —))) (& n)—
(I+ &&)(I +en)

(& —n)(I + &n)

(1+&&)(I+a)))

and thus the zeros of 5l occur at, '2

(5.16a)

(5.16b)

and

B m, [um'+ Prn'+ y(n' —l')]
1F) 5f y

where for h, '(x') we have written

o.m'+ Pm'+ y(n'- l')

&=n &=n

which we call the positive pole and at

(5.17a)

(5.17b)

which is called the negative pole. %e frequently
must evaluate functions of g and ( at the two poles.
We use the notation for T(f, r)

T'= T()7 )))

T =T( n' - n '). -

with e, P, and y to be determined.
In order to avoid the positive pole in E [using

(5.18)] we must have

P=B',7, (5.22a)

and

e =—B )P'i (5.22b)

to avoid the negative pole in I. The y which is an
arbitrary function of x' (the gauge freedom) can
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be conveniently chosen as

y= ~B'5(Y( (5.22c)

1 B(l),1;+m,(B(u),Y,m' —B(u+r), Y,m')

nz, l~

so that B(u)5, Y, (5.24)

++ 0 (5.23)

This is easily checked by using L'Hopitals rule on
(5.21), i.e., by applying 5 to the numerator and
denominator. We thus have

Note that the r behavior appears explicitly only in
the r ' factor and implicity in the B(l) and B(u+r)

The 1.=2 case, i.e. , 5F=B&Y&, can be explicitly
solved in a similar fashion obtaining

y (u, 2i, q) y (u, q, 2i) 1 BiY2+B'|Y,m.m'+B fY2m m'
r m l~

a

a -2 A A

+ '2 [—B5|Y2+B',fli Y2(m, m') +B 6 i Y2(m, m') +4B'i Y2mJ'mmmm +4B i Y2mi'm~m'] .y'

The y can be choosen so that F'=0.
The general pattern of the solution for arbitrary L can now be seen, i.e.,

(5.25)

1 B i
i Yi +B 'g Yim, m'+ (- 1)iB'i i'- Y m m'

m, l'
1 ] yl yL+~[]+'' '+—[]+—+' ' +—

yL gL' (5.26)

In order to keep I' well behaved as r- ~ we re-
strict the u behavior in A(u, f, g) =b(u), Y~. Spe-
cifically, we assume that in the neighborhood of
Q =6 oo~

b(u) =c+ 0(l/ui''),

where c is a constant which in general would be
different in the two limits. This condition implies
that

r

be exerted to be certain that all derivatives are
taken before the pole values are inserted. As there
are no new principles involved we will just state
the results of the calculation. We have [remem-
bering the tetrad comes from (2.12)]

A

yoo' = y.l' = o (5.27a)

B 'i'(u), Yi A(u, 2i, 21)y' y y

B (u) =g c,u' + O(u '), ci =c .
0

An important observation is to now notice that
if (5.26) is used in order to generate higher terms
in (5.3), only I = —5 'A will have an r ' term; the
others must begin with higher powers of x '. Thus
if we concern ourselves only with asymptotic be-
havior (u = const, r —~ for future infinity and
u+r=const, r-~ for past infinity) we need con-
sider only the first term in (5.26) and an appropri-
ate choice of y'.

We are now in a position to prove our original
contention, namely, that A(l, P, F) constitutes, for
a wide class of solutions, the pure radiation data
and furthermore this data could be given on either
past or future null infinity.

It is most useful to calculate the gauge fields
and potentials in the null polar coordinate and
tetrad system of (2.12) (see Appendices Al, A2,
and AS). In principle, it is a straightforward task
to put E(r., g, n, n, u, r) from (5.26), into (4.1) and
find the y, and then construct the field. It is, how-

ever, a very nasty calculation and it turne out to
be much simpler to do the calculation at the posi-
tive pole, i.e., when f=n, f=n. Great care must

~ B(u+r)
y&0. ——y, m'= (- 1) |YE+0(r ),

(5.27c)

r« =r.n'=o(r '). (5.27d)

Equations (5.27a) and (5.27b) are exact and are
consequences of the gauge conditions. (5.27d) is
valid in the neighborhood of both past and future
infinity. (5.27c) is valid in the neighborhood of
past null infinity, i.e., u+x=const, x- ~; in the
future direction it vanishes faster. Note further
that (5.27c) can be written [from (5.18c)].as

(M ) Y
—+ O(r-2)B (u+r)

A~(u r,+q, q)
(5.28)

Xo =X|=O(r )

A(u, q, 2i)
(5.29)

It is now simple to calculate the radiation fields
in the future and past null directions from (AS).

In the future null direction
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while in the past

X2=Xi=o(r ')

A ( +,2), 2))

r
(5.30)

We see that A(u, 2), q) obviously constitutes the
radiation data and that the data in the future and
past are essentially the same (identifying anti-
podal points, q

-—I/2), 2)
——1/2)).

We emphasize that this result is true only for
A's of the form

A(u, 2), 2)) = Q b~ (u), Y~ (2), q),

with the asymptotic behavior at. u —z ~

b~=o(u ')+const.

(5.31)

(5.32)

0&=-A, ~=inc

and (5.4) would yield the complete solution. The
fields obtained in this case would have been the
familiar mmixture of half-retarded minus half-
advanced Maxwell fields.

The results of this section lead to the following
interpreation of the self- (and anti-self-) dual
solutions of the Yang-Mills equations.

Consider a real, "asymptotically-flat" Yang-
Mills field with sources of compact support. In
the neighborhood of future null infinity the fields
are to have the form

Xp
——O(r ) Xp

——O(r ),
xi=o(r '), xi=o(r ')

"u -0
X2 1 1 li )l ~ O(r 2) ~X ~ O(r 2)

(5.33)

In the Abelian (linear) case, one could construct
new solutions from (5.33) by taking both the self-

Although we have not verified it it seems over-
whelmingly likely that from (5.31) and (5.32),
(5.29) and (5.30) can be strengthened to the peeling
theorem for gauge fields, namely,

xp=o(r ')

X&=O(r

X2
——A/r+O(r 2),

for the future and for t.he past

X2
——O(r ),

X2
——O(r ),

X, =A~/r+ O(r ')-
If we had restricted ourselves in this section to

Abelian gauge theories (self-dual Maxwell fields),
then Eq. (3.1) could be written as

dual and anti-self-dual parts of the mixture of
(5.33)-minus the advanced version of (5.33). Al-
though one clearly cannot do the same for the non-
Abelian case, we can nevertheless do something
quite similar.

If we write

X2 =A(B 'g 'g)

and

X2 = A(u, 2i, q),
then via (3.1) and its conjugate

we can produce self-dual and anti-self-dual solu-
tions whose sum has exactly the same radiation
field as the real field we began with. In this man-
ner we can decompose the original field into two
"pure radiation solutions" (the self-dual and anti-
self-dual solutions) and a "longitudinal field" de-
fined as the difference of the real field and the
sum of the pure radiation solutions.

The basic idea now is to try to interpret the
self-dual and anti-self-dual solutions as the
quanta of the Yang-Mills fields.

VI. DISCUSSION

We have shown that Yang-Mills fields, obtained
from 5G = —GA with A satisfying appropriate
asymptotic conditions, have some remarkably
attractive porperties: (a) the existence of a Hertz
potential and a linear relationship between field
and potential, (b) the solitonlike behavior with the
future and past asymptotic fields being identical,
and (c) a linear structure on the space f of these
fields. If in addition one could define a scalar
product on & and hence give & a Hilbert-space
structure one could construct a Fock space by
taking formal sums and (symmetrized) products
of elements of f; a one "Yang-Mills" particle
state consisting of an element of 5, a two "Yang-
Mills ' particle state consisting of a symmetrized
pair from 5, etc. Creation operators are essen-
tially defined by multiplying element. s of the Fock
space by elements of F and annihilation operators
by taking the (Hilbert-space) scalar product of
elements of the Fock space with elements of W.

An enlarged Pock space could then be constructed
as the sum of self-dual and anti-self-dual Fock
spaces, . the two parts being orthogonal. It seems
reasonable to conjecture on the basis of the non-
scattering property of the classical solutions that
the quantum-mechanical 8 matrix would be trivial
for the self-dual (or anti-self-dual) fields though
certainly not for the real fields.

The point of view we have in mind is to consider
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this Fock space as the analog of the one construc-
ted from the free Maxwell field. The idea would
then be to learn how, from the real Yang-Mills
theory, to construct an interaction between the
self-dual and anti-self-dual solutions so that an
8-matrix theory could be formulated. In this con-
text we point out that any asymptotically flat real
Yang-Mills field with no sources can be decom-
posed uniquely in one of two ways:

9 1
8 yP1~

8 1
By' r„.——(Sr., —&r...) —[r.. .y...) =o,

(A2a)

(A2b)

(a) With this condition we write out the self-
dual Yang-Mills equations using the null polar
coordinates and tetrad (2.12),

E &+3/ E &-3P E(I3P (6.1a)

and

ab ab ab ab=E(.3~+ E(-3S+E(r3~ (6.1b)

where the F&',», (F&») and F()f (F&",z) denote
the self-dual (anti-self-dual) solution which agrees
(to ~ ') with the self-dual (anti-self-dual) part of
the real solution at past (P) null infinity and future
(f) null infinity. The interaction F;» denotes the
difference between the real solution and the sum
of E,,b, and E('b, and is not a solution. It can, how-

ever, be thought of in some sense as being the
longitudina]. part of F'b while E', , and E'&b

3
can

be thought of as the "pure' radiation parts of E".
Equations (6.1a) and (6.1b) describe the classical

transition from the pure radiation "in" state to
pure radiation "out' state. We intend in the future
to study the details of this transition.

As a final comment we remark that many of the
ideas discussed here have analogs in gravitational
theory. There is a gravitational equation corre-
sponding to (3.1) which produces self-dual (com-
plex) solutions to the Einstein equations. It has
recently been proved" that their in and out states
are the same, i.e., they have a solitonlike be-
havior similar to our self-dual Yang-Mills fields.
The idea would be to find a Hilbert-space struc-
ture for these fields and hence construct a non-
linear graviton Fock space. This idea originated
with R. Penrose. '4

fs
xO (8~ y )l 10

8 1
2x, = r„, (5 r—„—, 5r„,—) [y„—„y„,],BJ

(A3a)

(A3b)

ie 8

5 and 5 are defined as before but now using g
y&i ypi an" yap are s =0, 1, -1. Ac-

tually the equations can be greatly simplified by
noting that the remaining gauge freedom, keeping
y„,=0, allows from (A2a) the additional gauge
condition

(A3c)

y„,=y.~ =O. (A4)

8
ypy~= 0 s

V
(A 5a)

9 9 8

BV
y„,— y„,+ yo„- [y,o. , yo„) = 0, (A5b)

BZU 9ZU

8 8'y„,—
&h,

y, o, + [y„„y,(&, ] =0,
920

(A5c)

(b) Also using (Al) we write out the self-dual
equations for the null-plane coordinates and asso-
ciated tetrad (2.13),
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APPENDIX

For any Yang-Mills field it is always possible to
chose a gauge such that one component of the con-
nection vanishes. ' We will always choose

y„,=y.& =O. (A1)

8 9 8
xl s yl1 ~ +

s r10' s—y» —[y01 r10 ) (
BV BSU 82%

9 9
x, =

8
r„.— — r.„+[r„„r„,].

BSU BQ
(A6c)

Again from the remaining gauge freedom and
(A5a) we can set

ypz~
= 0 (A7)

with a large simplification of the remaining equa-
tions.
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