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The early suggestion that radiation could be viewed as arising from a microscopic time-symmetric theory, with a
derivation using statistical mechanics, has never been explicitly demonstrated. For electrodynamics we show that,
for a microscopic relativistic theory of interacting particles which is described to order ¢~ the effects due to
medium polarization (Cerenkov and Bohr formulas) are contained in the ¢ ~? kinetic equation treated in other work.
Thus, an explicit demonstration of radiation arising \from an otherwise time-symmetric particle theory is made. The
physical interpretation of real-axis singularities as Cerenkov poles leads to the above result. Comparison is made
with other works, which do not appear to lead to the Cerenkov effect.

In 1910 Einstein' suggested that macroscopic
radiation is an irreversible phenomenon derivable
with statistical mechanics from a time-symmetric
microscopic formulation. This theme was later
elaborated by Wheeler and Feynman?® for classical
electrodynamics® when they derived the Lorentz-
Dirac equation after making the assumption that
all radiation is ultimately absorbed (absorber con-
dition?) and that advanced, as well as retarded,
effects occur.®

While the preceding references did not demon-
strate explicitly the connection with statistical or
statistical-mechanical arguments, there have been
some attempts with stochastic methods to treat
radiative effects.*” However, there has been a
notable lack of results relating to an explicit dem-
onstration of the statistical-mechanical connection
between radiation and a microscopic, time-revers-
ible basis. Of course, in electrodynamics, more
is implied here than a derivation of the macro-
scopic Maxwell equations from a suitable micro-
scopic approach, since irreversibility does not
necessarily follow.

The fundamental difficulties relating to the amal-
gamation of statistical mechanics and relativity
still appear to hold.® However, progress has been
made in the construction of consistent, approxi-
mately relativistic theories.®

In particular, a Hamiltonian particle basis to
order ¢? exists (Darwin approximation) and, con-
sequently, statistical mechanics to this order may
be constructed. Thus, a Liouville equation exists
to this order and one may proceed to determine
the consequences to thermodynamics of the rela-
tivistic corrections.

Here, the question of radiation would appear not
to arise, since, according to-the conventional
treatment, an accelerated particle moving in ex-
ternal fields will lose energy at a rate proportional
to c™3. Note that the treatment of ¢ effects at a
microscopic level does not necessarily imply ra-
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diation losses, despite the time asymmetry'® in

~ this paper we deal with an approximation for which

time-reversal invariance holds at the microscopic
level.

At the macroscopic level, the questions of rela-
tivistic thermodynamics involving the correctness
of various transformation laws for the thermody-
namic quantities remain open and are not ad-
dressed here. Under reasonable assumptions in-
volving Poincaré invariance of the equilibrium sta-
tistical-mechanical theory,'? it is possible to ac-
commodate most, but not all,'? of the contending
formulations. The problems involved in attempt-
ing to find unique transformation laws do not con-
cern us here (as in earlier work'®) and the theory,
which is approximately Lorentz invariant to the
order concerned, is developed in a suitably defined
rest frame for the system.

The existence of a Hamiltonian guarantees the
basis for the Liouville equation'* and the conver-
gent kinetic equation which contains the approxi-
mately relativistic generalization of the Balescu-
Lenard equation was obtained.'® The divergences
which were eliminated were the usual ones associ-
ated with the long- and short-range behavior of
interacting point charges.!® The appearance of
symmetric real-axis poles in the analysis of the
c™? interaction contribution was initially felt'? to be
an artifact of the approximation technique. Never-
theless, they could be handled, with the net effect
that to the order considered for an equilibvium
charged system, the contribution to the thermo-
dynamics was vanishingly small. Further compar-
ison with the equilibrium statistical mechanics of
a degenerate electron gas in which the poles were
handled in the same way led to ¢”2 corrections to
the correlation energy, equation of state,'” and the
exchange energy.’® These expressions were in
agreement to order ¢~ with the quantum-field-
theoretic calculations given earlier,'® although the
particle calculation to this order was carried out

3017 © 1980 The American Physical Society



3018 JOHN E. KRIZAN 22

with no need of renormalization procedures.

It is to be shown that the poles indicated do have
a physical interpretation. Indeed, it was early
demonstrated in well-known papers® that similar,
physical interpretations of real-axis poles could
be made.

It has been demonstrated® that the most general
form for a two-body, approximately relativistic
Lagrangian following from a variational principle
for interacting point particles, contains the Darwin
approximation as a special case:

L=L,-V+I,y=L,+L,, 1)

where L, is the total free-particle Lagrangian to
the order concerned, V is the total Newtonian po-
tential, and I,y is the post-Newtonian term

Ln=57 Zg,gf[v ViVi= (e Ri)(vi'Ri)E;;a_k';]'

The Hamiltonian which follows for the above
Lagrangian in this case is

H=H,+V+I,y=H,+H,, (3)
where H, is the total free-particle Hamiltonian and

P,-D;
I;I’N"""z—_z' Zg gj[m m] Vi

_ (B, Ru)(-f’i"_ﬁu)_lqu]
mm; R;;dR;

“)

where P is the canonical momentum, considered
to order ¢%, The Hamiltonian form is also a par-
ticular case of those general cases to order c¢™%,
which follow from consideration of the approximate
generators of the Poincaré group.®

It is to be stressed that in using the Hamiltonian
(3), or the Lagrangian (1), then even if one takes
the viewpoint of the slow-velocity expansion of an
exact field theory, the situation is correct only to
order ¢2# Thus, to argue® ? that (1) is correct
to this order and then to incorporate terms of
order c™ and higher ab initio in a Hamiltonian
(including many-body terms) cannot be correct.
In writing the Lagrangian (1), terms of order c¢™3

have already been disregarded.

The treatment of retardation (or advanced effect)
is not involved in the ¢™? approximation.?® Thus,
there is a fundamental inconsistency in treating
particles in such a way that brings in ¢ effects®?
(same order effects as are associated with radia-
tion damping). Another problem relates to treat-
ing particles as moving in straight-line trajector-
ies (while neglecting radiation). With regard to
the magnetic interactions, it may be seen that such
an approximation is equivalent to assuming that the
particles have independent trajectories. Inserting
the independent-particle approximation

N
Fe@®=IIr(R,?,0 5)
i=1
into the Liouville equation
dF y(t) .
———5’;(—)-=1LNFN(t), ®)

where L is the Liouville operator,'® and project-
ing out the single-particle distribution f we get,
using (5),

Bf(ﬁ,i;,t)_BH‘”_ji BH(!.) af
ot 5k 0P ob %

v [(3H® (2)
+(N—1)de'dpr(__aH1 L2 _BHY _g__)
, 3R P P R

Xf(R,B,0)f (R, P, T), (1)

where H,=2H{" and H, =2 H{*. Equation (7) is the
linearized approximation; it is seenthat if f—f([R]
|B|,1), then there is no contribution from 73 on
the right-hand side after integration. This is so in
the important case of spherical symmetry in phase
space (a spatial homogeneous system being a spe-
cial case).

To assess more carefully the role of the ¢™2
term, we turn to the long-range part of the kinetic
equation (the ¢? generalization of the Balescu-
Lenard equation) as derived by using cluster meth-
ods from the Liouville and Master equatior_xg.“

For a spherical symmetric distribution ¢(P,)

op, I’
where

e P
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and
X - - . P2 > 3¢, (p
=1 2 2 f . 3L 10
n=1- (4wie?C/1?) ) dP,5.(1 gm)z(mc)zl 35, (10)
The right-hand side of (8) may be cast in the form
2] - - hag P
2 [FocB, - 2220, ~ (11)
P, 0P,
where
6(1g)[1 P2P2]*8¢(-f>)
3,4 12 . 12
F161reCfdP fdll 7 ml_ﬁ’)ﬁ— (12)
and .
‘-*5(‘ )[ 1 P, 2P, ] -
3,4 g1 13
D= 161reC_[dP fdl PiE 2(mc)4117!2 »(P,). (13)

_kAc_t_:ordmg to (12), a particle of momentum 51 moving through the medium will lose energy at the rate
P,- F/m or

1-P)[1_ i P2P,2_ ilogp(P,)
1673 f f ( —A>(__L[_ K VL TR _]-__ 2
m°e?C | dwd®P,, Jdl &|w- I €2Re€ 2(lmc)‘,an o (14)
l -
where we have defined w=1 - P,/m, €=€,+i€, and The forms (15) and (16) become explicitly
n=m,+in, Also, d(I - §;,) ~0(w— T 1/m) and we
have rewritten the form of | €2, =1 +w023m [ _w(@Bm )1/211) w(2Bm )1/2)}
For simplicity, we may rewrite the forms € and 12 1 1
7 for the Maxwell-Boltzmann distribution (the
Jiittner distribution leads to more complicated -i—w(&’y(ﬁm)s/z(n 2 i (18)
forms; the qualitative results should, however, 1
be the same, since the general terms of order
higher than c™2 are involved) and
€=1+(1=wl)/1%,? (15) :
( )/ YD n=1- W, 2 I-w(zﬁm)llzd)(w(zﬁm)l/z
n=1=1-wl)/1%2, (16) Ic 1 7
where ;
P f - 1 - 3¢>1(_15) iwfw 2<Bm 1/2 2
I==— [ dP = P, - - —(=0) (£ -Bm(w/1) /
2 w-(T-B/m) " P .1 <lc ) 2,”) emmie 2, (19)
+ig fdp 5 (w_l_‘£>13 9¢,(P) an Using (18), we examine the first term in (14). This
m 9P becomes
| -
- _-’ . D - 2 2 - T . D 2
tre*Rei [dww [aT 2 ll2P1/m)exp{ B/2mt )[:’ (- B/m)T} (20)

Making use of the relation [assuming an extremely small imaginary part in (18)]
i w,2
Re-(—:w&(e)awé(l—;”é-) : | (21)
where we have taken the large-wavelength (small-7) form of (18) [recall that (8) takes long—fange
collective effects into account]; then (20) is (p=cos8)
871'3 lma.x
= fdww o(w — wo)f dud(p=-mw/lP))= 41 . (22)
WP,y vy l

min

For a suitable choice of the integration limits, we may obtain the Bohr scattermg losses (longitudinal) due
to polarization of the medium.
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The second part of (14), using (19), is

2 et [ [ 7 3)[pe- (12) ot~ T B,ym) = @/2mle = C-R/mIT) 23)

l

n

Similarly, when one examines the small-wavelength behavior,

Re;-ﬂé('fl)Nﬂb {1 - (lc )]

and (23) becomes

8”13 fdwwfdldu(l— 2)6<u——117w)5(l——(2—°

where

cosa=mwc/wyp, .

Equation (25) is the expression for Cerenkov ra-
diation loss. It results from the transverse inter-
action of the particle with the medium and the con-
dition for radiation for a subluminal particle is
we/wew <1 or w< wy.

It is important to note that the Cerenkov contri-
bution is of order ¢ and, so, it falls within the
bounds of the previously noted restriction. Thus,
although the ¢™2 Hamiltonian was time symmetric,
the statistical-mechanical treatment has resulted
in radiation, an effect associated with irrevers-
ibility.

The partial (long-range) kinetic equation (8) in-
volving the Darwin approximation'® was also later
investigated by others. " The latter references
include effects which go beyond the ¢~2 approxi-
mation of (3) in arriving at an effective Hamil-

tonian or they pursue a coarse-graining procedure.

One of the results of these procedures (which, we
have already pointed out, effectively add higher
orders to the Hamiltonian while denying the same
higher order in the Lagranglanz'*) is that for low

w=1-DB/m we have wo?==1%c2, This forbids the
]

- =37 -
= Hibgt

where Ji=er,P/mc and 7y =c/w,; this has the
form of a dipole-dipole interaction; the leading
term was first obtained by Trubnikov.?” However,
the oscillating terms were replaced by other non-
oscillating ones. Moreover, the E12 defined in (27)
is a macroscopic Maxwell solution. Of course, in
the limit as v -0, the Darwin approximation (La-
grangian or Hamiltonian) emerges. The nonoscil-
latory results, following from the screening of
magnetic interaction, as noted earlier in this
paper, cannot give results which explain the phys-

12c?
wo?

(24)

eP‘ fdww(l cos?a), (25)

(26)

I
propagation of low-w Cerenkov radiation, whereas
the result which obtains here, with w,?=1%?, al-
lows it. In earlier work,?® we have also pointed
out the possibility of nondamped waves in the
charged system.

The behavior indicated by the presence of real-
axis poles, thus, is physically significant. Of
course, if the system is large enough, the absorp-
tion will ultimately take place (recall the Wheeler-
Feynman condition of complete absorption?). The
statistical-mechanical calculation implies that the
thermodynamic limit has been taken. Thus, over-
all energy conservation for an infinite system is
implied, although in finite, but large, plasmas it
is impossible to e11m1nate the Cerenkov radiation;
however, the condition 1-%< w, for the radiation
clearly brings in the density effect through the
plasma frequency, w,, and nonconservation in
such a case is tied to this effect.

To see further the connection with radiation, we
observe that the pair distribution function in equi-
librium leads to an effective interaction®:

i [(17— 7)@%(@ -3 M)(sm(r/rn)+cos(r/m))] =T, B, @7)
R

,;,3

[ v
ically observed c2 Cerenkov effects. The dipole

radiation forms [bracketed terms in (27)] gives,
for ¥> v, and lo=7x"t=w,/c,

E, =[G~ (4 #W]l2cosly /. (28)
Defining B, =#x E then leads to
§r= #x T2 cosly /v . (29)

This dependence of £ and B is associated with
radiation and (without taking into account a radia-
tion absorption mechanism) clearly gives rise to a
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net efflux of energy for finite boundaries; it fol-
lows, also, that the long range can be expected to
lead to infinities in the limit of an infinite sys-
tem,® unless special boundary conditions (absorb-
er conditions) are brought into play. Defining the
complex Poynting vector

S=g-Ex B, (30)
we get from (28) and (29)
~14,2 by 27 2
§=£—g—-§:—y§’isin29 =%€%Tl§—sm29 (31)

The angle 08 lies between the direction of the parti-
cle velocity ¥ (associated with dipole moment L)
and the direction of /. The energy per unit time
per solid angle is then®
dP _v%e®lo®
s~ 8mc
The far fields _E., and —ér in (28) and (29) satisfy
the equation

- 2 -
v2 Er +(ﬂ1) Er 0. (33)

sin%0. (32)

This again implies that /%c2=w,2, and that (33)
are the wave equations for which (w,/c)?= (wn/c?),

so that n=w,/w. This also follows from the Cer-

enkov relation (26). It has been argued® that the
Darwin approximation should be good for plasma
simulation in the region n%> 1. This corresponds
to € ,=n?=1%c?/w? Thus, once again, we see
1Bc?/w?=wyt/w?,or w?=12c?, for low w.

For infinite systems one may even employ a
physical, exponential cutoff, when absorption is
taken into account, due to the random thermal
motion and Doppler broadening.3 This is of the
order of (mc?/kRT)'/ % : For higher temperatures,
such a cutoff would be well within reasonable sys-
tem scale parameters. Absorption of radiation at
distances of the order of 7, =c¢/w, could lead to the
behavior (vortices) suggested earlier.*?

We have shown that a time-symmetric Hamilton-
ian (order c™?) in a statistical-mechanical calcula-
tion can lead to radiation effects of the same order
(Cerenkov radiation). The physical interpretation

‘of the presence of real-axis poles is, thus, given.

Treatments which require screening of magnetic
interactions cannot lead to these effects, since
they lead to the dispersion relation w,2=—12%2 at
low w. Arguments, which are based upon the as-
sumption that the Darwin Lagrangian may be used
to order c¢™2, but that the Hamiltonian appropriate
to the analysis must include ab initio orders of ¢
and higher, are not carried out consistently.
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