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The finite one-loop parts of the Rarita-Schwinger self-energy in the gauge ay-¢ + (1 —a)y*8,4, satisfy the
transversality Ward identity in the new regularization scheme by dimensional reduction but not in conventional
dimensional regularization. Diagonalizing and then omitting the nonpropagating Lorentz ghosts, new vertices in the
non-Lorentz ghost sectors do contribute. The criteria for deriving Ward identities involving tracelessness of
structure constants are shown to be equivalent to the unit Becchi-Rouet-Stora-Tyutin Jacobian provided the gauge

algebra closes. ‘

I. INTRODUCTION

The quantization of supergravity proceeds along
general lines. One adds gauge-fixing terms which
in turn determine the Faddeev-Popov ghost action.
From this quantum action one may formally
derive Ward identities by means of path-integral
techniques. If one has a regularization scheme
which preserves the gauge invariances and applies
minimal subtractions, then the regularized theory
satisfies these Ward identities.'

In this article we study these aspects in the
example of the Rarita-Schwinger self-energy.
This is the counterpart of a similar calculation
of the graviton self-energy in supergravity.?
Although mixed loops containing at the same time
supersymmetry ghost C? and general coordinate
ghosts C¥ appear here, the calculation does not
give information on the commutation properties
of C% and C”, but it only requires that C* (and
C’) commute (anticommute) with their antighosts.
As usual in such explicit calculations, some new
theoretical insights are gained. The two most
important results we present below are as fol-
lows:

(i) Even though the antisymmetric part of the
vierbein field can be gauged away completely,
its effects remain at the quantum level. In fact,
it is just because we could not satisfy some Ward
identities that we found that new couplings are
present. They are due to the fact that the kinetic
terms involving the Lorentz antighost are non-
diagonal. Diagonalizing by redefining the Lorentz
ghost field, new couplings are produced in the
non-Lorentz ghost sectors. Thus the lore that one
can forget in quantum supergravity about the
Lorentz ghosts “because they do not propagate” is
incorrect.

(ii) The dimensional regularization scheme in the
form usually employed?® violates the transversality
Ward identity of the Rarita-Schwinger self-energy,
but a recent modification, the so-called dimen-
sional reduction scheme,* preserves this Ward
identity for all n. Thus, as expected for a long
time, it has finally been proven that dimensional
regularization and (local) supersymmetry are
incompatible from the finite parts of the one-loop
level onward, where the calculation becomes
sensitive to the regularization method employed.
The dimensional reduction scheme, keeping all
spinors and vectors four -dimensional, preserves
supersymmetry Ward identities. This has the
important consequences that one may use the
Gauss-Bonnet theorem in quantum (super) gravity,
that one still can use the two-component van der
Waerden formalism at the quantum level, and
that propagators are n independent. Most im-
portantly, the two-loop finiteness proof of super-
gravity® has now been completed, since there are
no supersymmetry anomalies.

In order to derive Ward identities, we use the
Becchi-Rouet-Stora-Tyutin (BRST) invariance
of the quantum action.®»” This invariance can be
achieved with or without closed gauge algebra,
that is to say, with or without auxiliary fields.®

‘However, one also needs a unit Jacobian, and

this is achieved by choosing a certain measure

in the path integral. In the old way of deriving
Ward identities by means of nonlocal gauge para-
meters, one always had to make the product of
Jacobian and integration measure invariant in
order that the path integral be gauge independent.®
In this case the gauge algebra must close. We
show below that these two methods of deriving
Ward identities are equivalent (once the gauge
algebra closes).
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As a byproduct, we show that in ordinary
Einstein gravity the product of Jacobian and in-
tegration measure is invariant under nonlocal
gauge transformations, provided one adds a
measure (detg)*?. Thus, it is not necessary to
give arguments that the ordinary Jacobian as
well as the trace of the structure constants each
vanish formally.'® Rather, it is the sum which
vanishes rigorously.

In Sec. II we compare various methods for
deriving Ward identities in supergravity. In Sec.
III we obtain the one-loop divergences of the
Rarita-Schwinger self-energy using dimensional
regularization. In Sec. IV we extend these results
to the finite parts, repeat the calculation using
regularization by dimensional reduction, and
compare the results with those of Sec. IIL

II. THE WARD IDENTITY

In previous calculations®'! the gauge-fixing
term was chosen as

£ (fix) =-1(0,Vgg" P +i0-vdr v
+Me,u0) — e, 04), (1)

where A is an arbitrary constant, often taken to
tend to infinity. However, as we shall see, with
this choice the diagram with the mixed ghost loop
in which we are interested vanishes. Thus we
consider a more general gauge for the local super-
symmetry

£(fix sup) =3[af ¥ +(1 - )P0, 7°)
xglay -9+ -ay®iy,]. @)

It is essential to use a flat § and not a covariant
I since for the latter case the correct quantum
action is still not known, except when the vierbein
fields in I are external fields.’*»'® For a =1 we
find Eq. (1), while for a =0 one finds a gauge-
fixing term bilinear in fields, which only con-
tributes to the kinetic tensor but not to the ver-
tices. The kinetic terms in Eq. (2) are a inde-
pendent and lead to the usual Rarita-Schwinger
propagator . (p)P,(p)) =z v,$rup™> at n=4. To
derive the Ward identity for the Rarita-Schwinger
self-energy, we consider the unweighted path
integral

z =f [dg]eH Vo[ F,, +b, —a,] s-det(sF, /o &) ,

3)

where s-det denotes the Faddeev-Popov super -
determinant,'* £ the gauge parameters, ¢
={ep,vs,8,P,A,} and F, ={-2,Vgg"", —-z[ar v
+(1 —a)y®,P.], e,u —€,,0002}. If we can show that
Z is independent of the arbitrary functions a, and

b,, then we can multiply by “unity”
f da, exp(3a,y *®a;)(s-det y)'# =constant, (4)

to obtain [ dropping the field-independent
(s-dety)'#]

z =f[d¢i] exp{i[I(c1) +(F, +b,)y “B(F, +bs)]}

x s-det(8F /08 ¢;) (5)
where Z is evidently still independent of b,. In
that case we have the Ward identity

9 5

50,3 5. 2|, Y HELN E L), (6)

b=0

where y*® is the tree -graph contribution. We
choose b, to be nonzero only in the case of local
supersymmetry. There we find the transversality
condition on the Rarita-Schwinger self-energy,
after dividing by § #(x) and ;#(y)

Lay o(y) +(1 —a)y®sp.(y)]
X [aP- 7(x) +(1 =a)B,0% D100, =0. (1)

The tree-graph contribution is of order a =0 and
equal to y,®.9,) v,=2#", but the loop corrections
must sum up to zero. In the next sections we will
consider separately the order a =0, «, and o?®
terms in Eq. (7), and compare dimensional re -
gularization with dimensional reduction for » dif-
ferent from 4. In this section we now turn to the
question of whether Z is indeed independent of

a,.
It is well known® that the path integral is in-
dependent of the gauge (i.e., independent of a,) if
the integration measure times the Faddeev-Popov
determinant is invariant under a particular kind

of nonlocal gauge transformations. It is necessary
and sufficient that

O(R}£%)/6¢ +/5,£* =0, (8)
where ¢ are the classical gauge fields (e?, y2,
S,P,A,) and 8¢ =R} (¢)£® denotes all gauge trans-

formations. The structure “constants” are de-
fined by the closure of the gauge algebra

[6(n),8(£)] ¢! =RE RinPe* - (£+—m)
=R}fL.ME%. (9)
The contributing parts of 6¢* are ®
8S =£%9,S —3€y-yS, idemP
6Am=§°‘8aAm—%€y-d)Am,
Sep =5,E%0" +E% e,

0Pl =0, 855 +£%8,94 +2D € .

(10)

The contribution from the gauge fields to Eq.
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(8) is
6(RLEY)/6¢pi=8,£%(=1~1~4+4 16 -4+16)
+Peye(z+z+2+0-3). 1)

Note that the Rarita-Schwinger contributions in
the supertrace'* acquire an extra minus sign. All
derivatives are right derivatives.'®* Thus, from

s =2(De)?
=20,€° +(0™" ) Wy (@) + 3V ¥l + T ¥u ] (12)
one finds indeed the contribution

- (Um"€ )a(%mu‘YmG: - % nyméﬁ +%a;m7u 6:)a

=—3Pye. (13) .

The contribution from the trace of the structure
constants follows from the commutators of the
three gauge invariances® which are general co-
ordinate transformations (g), local Lorentz ro-
tation (), and local supersymmetry transforma-
tions (s). To give an example, from

[65(‘50‘); 61(Km")] :61(— gaaaxmn)

one gets the contribution 6 3,£%. In general, one
takes the right derivative with respect to £* of the
composite parameter fg‘,n’éﬁ. In this way one
finds for the g, /, and s contributions, respec-
tively,

fBaE*=(5+6-4)(8,E%) +(0+0-1)([@ ye). (14)

Again a trace over fermionic indices acquires an
extra minus sign, so that from

[ 63(61), 6s(€2)] = Gs(wugl'yuﬁz)
+irrelevant ! and g terms, (15)

one finds indeed -9 - ye.

Thus the sum of Egs. (11) and (14) does not
vanish. However, one can add a measure (dete)™,
in order to make the 8,£* terms cancel. The
crucial test is then whether the { - ye terms also
cancel with this same measure. This is indeed
the case. The path integral thus reads

z =f [ demdysdS dP dA ,(det e)App]d(F, —a,)ei eV,
(16)

where F, are the gauges chosen. Z is independent
of a, since under the nonlocal gauge transforma-
tion 6¢? =R;(Fa'jRg)'1>\ﬂ(x) the factor within square
brackets is invariant, its variation being pro-
portional to Eq. (11) plus Eq. (14), plus the varia-
tion of (dete)™

(0,E*)(~6+T—=1)+P-ye(0-1+1)=0, (17)

Innone of the results above dothe Lorentz trans-
formation parameters occur, since the Lorentz

generators (0,,,)%® and (826% — 6% 6% have no di-
agonal elements.

We stress that it is only the sum in Eq. (8) plus
the measure which is invariant, not each term
separately. For Einstein gravity, Capper and
Ramon Medrano'® argued that each term sepa-
rately is formally zero. However, the sum is
rigorously zero if one adds again a measure
(detg)*”2. Using dimensional regularization or
regularization by dimensional reduction, these
measures do not contribute, and anyway théy
are absorbed by the renormalization constants
in renormalizable theories.

The auxiliary fields S, P, and A, appear in the
action as —% det e(S? +P? —A %) and can be inte-
grated away. (This remains true in the quantum
action, since the terms which are bilinear in
ghosts but linear in S,P A, are added). The
measure then becomes (dete)™, in agreement with
the results obtained by requiring BRST invariance
of simple supergravity with open algebras.'®

This brings us to the last point to be discussed
in this section, the relation between Slavnov-
Taylor invariance and BRST invariance of the
path integral. It is well known that Ward identi-
ties such as Eq. (7) can also be derived from
BRST invariance by making a BRST variation of
(C*(x)F ,(y)). However, one must also show that
in the case of BRST transformations the Jacobian
equals unity and this was shown in Ref. 7. Indeed,
the antighost fields do not contribute, since they
rotate into the gauge-fixing terms while the ghost-
field transformation rules were first found in
Ref. 6:

5CY =(-C*s,C" +Cy*C)A
5cab =(_Chahcab - Czlcmb +w:S’PsAm terms)A s (18)
5C% =[C*,C = 928y C +3C,, (0™ C)°]A .

The caret denotes a Majorana bar C?=C aCt  One
finds a contribution to the Jacobian

(5+6 ~4)(8,C*) - (F-yO)A. (19)

Clearly, if one adds these terms to Eq. (11) where
one replaces £*, \™", and €® by C*A, C™"A, and
CeA\, respectively, then the sum cancels and the
BRST Jacobian equals unity under all three local
symmetries provided one has the same measure
(dete)™ in each case.

In fact, one can understand why the BRST Ja-
cobian equals unity with the same measure as
was needed for Slavnov-Taylor invariance. The
ghost contribution to the Jacobian is given by

5(6BRSTC)/5C% =f%,CEA (20)

and this is precisely the same as the term with
the structure constant in Eq. (8). The sign here
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is + rather than -, since ghosts have opposite
statistics to the parameters to which they belong,
so that right differentiating 6C4 = - 31 %, C*ACK
acquires an extra minus sign relative to right
differentiating f gyn’ £. Thus we can deduce from
the preceding results for Slavnov-Taylor in-
variance that also for BRST invariance the mea-
sure is (dete)™.

In Ref. 7 the authors avoided the measure
(det e)™ by taking A, rather thanA , as an inde-
pendent field. One can find relations to other
choices by using the following simple theorem:

5(A*) /6A* =(BA!/8A ) +6(e™) /6e™ , (21)

where the prime denotes an infinitesimal trans-
formation. Note that the last term is equal to
5(det ¢)’. Similarly, one could have taken y™
rather than ¢,, while any power of (dete) in the
measure can be counterbalanced by multiplying
fields by powers of (det e).

I1I. DIMENSIONAL REGULARIZATION
OF THE TRANSVERSALITY WARD IDENTITY

The supergravity action'®'” consists of the

Einstein-Hilbert and the Rarita-Schwinger actions
as well as a complicated four -fermion interaction
whose explicit form is not needed for our present
one-loop calculation,

1 _
£SG = W eR(e)— %€u vp°¢u75Yvawa+“¢4” . (22)

Here e=dete,, with ¢,, the spin-2 vierbein field
(the graviton), ¥, is the spin-3 Majorana field,
and D, is the gravitationally covariant derivative.
We work in the second-order formalism®® without
auxiliary fields. The elimination of the auxiliary
fields leads to a four -ghost coupling®''® but this
does not contribute to our one-loop calculation.
We use the positive Pauli metric [g,, =g"" =6
=(++++) in flat space with u,v=1,2,3,4], 72
]

=y.2=1 (a=1,2,3,4) and Greek (Latin) indices
denote world (local Lorentz) tensors. From now
on we put k =1, and we define ¢,, =¢,, —93,, as the
quantum field variable of the graviton.

The nonghost vertex of two Rarita-Schwinger
fields and one graviton from the Rarita-Schwinger
action is given by £, =£; +£;, where

L _
£1 == 56“ veo 11’u7’57,,3p11)ocau ,
£ €€ DuY Do yCoq - (23)

The most useful gauge choices are

=

F, ={_au\/—g‘guv’ €au = Cuas -zlay- v+ -a)yy-yl},
(24)

where 7" =y%6} is field independent and a is an
arbitrary constant. The gauge-fixing terms can
be chosen to be

Lo =10,V 28" + ey, —eua)?
+ilaf y+(1 -a)P- 7]l ay -y +(1 -a)yy].
(25)

Here # is field independent.’? We let A~ so that
only the symmetric part of the vierbein field re-
mains. There is a vertex af,,, of order a from
the gauge-fixing term where )

°efix =- %an’ya;ﬂ;vanwvcua N (26)

We list here all the propagators:

Pl 0= =1(20%)" (8usByg +0usbus = 8,850) ,
PER =2p%) 7y, pra,

belu)z —'i(‘bz)-léuv ’

P(l/z) = _ﬂ -1 X

(27)

The ghost terms are obtained by varying the
gauge functions and we exhibit here only those
terms relevant to our calculation:

Len=0uCY[-0"CY+(T*y " +P " =T+ y0"")C]+C*(2C,, +8,C, -8,C,)

—3(1 - @)C8, (7 P)C* +7*148,C% +1 70,9, C? +27"D,C]

o=
- -Z—C]_aa(‘y- BIC* +37"0,,0, C% +37,0,C% +2y*D,C]. (28)

We note that the kinetic term in the Lorentz sec-
tor is 2C*[ C,, +3(8,C, -8,C,)]. It is convenient
to redefine C,,=C,, +3(8,C, —8,C,) so that the
kinetic term for the Lorentz ghosts becomes
ZC*""C; » Which are then nonpropagating. The
ghost vertex with one Rarita-Schwinger field, one

r

supersymmetry ghost, and one general coordinate

ghost can be cast in the following form:
Lp=L,+L,+L +L; —al +af,, (29)

where £, contains the vertices induced by dia-
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grawv. cv

v v, Sy
7 E
grav. grav.

+ 2 a@—t + a@a =0
13 v

FIG. 1. The four classes of graphs contributing to the
Ward identity. Note that each class contains graphs
which may depend on «.

gonalizing the Lorentz ghost:
L£,=0uCH(Duyu +hyu =0 70,,)C,
£,=-3C[p,(7-p)|c*,
£, =~3Cy*y,0,C%, (30)
£,=3C70,$u0,C"0%,
£,=4Cy,(0,C"6% —8,C"6Y).

Thus the effects of the Loventz ghosts are present
in the effective quantum action, even though the
Lovrentz ghosts themselves can be dvopped. At
this point we have complete Feynman rules. We
can proceed to calculate the contributions to the
Ward identity. The Ward identity, which we de-
rived in Sec. II, is given in Fig. 1. Now this
should hold separately for different powers of a.
The results of our calculations of the pole terms
to order a =0, @, and &? are given in Figs. 2, ~4,
respectively. We draw the reader’s attention to
the fact that all graphs with ghosts are of mixed
type, namely, they contain one supersymmetry

grav. grav.
¥ C:‘? L AN 2 ¥ C'j L4
I I I I
14 14
(1/72) (-3/4)
grav. v
y |4 |
+ —(n }——n o2l N
14 C
(2) (-2)
CV CV
L AR N 4 L /"\, v o
te—=<., .5 T2, .0 =0
C C
(2) (-1/2)

FIG. 2. Order-o® contributions to the Ward identity
for the one-loop divergent parts. The numbers in
brackets are the contributions to the Ward identity ex-
cept for an overall factor m2p(4 —x)-! and the explicit
factors 2 indicate that both orders of the vertices have
been added together.

grav. grav. |
¥ v L4 14
2= K * 2 ijn
v
(3/2) (-5/2)
cY cY
T 4 Voo Y
-2 ———-lc )F——-—o + 2 ———le"»....>,..""_—o
C c
(2) (3/2)
grav. grav.
¥ Voo
+ 2 CPI— + 2?]1— =0
(-372) (3)

FIG. 3. Order-a contributions to the Ward identity
for the one-loop divergent parts.

and one general coordinate ghost. We have not
added an extra minus sign for these loops, and
note that the Ward identities are satisfied. The
sum of all ghost contributions vanishes for a =1
and this was the reason that we chose instead of
Y+ as gauge-fixing term ay- p+(1 —a)y- 9. In
computing these diagrams one needs Wick con-
tractions, for example, (C*'C*). These lead to
extra signs: (C*'C")=-(C*C*") but (C*°C?)
=+(C®C*%), However, these are diagonal signs
and have nothing to do with C?C*=+C"C?% We

" always need to interchange C® and C” either twice

or not at all in a given diagram (this is well-
known in Feynman diagrams and the reader may
easily check this). Thus one obtains the same
result whether C® and C* commute or anticommute.

IV. DIMENSIONAL REGULARIZATION
OF THE TRANSVERSALITY WARD IDENTITY
BY DIMENSIONAL REDUCTION FOR GENERAL »

In Sec. III transversality of the Rarita-Schwinger

self-energy was verified for the divergent part

at the one-loop level. We now extend this to in-
clude finite terms. The calculation then becomes
sensitive to the regularization method employed.

grav. grav. .
v 14 4
AN * 2( jf
14 14
(2) (-3)
grav.
+ =0
v
(4)

FIG. 4. Order-a® contributions to the Ward identity
for the one-loop divergent parts.
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For global supersymmetry it has been shown*

that a modified form of dimensional regularization,

which we call dimensional reduction, preserves
supersymmetric Ward identities. The technique
consists essentially of continuing coordinates
and momenta to » dimensions (z<4) while re-
taining the four-dimensional nature of all other
vector indices; thereby the equality of Bose and
Fermi degrees of freedom characteristic of
supersymmetric theories is preserved. By con-
trast, in conventional dimensional regularization
all tensors are continued to » dimensions and it
was shown'® for a variety of globally supersym-
metric theories that the supersymmetric Ward
identities are violated by finite terms at the one-
loop level. Our purpose here is to investigate
whether the method of dimensional reduction is
also applicable to locally supersymmetric the-
ories. We also consider the result of using con-
ventional dimensional regularization.

In both cases it is convenient to relate all the
Feynman integrals which arise to a smgle stan-
dard one given by

1) [ e

The following relations are useful:

_kuyd"™  _.
sz(p SEERE
kuk Ak 1 ,
K(p-kf 200 1) [nbuby =P70u) 5 (31)
[ Ruk R d R _ 1
1 k2(p_k)2 8(7’[—1)1[(n+2)p“pl‘p>‘_alh/p1

- éuhpv - 6)1'17“] .

Note that the Kronecker 6’s in the above expres-
sions are n dimensional. It is frequently con-
venient for algebraic purposes to apply these re-
lations at an intermediate stage in the calculation
of a particular diagram. It is then important to
distinguish (in dimensional reduction) between the
Kronecker 8’s thereby arising, and the four -di-

|
d "kkg
B (p +1l:;2 “m"’s[”a PR (RYy, +v PSP (RYy, -

Results for both cases are given in Figs. 5, -7
for the @°, @, and o® terms, respectively. We
see that with dimensional reduction the Ward
identity is identically satisfied irrespective of

n -

mensional ones from the Feynman rules.

For illustrative purposes we consider the evalua-
tion of the first diagram in Fig. 6. For the case
of dimensional reduction, the Feynman rules are
exactly as given in the previous section, and we
obtain

j‘ Rsks d"R
Zp kZ 2

XPa€ #0160, +0,400

= 10 ?_ Ty " pavsvorsy, =2 If
(32)
(where careted indices are » dimensional, un-
careted four dimensional).

If we attempt instead to apply conventional
dimensional regularization, a number of com-
plications arise. Both graviton and Rarita-
Schwinger propagators become » dependent:

2
2 Guuéﬂa) ’

n ;lz)pz ('yuﬁ)/u. +(4 -n)d, 8 (33)

= 0,,004)75YaYa¥1VoVa

PLZV), Po = 2p (aupévn +5u06vp

(3/2) -
Puu -

bud ¥
+2(n -4)—?2-—> .

The derivation of the Rarita-Schwinger propaga-
tor using general # spin-3 projection operators
is sketched in Appendix A, where some relations
useful in evaluating the diagrams are also noted.
The treatment of the antisymmetric Levi-Civita
tensor also requires explanation, since it has no
obvious generalization to » dimensions. How-
ever, in the calculations it can always be re-
placed by an expression which can be generalized
by, for example, the relation

YsYo =10 oy Yu) - , (34)

Of course the uniqueness of this procedure is
questionable, which serves to illustrate the un-
satisfactory nature of the conventional technique
for supersymmetric theories.

For the same diagram as considered above, we
now find the following expression:

gHvpo

n+2
')’van::/Z)(k)?’d]z 4n-1)(n-2) I€ 4 yogD VsV Y oY v
7n+2
= 2 1 (35)

(all indices »n dimensional).

T

the value of », while, as anticipated, dimensional
regularization works only at »=4 for the a° terms,
although remarkably it too satisfies the identity
for the @ and @® terms. We conclude that the
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Diagram Coefficient of I(p2)p
Dimensional Dimensional
Reduction Regularization
9, 1 n(n®-6n +10)(n-3)
16(n-2
V11 v (n-2)
oy _3 _(n+2)
4 8
y I I vy

cY -2 -2
/’—‘~\‘ 2 2
Vs’ ¥ 1 L
C 2 2
(n-4)(n®-4n%+9n-8)
TOTAL (0] R e

16(n-2)

FIG. 5. Order-a contributions to the Ward identity
for the one-loop finite parts.

dimensional reduction technique gives satisfactory
results for supergravity.

Note added. In this paper we have discussed a
particular Ward identity, but anomalies were not
considered. Recently, however, some papers
have appeared in which the role of anomalies in
dimensional regularization by dimensional re-

Diagram Coefficient of I(p2)p
Dimensional Dimensional
Reduction Regularization
grav
3 n+2
v f I v 2 4
rav
: _5 _(n?+3n-18)
4
vt 1o v 2
rav
2 ) _3 _(n+2)
T v 2 4
14
rav
g 3 n2+2n-12
o v 4
14
-2 -2
3 n+2
2 4
TOTAL 0 o

FIG. 6. Order-o contributions to the Ward identity
for the one-loop finite parts.

Diagram Coefficient of I(p2)p
Dimensional Dimensional
Reduction Regularization
grav
CD v - _ (n3-5n%+12n-16)
4(n-2)
14
grav
3 n3-6n2+16n-20
y f 2(n-2)
14

e - _(n-7n%:20n-24)
4(n-2)

TOTAL 0] (]

FIG. 7. Order-a’ contributions to the Ward identity
for the one-loop finite parts. :

duction has been discussed. We refer to H. Ni-
colai and P. Townsend, Phys. Lett. 93B 111
(1980); proceedings of the Erice conference on the
unification of the fundamental interactions, edited
by S. Ferrara, J. Ellis, and P van Nieuwenhuizen
(unpublished), and P. Majumdar, E. Poggio, and
H. Schnitzer, Phys. Rev. D 21, 2203 (1980).

In a recent paper W. Siegel [ Phys. Lett. 94B,
37 (1980)] has argued that his technique of re-
gularization by dimensional reduction is mathe -
matically inconsistent. It seems to us, however,
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APPENDIX A

In the class of gauges used, the Rarita-Schwin-
ger propagator is given by the inverse of the
expression®

Vu b7, (A1)

The inverse of (Al) was found using the following
set of spin- projection operators:

1
1/2,88 — FiEy LR, ¢t =
P ss= n—1 V¥, Puirt=w,0,,

1 N a
Pt/f'“= (n__l)l?z YuWy, Pt/vz' B=wu¥,, (A2)
— r /
P?L/E _ouv-Plll-v’ss _th’ “5
where

A kLK Ru#
Yu=Yu— kl; ] wuz—kuz_'

These obey the orthogonality condition

D PLSHPL M =67 SPL (A3)
v



3002 M. K. FUNG, P. VAN NIEUWENHUIZEN, AND D. R. T. JONES 22

Then, writing

v = D, al Pl (A4)
It

we find

ai PV =Plitisy pr.PisY . (A5)
Then by simple algebra one finds

- (n-1)'"
alt{zzé’ a;{z _alts/z_ 9 ’
(A8)
a2 gan s

and hence that the Rarita-Schwinger propagator is
1
PR = oY) [nifn +(4 -n)d,, 8

+z(n-4)2£j3ﬁﬂ]. (AT)

The following identities are useful:

2p
PP <Py, - 2

13 pz H
2
P‘(‘syfz),yu - _;’)ZZ_Z‘_ ,
(A8)
y P = 28
14 ’
b

Pzi/z) - (3-n)f

2

Some formulas for y matrix algebra in » dimen-
sions used in Sec. IV are

NYeBrvs =[2n - (n =214,
VYYo= (1 = 2)Y,¥6 +2¥,Y, (A9)
NYeY¥ = (1 =6)v27o,

+2(4 =) (Bpg¥r+85e¥ o = 0pr¥0) -
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