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Instabilities in interacting quantum field theories in non-Minkowskian spacetimes
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Instabilities produced by one-loop quantum effects in quantum field theories in curved spacetime or in flat

spacetime with boundaries are discussed. A criterion for the existence of instability is proposed and applied to
various models.

I, INTRODUCTION

The global structure of spacetime can be of
considerable importance in governing the behavior
of quantum field theories. For example, non-
trivial spacetime topology or the imposition of
boundary conditions will in general cause the
energy of the vacuum state to be nonzero (the
Casimir effect). One-loop quantum processes in
interacting field theories are also altered by
global considerations. ' ' Furthermore, the space-
time topology can determine the number of field
configurations which may exist; a nonsimply
connected spacetime admits twisted scalar and
spinor fields in addition to the usual (untwisted)
fields which exist in a simply connected space-
time. ' "

Flat spacetime with periodic identification of
points in one spatial direction (S ' xR') exhibits
all of the above features. The periodicity alters
the self-energy of a self-interacting scalar field
and can cause a ma'ssless field to acquire a mass
which depends upon the periodicity length. "
Similarly, the coupling of photons to the vacuum
polarization produced by electrons in S '&R' can
change the propagation of electromagnetic waves
and cause certain modes to propagate as though
photons were massive. ' The associated mass can
be tachyonic (imaginary), and in Ref. 8 it was
suggested that violations of causality might result.
However, as is discussed in Sec. II, a tachyonic
mass in a wave equation does not result in super-
luminal propagation. Thus no causality violation
need occur provided that the mass is associated
with waves rather than particles. It may, on the
other hand, lead to an instability if there are
modes for which Im ~&0. In a classical theory,
the existence of exponentially growing modes re-
presents instability against small perturbations.
In a quantum theory, such modes are also a sign
of instability, that the postulated vacuum state
is not in fact the physical vacuum. The purpose
of this paper is to investigate various models to
search for instabilities induced by one-loop
quantum corrections.

In the context of Minkowski-space scalar field
theories, it was argued by Coleman and Weinberg"
that such quantum corrections could lead to in-
stabilities which are interpreted as producing
symmetry breaking. In the context of field theo-
ries in more general spacetimes, these effects
have been considered recently by Shore, "who

discusses massless scalar electrodynamics in
de Sitter spacetime, and by Toms' who discusses
interacting scalar fields in S ' &R' and in the
Einstein universe.

In Sec. II the effects of one-loop quantum cor-
rections upon interacting scalar fields are dis-
cussed. A method is proposed to test for the
stability of such theories. This method has the
advantage that it can be applied to models in
which an effective potential does not exist. In
Sec. III this method is applied to scalar fields in
S'~R'. Scalar fields in the Einstein universe are
discussed in Sec. IV. Interacting scalar fields
which are confined between two parallel plates
are investigated in Sec. V. In Sec. VI quantum
electrodynamics in S' &R' is considered.

II. STABILITY OF INTERACTING SCALAR FIELDS

Let us first consider a pair of real scalar fields
Q and P in an arbitrary spacetime which are des-
cribed by the Lagrangian

8=—(s„g&"P —m2$ )+ —(8„$9 g —M g )

The associated equations of motion are

P+ m' P+ g P'P =0

Dg +M~ /+ gg2$ =0,

where 0 = V„&", the wave operator in this space-
time.

Suppose that Q is quantized, but that g is a
classical field. If (Q') denotes the (finite) ex-
pectation value in an appropriate quantum state,
then the propgation of the g field is described by
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/+M'g +g (P'& /=0.

The effect of the coupling to the Q field is equiv-
alent to the introduction of a space- and time-
dependent mass. It is possible to have( P') & 0,
so if

g+ 0'iI =0 (6)

possesses the same characteristics, regardless
of the sign of p. '; these characteristics are just
the light cones in the spacetime in question. A

disturbance propagates causality on or within the
forwa. rd light cone. This wa, s apparently first
demonstrated in Minkowski spacetim~ by Ehren-
fest" and is discussed by several recent au-
thors. " ' A corresponding theorem also holds
in curved spacetime and for p, '&onconstant. "'"
This result is perhaps surprising because of the
fact tha, t a cia,ssical pa, rticle with a, ta.chyonic
mass clearly travels a. spacelike world line and

can be used to violate causa, lity. " This suggests
that field theories in which tachyonic masses
arise will not have a particle interpretation. A

tachyonic mass may also lead to an instability
of the classical field theory if Eqs. (4) or (6)
possess exponentially growing solutions. In this
paper, our attention will be restricted to static
spacetimes, so that the normal modes have ex-
ponential time dependence.

This instability at the classical level suggests
that the quantum theory will also be unstable.
Hence the quantized f field, which is stable at
the tree-graph level, becomes unstable as a re-
sult of one-loop quantum corrections. The exis-
tence of an instability does not, by itself, deter-
mine what the correct, stable theory should be.
One familiar example of the effects of instability
is the Goldstone model" of spontaneous symmetry
breaking; the theory in which the vacuum expec-
tation value of the field is zero is unstable, but a
nonzero vacuum expectation value can lead to a
stable theory. In more complicated situations,
the outcome is not so clear. For example, if
space is not homogeneous, there is no reason to
a.ssume that the vacuum expectation va. lue will be
a constant. Even if the space is homogeneous,
the symmetry-breaking solution may be very non-
trivial. An example is given by Avis and Isham '
who treat the analog of the Goldstone model for a
twisted scalar field in S'&&R. The models of
Goldstone and of Avis and Isham differ from those

this "mass" is tachyonic.
A tachyonic mass does not, in the present con-

text, imply violation of causality. The wave equa-
tion

f +m' P + —,'yy'= 0. (6)

The stability of this model is often discussed in
Minkowski-space field theories by means of the
effective potential.

For our purposes it will be convenient to develop
a, different approach. We will work to first order
in ~, corresponding to one.-loop processes. Let
y, be a free-field operator

where the {EJ)are a complete set of positive-
norm solutions of

UF~ + m F) =0.
Let ~z) be a coherent state" in which only the
mode j is excited:

a, iz) =ziz),
where z is some complex number and (z ~z& =1.
It may be shown that

(z I g,' Iz) =((z I g, Iz) )'+ 3(z I g, iz) ( P,'& „
(12)

where (), denotes the vacuum expectation value.

4' = (z I P Iz),
then

(14)

We require that 4 be sufficiently small that the
C' term on the right-hand side of Eq. (14) may
be neglected. Then we have, to first order in X,

The criterion of stability which will be adopted
here is the requirement that this equation has no
exponentially growing solutions. This is a neces-
sa, ry, but not sufficient, requirement for absolute
stability. In cases where an effective potential
may be defined, it is equivalent to the require-
ment that the vacuum be a, local minimum of the
effective potential, but it says nothing about
whether the vacuum is a global minimum. As

considered here in that the former have a tachy-
onic mass term in the Lagrangian at the classical
level.

Another field theory which is of interest here
is the X P' model

& = z (s Q
s"

Q™p ') —
—,', ay'

for which the equation of motion is
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will be discussed below, it is possible to apply
this criterion in situations where the effective
potential is not well defined. The motivation for
the use of coherent states is that such states
represent classical field excitations in the limit
that ~z~ -~. Thus the stability criterion used
here is a, generalization of classical stability
which allows for the inclusion of one-loop quantum
cor rections.

A more general model is that given by the
Lagrangian

(e )t)s 0™0 )+ (6 ks N™4}
(16)

time, provided that the theory is renormalizable
in Minkowski spacetime. However, a proof for
the case of nonflat spacetime has not yet been
given.

III. SCALAR FIELDS IN 8 X 8
Let us first consider scalar fields in S' & R',

locally flat spacetime with periodic identification
of points in one spatial direction. Take the z axis
in a. rectangular coordinate system to be the axis
of periodicity and L to be the periodicity length,
so that the points (t, x, y, z) and (t, x, y, z+ L)
are identified.

This spacetime admits two types of scalar fields.
The untwisted scalar fields satisfy periodic boun-
da. ry conditions

g =(z lg lz), 0 (z}= 4 (z+ L) (21}

then to first order in l).„X» g, and P, we have

Clg+M'g+ g ( Q,'),g+ l). ,(g,'),g =0, (18}

where g, is a free field operator which satisfies

UP, +M'g, =0.
A simila, r equation holds for 4:

4+ m'4) + g (g '),4 + A. ,())t),'),4 =0.

(19}

(2o}

We consider the theory to be stable, ih the res-
tricted sense discussed above, if neither Eq. (18)
nor Eq. (20) possesses any unstable solutions.

The formal expectation values of P,
' and P,' are

of course infinite, but the singular parts may be
absorbed by renormalization of M' and m'. We
will henceforth assume that this renormalization
has been performed, so that .M a.nd m are the re-
normalized masses and ( Q,'), and (P,'), are the
finite expectation values. Similarly, we regard

and ~, as the renorma lized coupling con-
stants, although to the order to which we work
here no coupling-constant renormalization is
required.

Because we will consider only one-loop pro-
cesses, the infinities which arise are identical
to those in Minkowski-space field theories. In
two or more loop diagrams this is not the case;
there are nonlocal infinities which arise from
the combination of the singular part of one loop
with the finite part of a,nother loop. However, .

when all diagrams which contribute to a given
process are summed, such nonlocal infinities
have been found to cancel in all models for which
explicit calculations have been performed. "'""
It has been argued by Banach" that this cancella-
tion is a general feature of field theories in a
locally flat, but topologically nontrivial space-

and a,re cross sections of a product fiber bundle
over S'~R'. The twisted scalar fields satisfy
antiperiodic boundary conditions

P(z} = —P(z+ L) (22)

and are cross sections of a nonproduct bundle
over S' ~R' which has the topology of a Mobius
strip.

Let us first consider the case of a pair of un-
twisted fields which are' described by the Lagrang-
ian Eq. (16}. In Appendix A it is shown that

( (f&,') 0
= 2L 'f,g, (m Lj2 ))},

where

(23)

(24}

In the case m =0, we have

(y, '&, ~. , =(12L') '. (25}

Because ( Q,'), &0 for all m and L, the effect of
the radiative corrections in this case is to enhance
rather than to destroy the stability of the theory.
That is, for fixed L, the terms in Eqs. (18}and

(20) involving (Q,'), and (g,'), act as nontachyonic
ma. ss terms, and there are no unsta. ble modes.
We assume that g, X, and ~, are nonnegative;
otherwise the theory would be instable at the
classica. l level.

Let us now consider the case of two twisted
scalar fields $ and g, which are described by the
Lagrangian Eq. (16), with P replaced by Q and g
replaced by g. From Appendix A we have that

($0') 0'=2L ~[,f,I2(mIm ') f,(, (mL/2m}]-
(26)

and similarly for ($0') 0. Furthermore, ( g2) (0
for all m and J, and for fixed L the minimum
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value occurs at m=0. The first statement follows
from the fact that

(t2 1)1/2
2f-1/2 (&) -f-1/2~) 4 ~ 8222

1

and the second may be verified by numerical cal-
culation. Because f, /, (0) =1/24, this minimum
value is

I
I

(b)

(Q,'&,
(

0= —(24L') '.
lf M =m=0, then the analog of Eq. (20) for P
=(zl plz& is

P —(24 L') ' (g+ &,) C = 0 . (28) (c)

/
l

l
/

(24L }- (g+ Z )~ (29)

The solutions of this equation are plane waves
of frequency

FIG. 1. Self-energy correction of an untwisted scalar
field coupled to (a) itself, (b) a twisted scalar field, and
of a twisted scalar field coupled to (c) an untwisted scalar
field, (d) itself.

where k =(k»k2, k, ), —& k„, k, -~, and

k, =mL '(2n+1), n=0, +1, +2, ... . (30)

The allowed values of 4, follow from the anti-
periodicity of p. The lowest eigenfrequency is

1d =(21/ 6 L) '(241r' —g- A. )' '

where k, =2 nnL ', n=0, +1, +2, ... , and —~
( k„, k, & ~. Here (Q2 &2 is given by Eq. (23} and

($ 2) =2L 'I2 f,/2(ML/w) -f,/2(ML/2W)] .
(36)

Thus if
m'+ g&P,'), + X,&y,'&, &0, (37)

g+ A. , &24m', (32) then there will be unsta, ble modes. In particular,
if M=m =0, then the theory is unstable if

there are no complex eigenfrequencies and no
unstable modes. Similarly, Eq. (18) for 11

=(z ~tl1
~
z) will have no unstable solutions pro-

vided that

g+ A. , &24 m'.

However, Eqs. (32) and (33) are necessarily
satisfied for values of g, ~„and ~, such that
first-order perturbation theory is applicable,
i.e., g, A„and &, & I. Furthermore, if the
masses Mand m are nonzero the effect is to en-
hance the stability of the theory. Hence we con-
clude that this model is stable, in spite of the
fact that the effect of radiative corrections in
this case is to produce a tachyonic mass.

Another model which may be constructed in
8' xR2 is that of a twisted scalar field g coupled
to an untwisted field P. Take the Lagrangian to
be Eq. (16) with g replaced by g. Thus Eq. (20)
becomes

g)2A, (38)

This agrees with the result of Toms.
This instability arises in the untwisted field as

a result of its interaction with the twisted scalar
field. The twisted field g does not exhibit any in-
stabilities. The equation for C, which contains
contributions from the processes shown in Figs.
1(c}and 1(d), has no unstable modes provided
that

W2L '~M'+ g($22&, + A2(g '), . (38)

This is always satisfied if g and X, &1. The
reason for this asymmetry lies in the fact that
the free untwisted field may have eigenfrequencies
which are arbitrarily close to zero and hence may
be forced to become imaginary as a result of a
small perturbation. On the other hand, the free
twisted field has a minimum eigenfrequency which
is greater than zero even in the massless limit.

DC + m2 4 + g( $,2&, C + X,( $22&,41 = 0. (34)
IV. SCALAR FIELD IN THE EINSTEIN UNIVERSE

(g2+222+g(tII 2& + g (y 2) )1/2 (35)

The terms in Eq. (34) proportional to A, , and to
g are due to the self-energy processes shown in
Figs. 1(a) and 1(b), respectively. The corres-
ponding eigenfrequencies are

In this section we consider interacting scalar
fields in the Einstein universe, a, space of con-
stant curvature and topology R~S'. There is
only one type of scala, r field possible in this
spacetime, the untwisted scalar fields. Let us
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consider two such fields described by the Lag-
rangian (P '), - —(2''a') 'f, (, (0) =— (50)

.('-.4s 4™4'—&,R0')

+ .(s—As"0 M-V —$,Rg')

i 4 i 4 i 2 2 (40)
(d =a ' [1, —(g+ A, ) (48m'} ']'~',

which is real if

(51}

Consequently, if the theory is stable- when m =M= 0,
it will be stable for all masses. The minimum
eigenfrequency from Eq. (45) is now

where R is the scalar curvature and g, and g, are
constants. The analogs of Eqs. (18) and (20) are
now, respectively,

e+(M'+ ~, R+g(y, '), + ~, (y.').)+=0 (41)

g+ A. , &48m'. (52)

Thus within the domain of first-order perturba-
tion theory, there are no instabilities if $, = g.,
= -'. This agrees with the conclusion reached by
Toms' by the effective potential method.

4 + (m'+ (,R+ g(g, '), + A. , ( $0') ) 4 =0.
(42)

V. SCALAR FIELDS W'HICH VANISH ON TV(O
PARALLEL PLATES

In Appendix B it is shown that

(p,'), =(32m'~') '[ l(,'a 'In(l'g'a ') —m'In($ m2)]

—(2&'((') 'If, y, (V)+ Ik'f, y, (W)J, (43)

where

Consider scalar fields P and (Ii which are des-
cribed by the Lagrangian Eq. (16) in flat space-
time and subject to the boundary conditions that
they vanish on the planes defined by z = 0 and z
=L, l.e. ,

p,
' =a'[m'+ (g, —-')R], (44)

P (z = 0) = (t~ (z = L) = g (z = 0) = g (z = L) = 0 . (53)

~„=[~'(( '+ M'+ (5, —-', )R +a(4,'),
+y (y 2) ]1/2 (45}

where v= 1, 2, ... . In the Einstein universe

R =6/a'

Let us assume that

l is an arbitrary renormalization length, and a
is the radius of the universe. The expectation
value ( g,'), may be obtained from Eq. (43) by
the substitutions m-M, g, - („and l -l', where
I' is another renormalization length.

The eigenfrequencies of the solutions of Eq. (41)
are

We will be concerned only with the field theory
defined in the region 0 &s &L. If m=M=0, one
may show that'

( 2) ( 2)
5+ cos21TzL

48 L2(cos 2vzL ' —1)

(y 2) =(q 2) - (16&2~&) &~ -0 (55)

where g =z or L —z.
The equation for 4 in this case is Eq. (18) with

~=0. If we let

These expectation values are negative at all
points between the two plates and become singular
at the boundaries:

& —-M gi 2 2
2 6

(4'I) f ( ) e i ( kxx+ k&x) -i &u t (56)

Otherwise there would be unstable modes in the
classical theory. In the particular case that $,
= $, = -,', we have that

this equation becomes

d2
+ [~ + kx2+ kx2 —(g+ A, ) ( Q,'), ]f =().

(57)

( P,') = —(2w'a') ' [f,&, (ma) + m'a'f, &, (ma)]

and

(48)
Let k„=k, = 0, as the minimum eigenfrequency
and hence least stable mode is associated with
these values. Then

(g,'), = —(2w'a') ' [f,&, (Ma) +M 'a' f,&, (Ma) ],
(49)

d2

d, . + [&u' —F(z)J f =0, (58)

so the renormalization lengths l and I' do not
appear. As in the case of S' p'9, ', these expecta-
tion'values attain their minimum value in the
massless limit

where

ik =(g+ Z,)(y,'), . (59)

We may regard the term in E as small and apply
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first-order perturbation theory to find its effect
upon the eigenfrequencies. The smallest eigen-
frequency for the unperturbed (I" =0) equation is

(do = 7TL

associated with the mode

(6o)
FIG. 2. One-loop vacuum polarization of photons

coupled to a spinor field.

fo = sin mzL

If we let u, ' denote the first-order shift in u' as
a result of the perturbation, we have

tion of periodicity (k, = 0) have an effective mass
squared of

~'= —4e'L '
I. 2f, q.(n) + ~'f, ~,(~) J

(d = E 8 dZ o (62) if the polarization vector is in the direction of
periodicity p = z. Here

The first integral in Eq. (62) may be written as
(68)

L 5+ cos2m'L '

L
= —(96 ')I' f (5+cos2wzt')de.

0

= —5(96L) '.
Thus the lowest perturbed eigenfrequency is

(68)

and m and e are the mass and charge of the ferm-
ion, respectively. If the photon is in the other
independent polarization state, with polarization
vector orthogonal to the direction of periodicity,
then the vacuum polarization does not effect the
propagation, and the effective mass is zero. The
quantity p' given by Eq. (67) is negative for all
values of mand L. If L «m ',

~ —(~ 2 + ~ 2)1/2 —L-). [ ~2 5 (g y y )]1/2 (64) ~2 e2/8 L2

and if L» nz

(69)

which is real for values of g and A. , ~1.
Although the massive theory has not been con-

sidered explicitly, one expects the presence of
nonzero mass to enhance the stability. Hence we
find that these boundary conditions do not lead to
instabilities, in spite of the fact that ( Q,'), &0.

VI. QUANTUM ELECTRODYNAMICS IN S X R

In Ref. 8 the problem of formulating quantum
electrodynamics in S' xB' was considered. In
this spacetime there are two types of spinors.
In a particular representation, both types satisfy
the usual flat-space Dirac equation; the untwisted
spinors are characterized by periodic boundary
cond itions

0 0) = ))) (~)+ L) (65)

and the twisted spinors by antiperiodic boundary
cond itions

(66)

Photons may be coupled to either type of spinors.
In general, the effect of the one-loop vacuum

polarization process of Fig. 2 is to cause certain
photon modes to propagate with a nonzero effec-
tive mass. If the photons are coupled to twisted
spinors, this mass is nontachyonic. However,
if the photons are coupled to untwisted spinors,
it may be tachyonic. In particular, photons pro-
pagating in a direction perpendicular to the direc-

2-y/P+P ~3/g+ -~/~ L -j/~+ mL (70)

(u = (k '+ k '+ p, ')'~' (71)

where -~ &k„, k„=~. Thus there exist complex
eigenf requencie s.

Hence we conclude that quantum electrodynamics
in S ' ~R ' in which photons are coupled to untwist-
ed spinors is unstable. If the photons are coupled
to twisted spinors alone, no instabilities arise,
but if they are coupled to both twisted and un-
twisted spinors simultaneously, then the theory
is unstable. This follows from the fact that the
effect of the combined vacuum polarization of
untwisted and twisted spinors is to cause propa-
gation with a tachyonic effective mass, as is dis-
cussed in Ref. 8. This is the case reeardless of
whether one combines the twisted and untwisted .

spinors by taking the spinor generating functional
to be the sum of the twisted and untwisted func-
tionals, as proposed by Avis and Isham, ' or
whether one takes it to be their product. The
latter prescription is equivalent to taking a spinor

In Ref. 8 it was suggested that this tachyonic
mass would lead to propagation outside of the
light cone and hence violations of causality. This
is not the case, as was discussed in Sec. II. It
does, however, lead to an instability. The eigen
frequencies for photon modes with k, =0 and polar-
ization q=~ are
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Lagrangian which is the sum of a twisted and an
untwisted spinor Lagrangian.

VII. SUMMARY AND DISCUSSION

We have seen how one-loop quantum effects may
influence the stability of a quantum field theory
in a curved spacetime or in flat spacetime with
boundaries. The method used to search for in-
stabilities is that of testing whether equations of
the form of (18) possess any exponentially grow-
ing solutions. The existence of such solutions
indicate that there are coherent states in the
theory whose pa, rticle content is increasing ex-
ponentially, which is unacceptable in a stable
theory. As note'd in Sec. II, the presence of an
instability due to a tachyonic mass seems to be
incompatible with a particle interpretation of the
theory. Thus it is perhaps more accurate to
state that unstable solutions indicate an inconsis-
tency in the theory. Of course, the nonexistence
of such solutions does not prove that the theory
is fully stable in all respects; it does not rule
out the possibility of tunnelling from a vacuum
state associated with a, local minimum of the
effective potential to one associated with a global
minimum. The present method seems to corres-
pond to testing whether the vacuum in associated
with a minimum or a maximum of the effective
potential. In ca,ses where both methods can be
applied, they yield equivalent results. The method
used here has the advantage over the effective
potential method that it can be applied in cases
where the latter cannot. An effective potential is
defined only in scalar field theories where any
constant field is consistent with the appropriate
boundary conditions. This is not the case for
twisted scalar fields or for fields which vanish
on some bounda, ry.

The instabilities arise as a result of radiative
quantum effects causing at least certain modes
to a,cquire a tachyonic mass. However, a tachy-
onic mass does not by itself lead to an instability.
If the lowest eigenfrequency of the free theory is
separated from zero by a finite gap, as is the
case for twisted scalar field in 8 ' ~R' or a. scala, r
field in the Einstein universe, it will be able to
resist the effect of small destabilizing pertur-
bation and remain real.

Two models were found above )o be unstable.
One is the theory of an untwisted scalar field

coupled to a twisted scala, r field in S ' &R' in
which the coupling constants satisfy Eq. (38)~ In
this case it is possible for the field to undergo
spontaneous symmetry breaking and acquire a,

nonzero, constant vacuum expectation value.
This is discussed further by Toms, who shows
that the effective potential has a, minimum at non-
zero values of (&p).

The other unstable theory is quantum electro-
dynamics in S ' &R' with photons coupled to un-
twisted spinors or to a combination of twisted and
untwisted spinors. Here it is less clear what the
stable configuration should be, although one might
expect it to be a.ssociated with a nonzero va.cuum
expectation value of the field tensor I„, Of
course, in this case one may avoid the instability
if one couples photons only to twisted spinors.

ACKNOWLEDGMENT

I would like to thank Y. J. Ng, H. Van Dam,
J. Weinberg, and J. W. York for helpful dis-
cussions and comments.

(0)4'10)=(4L)'E f dKKs', (h))
n=-~ 0

where

=(k'+ m')'~'

E' = k„' + k„', and k, = 2 m n L '. This divergent
quantity may be regularized by writing

(0„') =(4sL) 'r- f dKKs (A3)

In general, there should be a renormalization
length in Eq. (A3), as in Eq. (B4) below. In this
case, however, it would not appear in our final
results and is hence ignored. I et g ™L/2mand

K=2mL '(n'+ (')'~' sinh u. (A4)

Then

APPENDIX A

In this appendix we calcula«(p()'), and (40')(),
the expectation values of the square of an un-
twisted and a twisted scalar field, respectively,
in S ' ~R'. The formal vacuum expectation value
of P,' may be written as

(0') = (2 )' "L ' fsdssichscosh' "sg (s'+4')'
0 n»oQ

(A5)
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where

F(A.; $, b) = Q [(n+ b)'+ P]

In Ref. 8 it is shown that

(A6)

Clg + m2 Qo+ ($, —6) P =0

in the Einstein universe, then the forma, l expecta-
tion value of P,' is

E()).; $, b) = w'i' (' '"F(A. ——') [F(A)]

+ 4 sin wA. f q (g, b), (A'I)

where f),($) =fq($, 0) is defined in Eq. (24). Thus

(() I y I()) =(4p g3)"~g n2~
n= l

(B2)

= [n'a '+ m'+ ($ —-')R]'~' n 1 2

Here a is the radius of the universe and the eigen-
frequencies a,re

,') n=&'/'(16m') 'm3 "I"(~a ——,') [I (-'a)] z

+ (2 ~)' "I " ' sin n( ,' a '——1)F (—,
' a —1)

x[F(—'a)] 'f„(, , (&) ~ (AB)

(Bs)

with a, d.egenera, cy of n'. The regula. rized expecta-
tion value is written as

(y 2) —(47f2n3)-I I 1-n g n 2 ~ -n
n= l

The first term above is independent of I and is
singula, r in the limit cr-1; the second term con-
ta.ins the I. dependence and is finite at o.=1. The
singul. ar pa, rt may be absorbed by a mass re-
normalization. Then (P, ) is finite and defined

up to an additive constant. If we require that the
expectation value vanish as 1.-~, then it is
uniquely defined and given by the second term in

Eq. (AB) evaluated at a =1:

Write

=a -'I ' "(4~')-'S- (as)

where

S=—,
' n' n'+ p. ' (B6)

where I is an arbitrary length introduced to en-
sure that (Q,')s has dimensions of (length) '.

(e.'&. =21 'f-, , (h). (A9) and p is defined in Eq. (44). This sum may be
expressed as

The corresponding result for a twisted scalar
field may be obta, ined readily, The analog of
Eq. (Al) is

(0I j;I) =(4mI, )-'

S = —,
' [(a - 4) (a —2) J

' B E(-,'a '; )). , b)
g Q2

+-,'(a —2) 'F(2 a-1; p, 0),

b-" 0

(BV)

Note that

(A 10)

(o I p,' Io) g =(0 I Q,'10),l, —(0 I Q,'10) ~. (All)

where E(X; a, b) is defined in Eq. (A6). From
Eq. (A'I) we find that

23'~' g' I"(-' a+ —')
(a —1) (a —2) (a —3) I'(—,

' a —1)

+ 2 sin n (-,' a —1) [f„~, , ( p,) + y,
'f„~,( p)]. (BB)

The first term in Eq. (BB) contains the singular
part of (P,') „, which may be written as

n '~'( la) 'f (a), (B9)

This relation also applies to the regularized and

the renormalized expectation values. Hence,
using Eq. (A9), one obtains Eq. (26). Equivalent
results for both the untwisted and twisted cases
mere given by Toms. '

where
~pl
~ 'L& a+ &) )" n &-(a-x) ln (t p/s )

(a —2) (a —3) F (—,
' a —1)

(B10)

APPENDIX B

Here we calculate ( Q,'), in the Einstein uni-
verse. If Q, is a free field described by the wave
equation

We expand f (a) about a =1 to obtain

f (a) = —V'(4&' '&') '

+ p'a '(a-1) [A+ —,
' In(l p/a)]

+O((a —1) ), (all)
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where A. is a numerical constant.
As a-1, we ha, ve tha.t

(,)
m'+ ($, ——,')R
Ss' (ot —1)

+ w
' ' [m + ((,—&)Rj [A+ —,', ln(lp/a))

( Po') o
-0 as (B13)

The pole term and the finite term proportional to
A may be absorbed into renormalization of m'
and $,. The resulting renormalized expectation
va, lue, which is required to satisfy

is given by Eq. (43).
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